RU2341870C1 - Устройства демодуляции амплитудно-модулированных радиочастотных сигналов - Google Patents

Устройства демодуляции амплитудно-модулированных радиочастотных сигналов Download PDF

Info

Publication number
RU2341870C1
RU2341870C1 RU2007107039/09A RU2007107039A RU2341870C1 RU 2341870 C1 RU2341870 C1 RU 2341870C1 RU 2007107039/09 A RU2007107039/09 A RU 2007107039/09A RU 2007107039 A RU2007107039 A RU 2007107039A RU 2341870 C1 RU2341870 C1 RU 2341870C1
Authority
RU
Russia
Prior art keywords
terminal
resistive
amplitude
shaped connection
modulated signals
Prior art date
Application number
RU2007107039/09A
Other languages
English (en)
Other versions
RU2007107039A (ru
Inventor
Александр Афанасьевич Головков (RU)
Александр Афанасьевич Головков
Александр Михайлович Мальцев (RU)
Александр Михайлович Мальцев
Василий Игоревич Гайдуков (RU)
Василий Игоревич Гайдуков
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт) filed Critical Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт)
Priority to RU2007107039/09A priority Critical patent/RU2341870C1/ru
Publication of RU2007107039A publication Critical patent/RU2007107039A/ru
Application granted granted Critical
Publication of RU2341870C1 publication Critical patent/RU2341870C1/ru

Links

Images

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

Изобретение относится к радиосвязи и может быть использовано для демодуляции амплитудно-манипулированных, а также амплитудно-модулированных (AM) сигналов. Технический результат заключается в повышении помехоустойчивости с заданной глубиной амплитудной модуляции. В устройстве демодуляции AM сигналов нелинейный элемент включен между источником амплитудно-модулированных сигналов и четырехполюсником в продольную цепь, к выходу четырехполюсника подключена высокочастотная нагрузка, к которой подключен фильтр нижних частот, четырехполюсник выполнен из числа резистивных двухполюсников, не меньшего двух, значения параметров которых выбраны из условия обеспечения требуемого значения глубины амплитудной модуляции принятого AM сигнала. 9 з.п. ф-лы, 9 ил.

