RU2346151C1 - Способ регулирования разработки нефтяных месторождений (варианты) - Google Patents

Способ регулирования разработки нефтяных месторождений (варианты) Download PDF

Info

Publication number
RU2346151C1
RU2346151C1 RU2007122564/03A RU2007122564A RU2346151C1 RU 2346151 C1 RU2346151 C1 RU 2346151C1 RU 2007122564/03 A RU2007122564/03 A RU 2007122564/03A RU 2007122564 A RU2007122564 A RU 2007122564A RU 2346151 C1 RU2346151 C1 RU 2346151C1
Authority
RU
Russia
Prior art keywords
oil
water
polysaccharide
guar gum
development
Prior art date
Application number
RU2007122564/03A
Other languages
English (en)
Inventor
Равиль Рустамович Ибатуллин (RU)
Равиль Рустамович Ибатуллин
Марат Инкилапович Амерханов (RU)
Марат Инкилапович Амерханов
Шаура Газимь новна Рахимова (RU)
Шаура Газимьяновна Рахимова
Валентина Семеновна Золотухина (RU)
Валентина Семеновна Золотухина
Антон Николаевич Береговой (RU)
Антон Николаевич Береговой
Раис Салихович Хисамов (RU)
Раис Салихович Хисамов
Original Assignee
Открытое акционерное общество "Татнефть" им. В.Д. Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Татнефть" им. В.Д. Шашина filed Critical Открытое акционерное общество "Татнефть" им. В.Д. Шашина
Priority to RU2007122564/03A priority Critical patent/RU2346151C1/ru
Application granted granted Critical
Publication of RU2346151C1 publication Critical patent/RU2346151C1/ru

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

Изобретение относится к разработке нефтяных месторождений и может найти применение при разработке неоднородных по проницаемости заводненных нефтяных пластов. Технический результат - повышение эффективности регулирования разработки неоднородных по проницаемости заводненных нефтяных пластов за счет улучшения фильтрационных свойств гелеобразующих составов, обладающих селективным действием, повышения их прочности и расширения технологических возможностей способа. В способе регулирования разработки нефтяных месторождений, включающем закачку гелеобразующего состава на основе полисахарида, соединения поливалентного металла, воды и технологическую выдержку для гелеобразования, в качестве полисахарида используют гуаровую камедь, в качестве указанного соединения - оксид цинка в присутствии ацетата хрома в минерализованной воде по одному варианту и в качестве указанного соединения - оксид магния в присутствии ацетата хрома как в пресной, так и в минерализованной воде по другому варианту, а выдержку осуществляют от 3 до 5 суток, при соотношении компонентов, мас.%: гуаровая камедь 0,2-0,5, оксид цинка 0,03-0,05 и ацетат хрома 0,02-0,1 или оксид магния 0,02-0,04 и ацетат хрома 0,01-0,12, вода остальное в вариантах соответственно. 2 н.п. ф-лы, 3 табл.

