RU2343337C1 - Способ предотвращения развития дефектов стенок трубопроводов - Google Patents

Способ предотвращения развития дефектов стенок трубопроводов Download PDF

Info

Publication number
RU2343337C1
RU2343337C1 RU2007131299/06A RU2007131299A RU2343337C1 RU 2343337 C1 RU2343337 C1 RU 2343337C1 RU 2007131299/06 A RU2007131299/06 A RU 2007131299/06A RU 2007131299 A RU2007131299 A RU 2007131299A RU 2343337 C1 RU2343337 C1 RU 2343337C1
Authority
RU
Russia
Prior art keywords
pipeline
coupling
gaps
sleeve
defects
Prior art date
Application number
RU2007131299/06A
Other languages
English (en)
Inventor
Александр Сергеевич Кузьбожев (RU)
Александр Сергеевич Кузьбожев
Руслан Викторович Агиней (RU)
Руслан Викторович Агиней
Виктор Александрович Попов (RU)
Виктор Александрович Попов
Марина Николаевна Петровска (RU)
Марина Николаевна Петровская
Original Assignee
Общество с ограниченной ответственностью "Газпром трансгаз Екатеринбург" (ООО "Газпром трансгаз Екатеринбург")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Газпром трансгаз Екатеринбург" (ООО "Газпром трансгаз Екатеринбург") filed Critical Общество с ограниченной ответственностью "Газпром трансгаз Екатеринбург" (ООО "Газпром трансгаз Екатеринбург")
Priority to RU2007131299/06A priority Critical patent/RU2343337C1/ru
Application granted granted Critical
Publication of RU2343337C1 publication Critical patent/RU2343337C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Изобретение относится к трубопроводному транспорту и может быть использовано при ремонте трубопроводов с трещинами и коррозионными дефектами. Уменьшают давление в трубопроводе, устанавливают разъемную муфту, сваривают горизонтальными продольными швами половины муфты, закачивают твердеющий некоррозионно-активный полимерный материал в пространство между муфтой и трубопроводом и восстанавливают давление в трубопроводе. После сварки муфты выявляют зазоры между муфтой и трубопроводом в местах дефектов стенок трубопровода, устанавливают контуры зазоров и контролируют заполнение зазоров методом ультразвукового неразрушающего контроля. Повышает надежность трубопровода. 3 ил.