Description

Изобретение относится к радиосвязи и может быть использовано для демодуляции амплитудно-манипулированных и амплитудно-модулированных сигналов.
Все известные устройства демодуляции амплитудно-модулированных сигналов (АМС) состоят из выполнения следующих операций. От источника АМС подают на нелинейный элемент, с его помощью разрушают спектр АМС на высокочастотные и низкочастотные составляющие. С помощью фильтра нижних частот (ФНЧ) выделяют низкочастотные составляющие колебания, амплитуда которых изменяется по закону изменения огибающей АМС. С помощью разделительной емкости, включенной в продольную цепь, устраняют постоянную составляющую и низкочастотную переменную составляющую подают на нагрузку.
Наиболее близким по технической сущности и достигаемому результату (прототипом) является устройство демодуляции амплитудно-модулированных сигналов, состоящий в том, что амплитудно-модулированный сигнал подают на демодулятор из параллельно или последовательно включенного полупроводникового диода к фильтру низких частот [Баскаков С.И. Радиотехнические цепи и сигналы. М.: Высшая школа, 1988, стр.286-292]. Принцип действия устройства состоит в том, что с помощью нелинейного элемента (диода) разрушается спектр амплитудно-модулированного сигнала (АМС) на высокочастотные и низкочастотные составляющие. Последние выделяются с помощью фильтра нижних частот и поступают в нагрузку. При необходимости между источником модулированных сигналов и нелинейным элементом или между нелинейным элементом и нагрузкой включают реактивный или резистивный четырехполюсник для согласования и дополнительной селекции сигнала и помехи. В результате на выходе устройства имеем низкочастотное колебание, амплитуда которого изменяется по закону изменения огибающей входного высокочастотного амплитудно-модулированного колебания. Недостаток способа и устройства его реализации состоит в том, что при прохождении АМС через указанную цепь глубина модуляции уменьшается, причем, чем уже полоса пропускания контура, т.е., чем лучше помехоустойчивость, тем глубина модуляции уменьшается на большую величину.
Указанный недостаток связан с тем, что в традиционной теории радиотехнических цепей указанный выше четырехполюсник не оптимизируется по критерию обеспечения заданной глубины амплитудной модуляции принятого АМС. Не оптимизируется также место включения нелинейного элемента. Это связано с тем, что в традиционной теории нелинейный элемент считается безынерционным, т.е. не имеющим внутренних емкостей и индуктивностей.
Техническим результатом изобретения является обеспечение заданной глубины амплитудной модуляции принятого амплитудно-модулированного сигнала, что повышает помехоустойчивость. Возможность выбора места включения нелинейного элемента обеспечивает повышение возможности физической реализуемости и увеличения рабочей полосы частот.
1. Указанный результат достигается тем, что в устройстве демодуляции амплитудно-модулированных сигналов, состоящем из каскадно-соединенных четырехполюсника, двухполюсного нелинейного элемента, фильтра нижних частот, последовательно включенной разделительной емкости и низкочастотной нагрузки, дополнительно нелинейный элемент включен между источником амплитудно-модулированных сигналов и четырехполюсником в продольную цепь, к выходу четырехполюсник подключена высокочастотная нагрузка, к которой подключен фильтр нижних частот, четырехполюсник выполнен из числа резистивных двухполюсников, не меньшего двух, значения параметров которых выбраны из условия обеспечения требуемого значения глубины амплитудной модуляции принятого амплитудно-модулированного сигнала путем использования следующих математических выражений:
Figure 00000002
;
Figure 00000003
,
где
Figure 00000004
;
Figure 00000005
;
Figure 00000006
; а, b, с, d - элементы классической матрицы передачи четырехполюсника;
Figure 00000007
;
Figure 00000008
;
Figure 00000009
;
m=m21mвх;
Figure 00000010
, при m21>1 или
Figure 00000011
, при m21<1;
Figure 00000012
, при mвх>1 или
Figure 00000013
, при mвх<1;
Figure 00000014
, при m>1 или
Figure 00000015
, при m<1;
Figure 00000016
; 1<m<mгр или mгр<m<1;
m21, mвх, m - отношения модулей коэффициента передачи высокочастотной части демодулятора, входного сигнала и сигнала на высокочастотной нагрузке в двух состояниях входного сигнала, характеризуемых двумя крайними значениями амплитуды амплитудно-модулированного сигнала; М21, Мвх, М - глубина модуляции коэффициента передачи высокочастотной части демодулятора, входного сигнала и сигнала на высокочастотной нагрузке; z1,2=r1,2+jx1,2 - заданные значения сопротивлений управляемого двухполюсного элемента в двух состояниях (1 и 2), определяемых двумя крайними уровнями входного амплитудно-модулированного сигнала; zн=rн+jxн, z0=r0+jx0 - заданные комплексные сопротивления нагрузки и источника сигнала.
