RU2345353C1 - Способ и устройство для радиационного измерения плотности твердых тел - Google Patents

Способ и устройство для радиационного измерения плотности твердых тел Download PDF

Info

Publication number
RU2345353C1
RU2345353C1 RU2007120996/28A RU2007120996A RU2345353C1 RU 2345353 C1 RU2345353 C1 RU 2345353C1 RU 2007120996/28 A RU2007120996/28 A RU 2007120996/28A RU 2007120996 A RU2007120996 A RU 2007120996A RU 2345353 C1 RU2345353 C1 RU 2345353C1
Authority
RU
Russia
Prior art keywords
radiation
density
ring
detector
source
Prior art date
Application number
RU2007120996/28A
Other languages
English (en)
Inventor
В чеслав Алексеевич Горшков (RU)
Вячеслав Алексеевич Горшков
В чеслав Михайлович Юмашев (RU)
Вячеслав Михайлович Юмашев
Николай Ревокатович Кузелев (RU)
Николай Ревокатович Кузелев
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт технической физики и автоматизации"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт технической физики и автоматизации" filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт технической физики и автоматизации"
Priority to RU2007120996/28A priority Critical patent/RU2345353C1/ru
Application granted granted Critical
Publication of RU2345353C1 publication Critical patent/RU2345353C1/ru

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

Изобретение относится к области измерения плотности изделий с использованием гамма-излучения. Сущность заключается в том, что обратнорассеянное излучение регистрируют одновременно в каждом из двух каналов детектора и аппроксимируют функцию плотности распределения радиусов вылета фотонов экспоненциальной зависимостью. По отношению к интенсивности счета в двух каналах детектора получают интегральную характеристику ослабления рассеянного излучения по радиусу, на основе которой по калибровочному графику зависимости интегральной характеристики от плотности при заданной энергии излучения устанавливают плотность объекта контроля. Устройство содержит сцинтиллятор в двухканальном детекторе, выполненный в виде диска из двух колец разных диаметров. В кольцо большего диаметра вставлено кольцо меньшего диаметра, внутрь которого вставлен кольцевой блок радиационной защиты, в центре которого размещен источник гамма-излучения. Каждый из двух кольцевых сцинтилляторов снабжен кольцевым счетчиком импульсов. Источник в канале радиационной защиты имеет возможность менять положение с помощью устройства перемещения источника. Техническим результатом изобретения является повышение быстродействия, точности и производительности. 2 н.п. ф-лы, 1 ил.