Description

Изобретение относится к разработке нефтяных месторождений и может найти применение при разработке неоднородных по проницаемости заводненных нефтяных пластов.
Известен способ закачки в пласт гелеобразующего состава для регулирования разработки нефтяных месторождений, включающий полисахарид, соединение поливалентного металла и воду (Патент РФ №2107811, МПК Е21В 43/22, опубл. 27.03.98, Бюл. №9). В качестве полисахарида используют экзополисахарид, содержащий 1-3 вес.% уроновых кислот и продуцируемый Azotobacter Vinelandii (Lipman) ФЧ-1 ВКПМ В-5933 в виде культуральной жидкости, в качестве соединения поливалентного металла используют хромкалиевые квасцы.
Состав готовят и закачивают на пресной воде.
Недостатком данного способа закачки гелеобразующего состава является то, что экзополисахарид в виде культуральной жидкости обладает невысокими вязкостными характеристиками, а при контакте со сточной водой (минерализация 100 г/л и выше) полностью теряет свои вязкостные свойства, выпадая в осадок.
Известен способ регулирования разработки нефтяной залежи, включающий закачку через нагнетательную скважину композиции гуаровой камеди, поверхностно-активного вещества и растворителя (Патент РФ №2250361, МПК Е21В 43/22, опубл. 20.04.05, Бюл. №11). Недостатком данного способа является низкая эффективность при разработке неоднородных по проницаемости заводненных нефтяных пластов.
Известен способ повышения нефтеотдачи методом гидроразрыва пласта (Патент США №3888312, НКИ 166/308.5, опубл. 10.06.97), в котором в качестве гелеобразующего полимера используется полисахарид класса галактоманнан (гуаровая камедь) с массовой концентрацией от 0,3 до 3% и в качестве сшивателя - органические соединения титана со степенью окисления +4. Недостатком данного способа является то, что для процесса гелеобразования необходимо поддерживать значения водородного показателя среды (рН) в интервале от 2 до 7. Для этого дополнительно вводится фумаровая или муравьиная кислота. Еще одним недостатком является очень короткий индукционный период гелеобразования. Это создает трудности при осуществлении технологического процесса закачки таких сшитых полимерных составов на промыслах.
Наиболее близким по технической сущности к предлагаемому изобретению является способ регулирования разработки нефтяных месторождений, включающий закачку гелеобразующего состава на основе полисахарида, соединения поливалентного металла и воды и технологическую выдержку для гелеобразования (Патент РФ №2285785, МПК Е21В 33/138, С09К 8/90, опубл. 20.10.06, Бюл. №29). В качестве полисахарида используют ксантан, продуцируемый микроорганизмами типа Xanthomonas campestris, в качестве соединения поливалентного металла используют ацетат хрома и/или хромкалиевые квасцы при соотношении 1:1 в воде с минерализацией от 0,5 г/л до 100 г/л при следующем соотношении компонентов, мас.%: ксантан - 0,05-0,3, ацетат хрома и/или хромкалиевые квасцы - 0,005-0,2, вода - остальное, причем после закачки заданного объема гелеобразующего состава осуществляют технологическую выдержку продолжительностью от 3 до 10 суток.
Недостатком данного способа является то, что полученный гель на основе ксантана и ацетата хрома и/или хромкалиевых квасцов легко разрушается под действием приложенного напряжения. Вследствие этого снижается эффективность выравнивания проницаемости неоднородных заводненных нефтяных пластов.
Технической задачей данного изобретения является повышение эффективности способа регулирования разработки неоднородных по проницаемости заводненных нефтяных пластов за счет улучшения фильтрационных свойств гелеобразующих составов, обладающих селективным действием, повышения их прочности и расширения технологических возможностей способа.
Указанная техническая задача достигается первым способом регулирования разработки нефтяных месторождений, включающим закачку гелеобразующего состава на основе полисахарида, соединения поливалентного металла, воды и технологическую выдержку для гелеобразования. Новым является то, что в качестве полисахарида используют гуаровую камедь, в качестве соединения поливалентного металла используют оксид цинка в присутствии ацетата хрома в минерализованной воде при следующем соотношении компонентов, мас.%:
Гуаровая камедь 0,2-0,5
Оксид цинка 0,03-0,05
Ацетат хрома 0,02-0,1
Вода Остальное,
причем после закачки заданного объема гелеобразующего состава осуществляют технологическую выдержку продолжительностью от 3 до 5 суток.
Указанная техническая задача достигается вторым способом регулирования разработки нефтяных месторождений, включающим закачку гелеобразующего состава на основе полисахарида, соединения поливалентного металла, воды и технологическую выдержку для гелеобразования. Новым является то, что в качестве полисахарида используют гуаровую камедь, в качестве соединения поливалентного металла используют оксид магния в присутствии ацетата хрома, как в пресной, так и в минерализованной воде при следующем соотношении компонентов, мас.%:
Гуаровая камедь 0,2-0,5
Оксид магния 0,02-0,04
Ацетат хрома 0,01-0,12
Вода Остальное,
причем после закачки заданного объема гелеобразующего состава осуществляют технологическую выдержку продолжительностью от 3 до 5 суток.
По химическому строению гуаровая камедь (гуар) представляет собой неионогенный полисахарид растительного происхождения. Молекулярная структура представляет собой прямую цепь, образованную галактозой и маннозой, следовательно, гуаровая камедь является галактоманнаном. Соотношение маннозы и галактозы должно быть приблизительно 2:1.
Гуаровая камедь является гидроколлоидом с высоким молекулярным весом. При растворении в холодной и горячей воде гуар образует высоковязкий гель.