Description

Изобретение относится к трубопроводному транспорту и может быть использовано при ремонте эксплуатирующихся трубопроводов с трещиноподобными и коррозионными дефектами.
Известен способ повышения стойкости конструкций к распространению трещин, в котором осуществляют нагрев и охлаждение конструкции в направлении возможного распространения трещин (а.с. №2041418, F16L 57/00, опубл. 09.08.1995).
Основным недостатком способа является повышенная опасность реализации способа на эксплуатирующихся магистральных нефтегазопроводах с трещинами без снижения давления и стравливания перекачиваемого продукта.
Наиболее близким к заявляемому способу является способ предотвращения развития дефектов стенок трубопроводов, взятый нами в качестве прототипа (а.с. №2097646, F16L 57/00, 58/16, опубл. 27.11.1997). Известный способ заключается в уменьшении давления в трубопроводе, установке разъемной из двух половин муфты, сварке горизонтальными продольными швами половин муфты, закачке твердеющего некоррозионно-активного полимерного материала в пространство между трубой и муфтой. Недостатком известного способа является невозможность определения наличия или отсутствия полостей-зазоров между муфтой и трубопроводом, незаполненных некоррозионно-активным полимерным материалом.
Задачей изобретения является устранение возможности деформации трубы и развития дефекта при восстановлении давления в трубопроводе после ремонта путем выявления и гарантированного заполнения зазоров между муфтой и трубопроводом некоррозионно-активным полимерным материалом в месте дефекта.
Поставленная задача решается тем, что в способе предотвращения развития дефектов стенок трубопроводов, включающем уменьшение давления в трубопроводе, установку разъемной муфты, сварку горизонтальными продольными швами половин муфты, закачку твердеющего некоррозионно-активного полимерного материала в пространство между муфтой и трубопроводом и восстановление давления, согласно изобретению после установки и сварки муфты выявляют зазоры между муфтой и трубопроводом в местах дефектов стенок трубопровода, устанавливают их контуры и контролируют заполнение зазоров методом ультразвукового неразрушающего контроля.
После установки муфты возникает фрагментарно-прерывистый контакт поверхностей сопряжения трубопровода и муфты в силу того, что даже новые трубы, из которых делают половины муфты, и тем более, эксплуатируемый трубопровод имеют отклонения от геометрии окружности, овальность, локальные искривления. Вследствие этого образуются изолированные друг от друга полости-зазоры, местоположение которых установить заранее невозможно.
При обжатии муфты на трубопроводе цепными гидравлическими зажимами и восстановлении давления происходит неравномерная деформация трубопровода - минимальная в местах полного прижатия к муфте и максимальная в неустраненных зазорах. Это может вызвать увеличение размеров трещин или их дополнительное образование в районе коррозионного дефекта и снизить тем самым надежность ремонта.
Выявление зазоров между муфтой и трубопроводом посредством ультразвукового обследования, установление их контуров и заполнение зазоров некоррозионно-активным полимерным материалом с последующим ультразвуковым контролем степени их заполнения позволяет устранить возможность деформации трубы и развития дефекта на поверхности трубопровода при восстановлении давления в трубопроводе после ремонта.
Способ поясняется фиг.1-3.
На фиг.1 стрелками изображен путь прохождения и отражения ультразвука в муфте, а также эхо-сигналы на экране ультразвукового дефектоскопа. (Путь прохождения ультразвука в муфте условно показан линиями, не перпендикулярными поверхности, для того, чтобы показать разделение этапов прохождения ультразвука во времени. В действительности ультразвук вводят пьезоэлектрическим преобразователем ультразвукового дефектоскопа перпендикулярно поверхности муфты и принимают тем же преобразователем в том же месте).
На фиг.2 показан участок трубопровода с дефектом и установленной на нем муфтой, с выявленными на ее поверхности контурами зазоров и отверстиями для заполнения зазоров.
На фиг.3 изображена схема прохождения и отражения ультразвука в сечении трубопровода с установленной муфтой, а также эхо-сигналы на экране дефектоскопа в случае качественного соединения.
Способ осуществляется следующим образом.
Установив пьезоэлектрический преобразователь 1 ультразвукового дефектоскопа на муфту 2, проводят настройку дефектоскопа. Для этого посредством пьезоэлектрического преобразователя 1 вводят импульсы ультразвуковых колебаний в муфту 2. Принимают и преобразовывают отраженные от внутренней поверхности муфты 2 импульсы в эхо-сигналы, находят такое положение преобразователя, при котором амплитуда первого эхо-сигнала 3, наблюдаемого на экране 4, максимальна. Корректируют чувствительность дефектоскопа, выставляя амплитуду первого эхо-сигнала 3 на экране дефектоскопа на заданный уровень 5.