Description

Изобретение относится к области измерения плотности изделий с использованием гамма-излучения.
Известны способы и устройства, предназначенные для контроля плотности изделий с использованием гамма-излучения, принцип работы которых основан на явлении рассеяния гамма-излучения атомами вещества контролируемого объекта. Рассеяние является главным образом результатом комптоновского взаимодействия фотонов с электронами атомов вещества объекта, причем количественно такое взаимодействие определяется плотностью вещества. Измеряя плотность потока рассеянных фотонов, можно получить прямую зависимость между показаниями прибора и плотностью вещества. Обычно измерения плотности проводят с использованием калибровочного графика.
Недостатками известных способов являются ограничение диапазона измерения пределами восходящего или нисходящего участка калибровочного графика, а также длительное время измерения. Кроме того, из-за процесса распада изотопа и снижения потока гамма-излучения необходима регулярная экспериментальная коррекция калибровочного графика, что снижает производительность измерения.
За прототип принят способ измерения плотности, при котором с целью расширения диапазона измерений и повышения точности контроль плотности ведут в области максимальной интенсивности обратнорассеянного излучения. Для этого одновременно с регистрацией рассеянного излучения изменяют базовое расстояние до нахождения области максимальной интенсивности излучения, например, путем перемещения источника или детектора параллельно поверхности контролируемого объекта.
При этом для регулирования ширины экстремальной области источник и детектор можно коллимировать. Так как положение экстремального значения калибровочного графика при найденном базовом расстоянии для заданной энергии источника не зависит от активности источника, то контроль ведут по положению пика. Положение пика на калибровочной кривой сохраняется при изменении как вещественного состава, так и активности источника излучения [1].
Измерение плотности среды осуществляют по найденному базовому расстоянию. Для этого можно пользоваться калибровочными графиками или градуировкой шкалы прибора в непосредственных единицах плотности. В этом случае оценка плотности контролируемых объектов проводится с учетом поля обратнорассеянного излучения.
Детектором регистрируется лишь незначительная часть фотонов, в связи с чем для измерения плотности указанным способом требуется значительное время, и возможность измерения в процессе формования практически исключается, кроме того, приводит к необходимости для получения заданной точности измерения либо повышать активность источника, либо увеличивать время измерения, либо увеличивать площадь сцинтиллятора.
Однако активность источника ограничена требованиями безопасности, а увеличение площади сцинтиллятора уменьшает разрешающую способность, так как суммарное количество обратно рассеянных фотонов практически не зависит от плотности рассеивающего материала, что не дает возможности использования больших кристаллов для повышения доли обратнорассеянных фотонов.
Технический результат, получаемый при реализации предложенного способа, заключается в повышении быстродействия, а также в повышении точности и производительности измерения.
Указанный результат получается за счет того, что в способе радиационного измерения плотности твердых тел путем облучения контролируемого объекта потоком гамма-излучения, регистрации практически всего обратнорассеянного излучения и определения плотности по полученным данным обратнорассеянное излучение регистрируют одновременно в каждом из двух каналов детектора, аппроксимируют функцию плотности распределения радиусов вылета фотонов экспоненциальной зависимостью
f(r)=Ge-Gr
по отношению к интенсивности счета в двух каналах детектора на основании уравнения
Figure 00000001
получают интегральную характеристику ослабления G, на основе которой по калибровочному графику зависимости ослабления обратнорассеянного излучения от плотности при различных энергиях излучения устанавливают плотность объекта контроля.
При Δ12 интегральная характеристика G определяется уравнением
Figure 00000002
Поскольку плотность определяется на основании отношения интенсивностей регистрации фотонов в детекторе, данный метод инвариантен к активности источника и времени измерения.
Получаемое значение плотности представляет собой средневзвешенное значение плотностей на разных глубинах с весами, распределенными по экспоненте (чем больше глубина, тем меньше значение весового коэффициента). Для повышения весовых коэффициентов на больших глубинах уменьшается посредством коллимации сферический угол ввода фотонов в исследуемый объект. Регулирование сферического угла ввода приводит также к получению оптимальной геометрии ввода фотонов: для диапазона высоких плотностей сферический угол уменьшается, для низких - повышается.
Повышение весовых коэффициентов на больших глубинах достигается посредством уменьшения коллимации сферического угла ввода фотонов в исследуемый объект.
Плотномеры, работа которых основана на явлениях рассеяния гамма-излучения материалом объекта контроля, известны. Плотномер, выбранный в качестве прототипа устройства, включает в себя источник гамма-излучения в защитном контейнере и детектор с сцинтиллятором и счетчиком импульсов [2]. Перед процессом измерения проводят контроль плотномера. При этом часть излучения через коллимированный канал подают на детектор, в котором сцинтилляция преобразуется в импульсы тока, величина которого фиксируется и учитывается в процессе работы.
В режиме измерения детектор регистрирует поток фотонов обратнорассеянных объектом измерения в импульсы тока, частота которых связана с плотностью измеряемого объекта. Значение плотности находят при помощи заранее составленного калибровочного графика по отношению импульсов, зарегистрированных счетчиком в режимах контроль и измерение.
Известному устройству присущи недостатки, указанные для вышеописанного способа. Для повышения быстродействия, плотности и производительности в устройстве для радиационного измерения плотности твердых тел, включающем в себя источник гамма-излучения в радиационной защите и детектор с сцинтиллятором и счетчиком импульсов, детектор выполнен двухканальным, а сцинтиллятор выполнен в виде диска из двух колец разных диаметров, причем в кольцо большего диаметра вставлено кольцо меньшего диаметра, внутрь которого вставлен кольцевой блок радиационной защиты, в центре которого размещен источник гамма-излучения, и при этом каждый из двух кольцевых сцинтилляторов снабжен кольцевым счетчиком импульсов.
Предлагаемое устройство, с помощью которого реализуется предложенный способ измерения плотности, показано на чертеже.
Оно включает в себя источник гамма-излучения 1, радиационный экран-коллиматор 2, защищающий сцинтилляторы от прямого излучения, заглушка 3 для выпуска и перекрытия потока излучения, устройство перемещения источника 4, позволяющее менять сферический угол ввода фотонов в объект исследования, кольцевые сцинтилляторы 5 и 6, блоки преобразователей световых импульсов в электрические импульсы (фотоэлектронные умножители или фотодиоды) 7 и 8, сумматоры импульсов 9 и 10, счетчики импульсов 11 и 12.
Работа устройства предложенным способом происходит следующим образом.
Плотномер с источником гамма-излучения 1 в радиационном экране 2 с сцинтилляторами 5 и 6 и с блоками преобразователей 7 и 8 устанавливают в позицию облучения. Убирают заглушку 3 и выпускают излучение на объект измерения. Число рассеянных веществом объекта фотонов регистрируют сумматорами 9, 10 и счетчиками 11, 12.
По числу фотонов, вылетевших в соответствующие зоны сцинтилляторов 5 и 6, рассчитывают плотность вещества следующим образом.
На основании уравнения
Figure 00000003
вычисляют интегральную характеристику ослабления G, отношение которой к плотности
Figure 00000004
есть величина постоянная, зависящая только от энергии фотонов.
Плотность вычисляется либо по экспериментально определенной постоянной С(Е), либо на основании самой калибровочной зависимости.
По мнению авторов, указанные отличительные признаки являются новыми, и в предложенном функциональном единстве необходимы и достаточны для обеспечения заявленного технического результата.
Литература
1. Способ измерения плотности среды или расстояния от прибора до поверхности среды. Авторское свидетельство №247420, G01N 23/06. БИ №22, 1969 г.
2. Гельфанд М.Е., Калошин В.М., Ходоров Г.Н. Радиоизотопные приборы и их применение в промышленности. М.: Энергоиздат, 1986 г., стр.98-103.