С 1960 года начали применять гуар, сшитый боратными сшивателями для транспорта проппанта в жидкостях гидроразрыва для стимуляции притока в нефтяных и газовых скважинах методом гидроразрыва пласта (ГРП). Как раньше, так и сейчас в качестве сшивателя используют водорастворимые соединения бора (борная кислота или другие боросодержащие соединения) и гидроокись натрия как щелочной активатор для поддержания рН на уровне 10-10,5.
Но сшитые полимерные составы на основе гуара и боратов практически не имеют индукционного периода сшивки, т.е. загущение композиции происходит практически сразу после смешения компонентов. Это создает трудности при осуществлении технологического процесса закачки таких сшитых полимерных составов на промыслах.
С целью повышения нефтеотдачи неоднородных по проницаемости заводненных нефтяных пластов путем выравнивания проницаемостной неоднородности пласта закачкой гелеобразующего состава были разработаны сшитые полимерные составы с использованием в качестве сшивателей окислов двухвалентных металлов и ацетата хрома. Применение окислов металлов в качестве сшивателей до сих пор не практиковалось.
Под влиянием сшивателей происходит структурирование водного раствора гуара с образованием гелеобразной системы. Процесс этот происходит во времени. В течение некоторого периода времени, называемого индукционным периодом, вязкость композиции практически не отличается от вязкости раствора полимера. За это время необходимо закачать ее в пласт, где и происходит образование сшитой полимерной системы (СПС). Длительный индукционный период позволяет продвинуть гелеобразующий состав на большую глубину до начала гелеобразования. Очевидно, что в более проницаемые пропластки состав внедрится на большую глубину, чем в малопроницаемые. Для образования прочной сшитой полимерной системы при закачке гелеобразующего состава в пласт по предлагаемым способам делают технологическую выдержку продолжительностью от 3 до 5 суток. Чем выше неоднородность, тем больше продолжительность технологической выдержки.
Растворы гуаровой камеди имеют высокий коэффициент солестойкости. Коэффициент солестойкости - это устойчивость водных растворов полимеров к высаливающему действию электролитов, содержащихся в минерализованной (сточной) воде. Для приготовления растворов гуаровой камеди использовалась как пресная, так и минерализованная вода с общей минерализацией до 300 г/л, что значительно расширяет технологические возможности использования способа.
В качестве сшивателей были использованы окислы цинка (ZnO) в минерализованной воде и окислы магния (MgO) в пресной и минерализованной воде в присутствии ацетата хрома.
Оксид цинка ZnO - рыхлый белый порошок, желтеющий при нагревании, соответствует ГОСТу 10262-73. Оксид цинка применяется для изготовления белой масляной краски (цинковые белила), в медицине и косметике, значительная часть получаемого оксида цинка используется в качестве наполнителя резины в шинной промышленности.
Сшивка гуара только в присутствии ZnO не происходит, необходима затравка, в качестве которой используется ацетат хрома. Надо сказать, что в присутствии только ацетата хрома гуаровая камедь также не образует сшитую полимерную систему.
В пресной воде в исследованном диапазоне концентраций гуара и сшивателя - оксида цинка в присутствии ацетата хрома не происходит образование сшитых полимерных систем.
Оксид магния MgO обычно получают путем прокаливания природного магнезита MgCO3. Он представляет собой белый рыхлый порошок, известный под названием жженой магнезии, применяется в медицине и при изготовлении огнеупоров. Выпускается согласно ТУ-6-09-3023-79.
Преимуществом окиси магния является то, что она образует СПС на основе гуара в пресной и минерализованной воде. Но окись магния, так же как и окись цинка, вступает в реакции гелеобразования только в присутствии ацетата хрома.
Сущность изобретения
На поздней стадии разработки нефтяных месторождений с образованием обширных промытых зон усугубляется проницаемостная неоднородность пласта. Одним из эффективных направлений повышения нефтеотдачи является увеличение фильтрационного сопротивления этих зон за счет создания остаточного фактора сопротивления с применением гелеобразующих составов.
Предлагаемые гелеобразующие составы на основе гуаровой камеди в момент смешения компонентов имеют невысокую исходную вязкость и поэтому легко закачиваются в пласт, в первую очередь, поступают в высокопроницаемую зону пласта, и уже там начинается процесс гелеобразования, т.е. образование поперечных связей между отдельными макромолекулами полисахарида с помощью оксида цинка в присутствии ацетата хрома в минерализованной воде или оксида магния в присутствии ацетата хрома как в пресной, так и в минерализованной воде. Этот процесс происходит во времени, и поэтому нужна технологическая пауза, чтобы образовалась прочная устойчивая во времени сшитая полимерная система, которая закупоривает высокопроницаемую часть пласта и тем самым способствует уменьшению неоднородности пласта. При этом происходит увеличение охвата пласта воздействием (заводнением) потому, что закачиваемая вслед вода вынуждена идти в низкопроницаемые, неохваченные раннее воздействием пласты. Такая селективная закупорка пласта является одним из методов регулирования процесса разработки нефтяных месторождений.
Изучение патентной и научно-технической литературы показало, что подобная совокупность существенных признаков является новой и ранее не использовалась, что, в свою очередь, позволяет сделать заключение о соответствии технического решения критерию «новизна».
Неизвестно применение данных существенных признаков, выполняющих аналогичную задачу. Следовательно, предлагаемый способ соответствует критерию «изобретательский уровень».