Зачищают наружную поверхность трубопровода 6 в месте дефекта 7 и внутреннюю поверхность муфты 2, которая будет сопрягаться с местом дефекта 7.
Уменьшают давление в трубопроводе, устанавливают разъемную из двух половин муфту 2, сваривают горизонтальными продольными швами половины муфты (не показано).
После установки муфты 2 на трубопровод 6 сканируют места дефектов при помощи пьезоэлектрического преобразователя 1. Выявляют места зазоров между муфтой 2 и трубопроводом 6. Плотное соединение характеризуется минимальной амплитудой первого эхо-сигнала 3 (фиг.3) относительно заданного уровня 5. Воздушные зазоры выявляют по увеличению первого эхо-сигнала 3 (фиг.1) до максимальной амплитуды, соответствующей заданному уровню 5.
При выявлении зазоров устанавливают их контуры 8 (фиг.2). В пределах установленных контуров зазоров выполняют в муфте сквозные отверстия 9, через которые осуществляют заполнение зазоров полимерным некоррозионно-активным материалом. Степень заполнения зазоров полимерным материалом контролируют по амплитуде первого эхо-сигнала, после чего восстанавливают давление в трубопроводе.
Пример.
При помощи метода внутритрубной дефектоскопии в магистральном подземном трубопроводе, изготовленном из труб ⌀1220 мм и толщиной стенки 12 мм, была обнаружена продольная трещина протяженностью 400 мм и максимальной глубиной в центральной ее части 5 мм, развитие которой в дальнейшем может привести к аварийному разрушению трубопровода.
Для предотвращения дальнейшего развития трещины было принято решение об установке на трубопровод муфты.
Для проведения ультразвукового обследования использовали ультразвуковой дефектоскоп общего назначения УД-2-12 и пьезоэлектрический преобразователь (ПЭП) П 111-2,5-12-002.
Устанавливали ПЭП на наружную поверхность муфты в месте дефекта перед ее установкой и вводили в муфту импульсы ультразвуковых колебаний. Принимали и преобразовывали отраженные от внутренней поверхности муфты импульсы в эхо-сигналы, находя такое положение преобразователя, при котором амплитуда первого эхо-сигнала была максимальна. Корректировали чувствительность дефектоскопа, выставляя амплитуду первого эхо-сигнала на экране дефектоскопа на заданный уровень. Получали отраженные эхо-сигналы с амплитудой, для первого эхо-сигнала равной 7 клеткам (по вертикальной разметке экрана), для второго эхо-сигнала - 6 клеткам.
Зачищали наружную поверхность трубопровода в месте дефекта и внутреннюю поверхность муфты, которая должна сопрягаться с местом дефекта.
Уменьшали давление в трубопроводе на 20% от рабочего, устанавливали разъемную из двух половин муфту и сваривали горизонтальными продольными швами половины муфты.
После установки муфты на трубопровод и обжатия ее цепными гидравлическими зажимами сканировали место дефекта, перемещая пьезоэлектрический преобразователь по поверхности муфты. Выявляли места зазоров между муфтой и трубопроводом по увеличению амплитуды первого эхо-сигнала до 7 клеток экрана.
В месте плотного сплошного соединения поверхностей трубопровода и муфты без зазора происходило преимущественное прохождение импульса в материал трубопровода, характеризуемое несущественным отражением малой интенсивности, которому соответствует первый эхо-сигнал от границы трубопровод - муфта, по амплитуде равный 3 клеткам экрана дефектоскопа.
В месте воздушного зазора отражение первого импульса происходило от границы внутренней поверхности муфты с воздухом, при этом эхо-сигнал увеличивался до максимального и соответствовал эхо-сигналу, полученному до установки муфты, то есть по амплитуде равному заданному уровню в 7 клеток экрана.
При сканировании места дефекта были установлены контурные границы зазоров. В пределах установленных контуров зазоров сверлением малого диаметра (5 мм) выполнили в муфте сквозные отверстия, через которые осуществили заполнение зазоров твердеющим полимерным некоррозионно-активным материалом. Степень заполнения зазоров после затвердевания полимерного материала контролировали аналогично по амплитуде первого эхо-сигнала. О наличии заполнения полимерным материалом судили по первому эхо-сигналу, амплитуда которого зависит от акустических свойств затвердевшего полимерного материала, и не превышала ½ от заданного уровня, то есть 3,5 клеток экрана. После качественного заполнения зазоров в окрестности дефекта в стенке трубы восстанавливали в трубопроводе давление до рабочего.
Реализация заявленного изобретения позволяет отказаться от сплошного заполнения пространства между муфтой и трубопроводом твердеющим некоррозионно-активным полимерным материалом, и обеспечивает гарантированное заполнение зазоров между трубопроводом и муфтой в месте дефекта, не допускающее деформацию трубопровода в месте дефекта и предотвращающее рост трещиноподобных дефектов и разрушение трубопровода.