Claims (2)

1. Способ радиационного измерения плотности твердых тел путем облучения контролируемого объекта потоком гамма-излучения, регистрации обратнорассеянного излучения и определения плотности по полученным данным, отличающийся тем, что обратнорассеянное излучение регистрируют одновременно в каждом из двух каналов детектора, аппроксимируют функцию плотности распределения радиусов вылета фотонов экспоненциальной зависимостью, по отношению к интенсивности счета в двух каналах детектора получают интегральную характеристику ослабления рассеянного излучения по радиусу, на основе которой по калибровочному графику зависимости интегральной характеристики от плотности при заданной энергии излучения устанавливают плотность объекта контроля.
2. Устройство для радиационного измерения плотности твердых тел, включающее в себя источник гамма-излучения в радиационной защите и детектор со счетчиком импульсов и сцинтиллятором, отличающееся тем, что в двухканальном детекторе сцинтиллятор выполнен в виде диска из двух колец разных диаметров, причем в кольцо большего диаметра вставлено кольцо меньшего диаметра, внутрь которого вставлен кольцевой блок радиационной защиты, в центре которого размещен источник гамма-излучения и при этом каждый из двух кольцевых сцинтилляторов снабжен кольцевым счетчиком импульсов, причем источник в канале радиационной защиты имеет возможность менять положение с помощью устройства перемещения источника.
RU2007120996/28A 2007-06-06 2007-06-06 Способ и устройство для радиационного измерения плотности твердых тел RU2345353C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007120996/28A RU2345353C1 (ru) 2007-06-06 2007-06-06 Способ и устройство для радиационного измерения плотности твердых тел