Изучение влияния данного способа на изменение фильтрационных и нефтевытесняющих параметров, а также сравнение с прототипом проводилось с использованием физических моделей слоисто-неоднородных пористых сред с непроницаемыми границами раздела.
Лабораторные насыпные модели представляли собой две одинаковые трубки из нержавеющей стали длиной 150 см, внутренним диаметром 2,7 см, плотно заполненные молотым кварцевым песком, с общим входом и раздельными выходами. При этом одна трубка (более проницаемый пропласток) содержала песок, проницаемость которого по нефти кратно превышала проницаемость песка в другой трубке (менее проницаемый пропласток).
В качестве вытесняемой нефти использовалась дегазированная девонская нефть с Карабашской УКПН вязкостью 13-19 мПа·с при температуре 20°С.
В качестве полисахарида использовалась гуаровая камедь производства ООО «Химическая группа ОСНОВА», г. Казань в соответствии с ТУ 2458-019-57258729-2006 под торговым названием «Гуамин». Недостатком всех полисахаридов является их подверженность микробной деструкции, поэтому для подавления микробиологической деструкции исследуемого продукта ко всем приготавливаемым растворам добавляется бактерицид, выбранный из числа формалина, СНПХ-1002 и др. в количестве 0,3%.
В качестве соединения поливалентного металла использовались окись цинка или окись магния в присутствии ацетата хрома.
В качестве вытесняющей нефть минерализованной воды использовалась модель сточной воды (с минерализацией не ниже 100 г/л).
Первичное вытеснение нефти проводилось до общей обводненности остаточной нефти до 95-99%. После этого в общий вход модели закачивались гелеобразующие составы по предлагаемым способам, затем проводилась технологическая выдержка в течение 3-5 суток.
По прототипу закачивали раствор ксантана с массовой долей 0,2% с разными сшивателями с массовой долей 0,2% с технологической выдержкой от трех до десяти суток.
Основные условия и средние результаты вытеснения нефти на двухслойных моделях по предлагаемым и известному способам представлены в табл.1.
В качестве фильтрационного параметра, характеризующего неравномерность процесса вытеснения в двух разнопроницаемых трубках, использовали парциальный (относительный) дебит жидкости менее проницаемого пропластка до и после вытеснения оторочки. Очевидно, чем больше прирост парциального дебита менее проницаемого пласта, тем эффективнее данный способ вытеснения нефти с точки зрения охвата неоднородных по проницаемости пластов заводнением.
Парциальный дебит менее проницаемой трубки при осуществлении предлагаемых способов увеличился, в среднем, в 3,16 раза по первому варианту и в 3,95 раза по второму варианту, а по прототипу в 1,7 раза. Эти результаты свидетельствуют о том, что после закачки композиции СПС по предлагаемым способам произошло выравнивание неоднородности пласта по проницаемости.
После вытеснения нефти по известному и предлагаемому способам средний прирост коэффициента вытеснения составил 15,2% по первому варианту и 17% по второму варианту предлагаемых способов и 8,5% по известному способу.
Таким образом, предлагаемые способы существенно влияют на выравнивание фильтрационной неоднородности слоисто-неоднородных пластов, что ведет к увеличению коэффициента охвата пласта вытеснением.
Кроме этого, были проведены опыты по оценке эффективности заявляемого способа по сравнению с прототипом на естественных кернах по следующим показателям: по фактору сопротивления и остаточному фактору сопротивления, коэффициенту вытеснения.
В табл.2 представлены основные условия и результаты вытеснения нефти из девонских кернов по предлагаемым и известному способам с использованием лабораторной установки Autoflood (AFS-300) фирмы «Core Laboratories Instruments (США). Использовались стандартные керны терригенных девонских пород диаметром 2,7-3,0 см и длиной 3,5-4,0 см. Проницаемость и пористость кернов имеют близкие значения, следовательно, исходные условия для проведения испытаний предлагаемого и известного способов одинаковы.
Основными параметрами эффективности методов увеличения нефтеотдачи (МУН), направленных на снижение фильтрационной неоднородности пластов, являются фактор сопротивления (ФС) и остаточный фактор сопротивления (ОФС). Фактор сопротивления - это отношение подвижности воды к подвижности вытесняющего раствора при фильтрации в пористой среде. Остаточный фактор сопротивления это отношение подвижности воды до воздействия к подвижности воды после воздействия МУН. Чем больше ФС и ОФС при минимальном содержании реагента в вытесняющем растворе, тем технологически и экономически эффективнее его применение в нефтедобыче.
Как видно из табл.2, предлагаемый способ по этим параметрам превышает известный способ: по фактору сопротивления в 1,9 раза по первому варианту и в 1,4 раза по второму варианту, а по остаточному фактору сопротивления соответственно в 4,5 и 2,4 раза.
Сравнительное тестирование структурной прочности СПС, полученных на основе гуара и ксантана, было осуществлено путем измерения сдвиговой прочности на вискозиметре «Полимер РПЭ-1М».
Результаты этих исследований представлены в таблице 3.
Гели на основе гуара превосходят по прочности гели ксантана на 27-48 Па, в среднем при скорости 1,8 с-1.
Применение предлагаемой группы изобретений способствует повышению нефтеотдачи неоднородных по проницаемости заводненных нефтяных пластов путем выравнивания проницаемостной неоднородности пласта за счет увеличения фильтрационного сопротивления промытых зон путем создания остаточного фактора сопротивления закачкой гелеобразующих составов повышенной прочности и расширением технологических возможностей.
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004