Claims (1)

  1. Способ предотвращения развития дефектов стенок трубопроводов, включающий уменьшение давления в трубопроводе, установку разъемной муфты, сварку горизонтальными продольными швами половин муфты, закачку твердеющего некоррозионно-активного полимерного материала в пространство между муфтой и трубопроводом и восстановление давления, отличающийся тем, что после установки и сварки муфты выявляют зазоры между муфтой и трубопроводом в местах дефектов стенок трубопровода, устанавливают их контуры и контролируют заполнение зазоров методом ультразвукового неразрушающего контроля.
RU2007131299/06A 2007-08-16 2007-08-16 Способ предотвращения развития дефектов стенок трубопроводов RU2343337C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007131299/06A RU2343337C1 (ru) 2007-08-16 2007-08-16 Способ предотвращения развития дефектов стенок трубопроводов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007131299/06A RU2343337C1 (ru) 2007-08-16 2007-08-16 Способ предотвращения развития дефектов стенок трубопроводов

Publications (1)

Publication Number Publication Date
RU2343337C1 true RU2343337C1 (ru) 2009-01-10

Family

ID=40374226

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007131299/06A RU2343337C1 (ru) 2007-08-16 2007-08-16 Способ предотвращения развития дефектов стенок трубопроводов

Country Status (1)

Country Link
RU (1) RU2343337C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474752C1 (ru) * 2012-01-20 2013-02-10 Открытое акционерное общество "Газпром" Способ предотвращения развития дефектов стенок трубопроводов
CN110566755A (zh) * 2019-08-14 2019-12-13 中国石油天然气集团有限公司 一种用于x100输气管道玻璃纤维复合材料止裂器的设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Журнал «СТРОИТЕЛЬСТВО ТРУБОПРОВОДОВ», 1996, №1, с.16-22, рис.1, 12, 13. GB 2210134 A, (BRITISH GAS Pic), 01.06.1989. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474752C1 (ru) * 2012-01-20 2013-02-10 Открытое акционерное общество "Газпром" Способ предотвращения развития дефектов стенок трубопроводов
CN110566755A (zh) * 2019-08-14 2019-12-13 中国石油天然气集团有限公司 一种用于x100输气管道玻璃纤维复合材料止裂器的设计方法

Similar Documents

Publication Publication Date Title
US6666095B2 (en) Ultrasonic pipe assessment
US6332361B1 (en) Method for evaluating bonding properties of a metallic pipe
Hagglund et al. A novel phased array ultrasonic testing (PAUT) system for on-site inspection of welded joints in plastic pipes
Angulo et al. Finite element analysis of crack growth for structural health monitoring of mooring chains using ultrasonic guided waves and acoustic emission
RU2343337C1 (ru) Способ предотвращения развития дефектов стенок трубопроводов
Giunta et al. Pipeline health integrity monitoring (phim) based on acoustic emission technique
JP2002243704A (ja) 腐食検査方法及び腐食検査装置
JP4339159B2 (ja) 管体の超音波探傷検査方法
US11585789B2 (en) Method for detecting faults in plates
US11946907B2 (en) Method and system for inspection of joints in composite pipes and of composite repairs in metallic pipelines
Charchuk et al. High temperature guided wave pipe inspection
Pei et al. Development and application of guided wave technology for buried piping inspection in nuclear power plant
RU2457392C1 (ru) Способ диагностики герметичности магистрального трубопровода
RU2295088C1 (ru) Способ предотвращения развития дефектов стенок трубопроводов
Fore et al. Validation of EMAT ILI for management of stress corrosion cracking in natural gas pipelines
US8375795B2 (en) Non-destructive inspection of high-pressure lines
Mahzan Feasibility study of structural health monitoring towards pipeline corrosion monitoring: A review
Nordin et al. Design and fabrication of ultrasonic tomographic instrumentation system for inspecting flaw on pipeline
Baiotto et al. Development of methodology for the inspection of welds in lined pipes using array ultrasonic techniques
US20220146460A1 (en) Guided wave testing of welds in pipelines and plate structures
Kwun et al. Magnetostrictive sensor long-range guided-wave technology for long-term monitoring of piping and vessels
PETRICEANU et al. Research on welding of plastic materials
McGregor et al. The application of long range guided ultrasonics for the inspection of riser pipes
Nardoni et al. The VERNE System for Underwater Test of Pipeline Integrity
Rainer Detecting critical defects: towards standards for conducting NDE on cast iron trunk mains.