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007120996/28A RU2345353C1 (ru) 2007-06-06 2007-06-06 Способ и устройство для радиационного измерения плотности твердых тел

Publications (1)

Publication Number Publication Date
RU2345353C1 true RU2345353C1 (ru) 2009-01-27

Family

ID=40544343

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007120996/28A RU2345353C1 (ru) 2007-06-06 2007-06-06 Способ и устройство для радиационного измерения плотности твердых тел

Country Status (1)

Country Link
RU (1) RU2345353C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2529648C2 (ru) * 2012-12-03 2014-09-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ и устройство для радиационного измерения плотности твердых тел
RU2566390C1 (ru) * 2014-08-25 2015-10-27 Акционерное общество "Научно-исследовательский институт полимерных материалов" Способ гамма-сцинтилляционного контроля
RU2578047C1 (ru) * 2014-11-25 2016-03-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Способ определения плотности

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2529648C2 (ru) * 2012-12-03 2014-09-27 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ и устройство для радиационного измерения плотности твердых тел
RU2566390C1 (ru) * 2014-08-25 2015-10-27 Акционерное общество "Научно-исследовательский институт полимерных материалов" Способ гамма-сцинтилляционного контроля
RU2578047C1 (ru) * 2014-11-25 2016-03-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Способ определения плотности

Similar Documents

Publication Publication Date Title
DK173147B1 (da) Apparat til målinger af jordformationer med fin rumlig opløsning
RU2345353C1 (ru) Способ и устройство для радиационного измерения плотности твердых тел
Bircher et al. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual‐ended‐scintillator readout
Shyti Calibration and performance of HPGe detector for environmental radioactivity measurements using LabSOCS
RU2657296C2 (ru) Способ измерения дозы посредством детектора излучения, в частности детектора рентгеновского излучения или гамма-излучения, используемого в спектроскопическом режиме, и система для измерения дозы с применением такого способа
Kiran et al. Albedo factors of 123, 320, 511, 662 and 1115 keV gamma photons in carbon, aluminium, iron and copper
Balogun et al. Compton scattering tomography in soil compaction study
RU2529648C2 (ru) Способ и устройство для радиационного измерения плотности твердых тел
JP2544431B2 (ja) 物体の密度等の測定方法と装置
CN108222927B (zh) 一种基于x射线源的密度测井方法
US3530296A (en) Method for measuring quantities associated with the filler distribution of paper
Östlund et al. Peak-to-valley ratios for three different HPGe detectors for the assessment of 137Cs deposition on the ground and the impact of the detector field-of-view
Asa'd et al. The measurement of the wall thickness of steel sections using Compton backscattering
JP2023048575A (ja) 放射能測定装置と放射能測定方法
RU2505841C1 (ru) Способ измерения интенсивности излучения
JP2703409B2 (ja) 放射能測定方法
BR112019017639A2 (pt) Medição de densidade de formação não invadida e avaliação fotoelétrica utilizando uma fonte de raios-x
CA1274321A (en) Method of determining the density of substrata
RU2586383C1 (ru) Устройство для спектрометрии нейтронов
Jahanbakhsh et al. Industrial scattering densitometry using a mCi gamma-ray source
RU2578048C1 (ru) Устройство для радиационного измерения плотности
RU2578047C1 (ru) Способ определения плотности
Xiong et al. A compact, high signal-to-noise ratio line-detector array Compton scatter imaging system based on silicon photomultipliers
Breton et al. Design, optimization and calibration of an automated density gauge for firn and ice cores
RU2617001C1 (ru) Мобильный рентгеновский плотномер

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130607