Claims (2)

1. Способ регулирования разработки нефтяных месторождений, включающий закачку гелеобразующего состава на основе полисахарида, соединения поливалентного металла, воды и технологическую выдержку для гелеобразования, отличающийся тем, что в качестве полисахарида используют гуаровую камедь, в качестве соединения поливалентного металла используют оксид цинка в присутствии ацетата хрома в минерализованной воде при следующем соотношении компонентов, мас.%:
Гуаровая камедь 0,2-0,5 Оксид цинка 0,03-0,05 Ацетат хрома 0,02-0,1 Вода Остальное

причем после закачки заданного объема гелеобразующего состава осуществляют технологическую выдержку продолжительностью от 3 до 5 сут.
2. Способ регулирования разработки нефтяных месторождений, включающий закачку гелеобразующего состава на основе полисахарида, соединения поливалентного металла, воды и технологическую выдержку для гелеобразования, отличающийся тем, что в качестве полисахарида используют гуаровую камедь, в качестве соединения поливалентного металла используют оксид магния в присутствии ацетата хрома, как в пресной, так и в минерализованной воде при следующем соотношении компонентов, мас.%:
Гуаровая камедь 0,2-0,5 Оксид магния 0,02-0,04 Ацетат хрома 0,01-0,12 Вода Остальное

причем после закачки заданного объема гелеобразующего состава осуществляют технологическую выдержку продолжительностью от 3 до 5 сут.
RU2007122564/03A 2007-06-15 2007-06-15 Способ регулирования разработки нефтяных месторождений (варианты) RU2346151C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007122564/03A RU2346151C1 (ru) 2007-06-15 2007-06-15 Способ регулирования разработки нефтяных месторождений (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007122564/03A RU2346151C1 (ru) 2007-06-15 2007-06-15 Способ регулирования разработки нефтяных месторождений (варианты)

Publications (1)

Publication Number Publication Date
RU2346151C1 true RU2346151C1 (ru) 2009-02-10

Family

ID=40546766

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007122564/03A RU2346151C1 (ru) 2007-06-15 2007-06-15 Способ регулирования разработки нефтяных месторождений (варианты)

Country Status (1)

Country Link
RU (1) RU2346151C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627807C1 (ru) * 2016-08-03 2017-08-11 Павел Юрьевич Илюшин Жидкость для глушения нефтегазовых скважин
RU2706149C1 (ru) * 2018-05-21 2019-11-14 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Гелеобразующий состав для ограничения водопритока в добывающей скважине, на которой осуществляется паротепловое воздействие

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627807C1 (ru) * 2016-08-03 2017-08-11 Павел Юрьевич Илюшин Жидкость для глушения нефтегазовых скважин
RU2706149C1 (ru) * 2018-05-21 2019-11-14 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Гелеобразующий состав для ограничения водопритока в добывающей скважине, на которой осуществляется паротепловое воздействие

Similar Documents

Publication Publication Date Title
RU2285785C1 (ru) Способ регулирования профиля приемистости нагнетательной скважины и способ ограничения водопритока в добывающей скважине
CA2821129C (en) Improved fluid loss compositions and methods of use for subterranean operations
RU2382185C1 (ru) Способ выравнивания профиля приемистости нагнетательной и ограничения водопритока в добывающей скважинах (варианты)
WO2005003515A1 (en) Methods of reducing water permeability for acidizing a subterranean formation
US11248167B2 (en) Acid diversion in naturally fractured formations
WO2011107744A1 (en) Ammonium halide as gelation retarder for crosslinkable polymer compositions
RU2424426C1 (ru) Способ разработки неоднородного нефтяного пласта
RU2346151C1 (ru) Способ регулирования разработки нефтяных месторождений (варианты)
RU2483092C1 (ru) Состав полисахаридного геля для глушения высокотемпературных скважин
RU2541973C1 (ru) Способ разработки неоднородного нефтяного пласта
RU2386803C1 (ru) Способ кислотной обработки призабойной зоны терригенного коллектора
RU2661973C2 (ru) Способ выравнивания профиля приемистости нагнетательных скважин и ограничения водопритока в добывающие скважины
RU2597593C1 (ru) Способ выравнивания профиля приемистости нагнетательных и ограничения водопритока в добывающих скважинах
RU2529975C1 (ru) Состав многофункционального реагента для физико-химических медотов увеличения нефтеотдачи (мун)
CN113136185A (zh) 一种低温高矿化度油藏用有机堵水冻胶
CA2515063C (en) Methods of improving conformance control in fractured hydrocarbon reservoirs
WO2015065384A1 (en) Wellbore servicing compositions and methods of making and using same
RU2644365C1 (ru) Способ разработки неоднородного нефтяного пласта
RU2431741C1 (ru) Способ разработки неоднородного нефтяного пласта
RU2160832C1 (ru) Способ ограничения водопритоков в скважину
RU2451168C1 (ru) Способ регулирования фронта заводнения нефтяных пластов
RU2507386C2 (ru) Способ повышения нефтеотдачи трещиноватых и пористых пластов с искусственно созданными трещинами после гидравлического разрыва пласта - грп
RU2396419C1 (ru) Способ изоляции водопритока к добывающим нефтяным скважинам
RU2627807C1 (ru) Жидкость для глушения нефтегазовых скважин
CN104481478A (zh) 聚合物驱对应油井上封堵大孔道中聚窜的方法及其所用处理剂