2. Указанный результат достигается тем, что в устройстве демодуляции амплитудно-модулированных сигналов по п.1 резистивный четырехполюсник выполнен в виде симметричного перекрытого Т-образного соединения четырех резистивных двухполюсников, резистивные сопротивления r1, r2, r3, r4 двухполюсников, составляющих симметричное перекрытое Т-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000017
;
Figure 00000018
,
где
Figure 00000019
; D, E, F, rн, xн и остальные обозначения имеют тот же смысл, что и в п.1.
3. Указанный результат достигается тем, что в устройстве демодуляции амплитудно-модулированных сигналов по п.1 резистивный четырехполюсник выполнен в виде Г-образного соединения двух резистивных двухполюсников, резистивные сопротивления r1, r2 двухполюсников, составляющих Г-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000020
;
Figure 00000021
,
где
Figure 00000022
; D, E, F, rн, хн и остальные обозначения имеют такой же смысл, как и в п.1.
4. Указанный результат достигается тем, что в устройстве демодуляции амплитудно-модулированных сигналов по п.1 резистивный четырехполюсник выполнен в виде
Figure 00000023
-образного соединения двух резистивных двухполюсников, резистивные сопротивления r1, r2 двухполюсников, составляющих
Figure 00000023
-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000024
;
Figure 00000025
,
где
Figure 00000026
; D, E, rн, хн и остальные обозначения имеют такой же смысл, как и в п.1.
5. Указанный результат достигается тем, что в устройстве демодуляции амплитудно-модулированных сигналов по п.1 резистивный четырехполюсник выполнен в виде симметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1 двухполюсников, составляющих симметричное Т-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000027
Figure 00000028
,
где
Figure 00000029
D, E, F, rн, хн и остальные обозначения имеют такой же смысл, как и в п.1.
6. Указанный результат достигается тем, что в устройстве демодуляции амплитудно-модулированных сигналов по п.1 резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000030
;
Figure 00000031
,
где
Figure 00000032
; D, E, F, rн, хн и остальные обозначения имеют такой же смысл, как и в п.1; значение сопротивления r3 выбирается из условия обеспечения физической реализуемости сопротивления r1, r2.
7. Указанный результат достигается тем, что в устройстве демодуляции амплитудно-модулированных сигналов по п.1 резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000033
;
Figure 00000034
,
где
Figure 00000035
; D, E, rн, хн и остальные обозначения имеют такой же смысл, как и в п.1; значение сопротивления r2 выбирается из условия обеспечения физической реализуемости сопротивления r1, r3.
8. Указанный результат достигается тем, что в устройстве демодуляции амплитудно-модулированных сигналов по п.1 резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000036
;
Figure 00000037
,
где
Figure 00000038
; D, Е, rн, хн и остальные обозначения имеют такой же смысл, как и в п.1; значение сопротивления r1 выбирается из условия обеспечения физической реализуемости сопротивления r2, r3.
9. Указанный результат достигается тем, что в устройстве демодуляции амплитудно-модулированных сигналов по п.1 резистивный четырехполюсник выполнен в виде мостовой схемы соединения четырех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1, r4=r2 двухполюсников, составляющих мостовое соединение, выбраны с помощью следующих математических выражений:
Figure 00000039
Figure 00000040
,
где
Figure 00000041
; D, Е, F, rн, хн и остальные обозначения имеют такой же смысл, как и в п.1.
10. Указанный результат достигается тем, что в устройстве демодуляции амплитудно-модулированных сигналов по п.1 резистивный четырехполюсник выполнен в виде симметричного П-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1 двухполюсников, составляющих П-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000042
;
Figure 00000043
,
где
Figure 00000044
; D, Е, F, rн, хн и остальные обозначения имеют такой же смысл, как и в п.1.
На фиг.1 показана схема устройства демодуляции амплитуды радиочастотных сигналов (прототип).
На фиг.2 показана структурная схема предлагаемого устройства по п.1.
На фиг.3 приведена схема четырехполюсника по п.2, входящая в предлагаемое устройство.
На фиг.4 приведена схема четырехполюсника по п.3, входящая в предлагаемое устройство.
На фиг.5 приведена схема четырехполюсника по п.4, входящая в предлагаемое устройство.
На фиг.6 приведена схема четырехполюсника по п.5, входящая в предлагаемое устройство.
На фиг.7 приведена схема четырехполюсников по пп.6-8, входящие в предлагаемые устройства.
На фиг.8 приведена схема четырехполюсника по п.9, входящая в предлагаемое устройство.
На фиг.9 приведена схема четырехполюсника по п.10, входящая в предлагаемое устройство.
Устройство-прототип содержит источник 1 амплитудно-модулированных сигналов, четырехполюсник 2, нелинейный элемент 3, фильтр нижних частот 4 на элементах R, C, разделительная емкость 5 на элементе Ср и низкочастотную нагрузку 6 на элементах Rн, Сн.
Принцип действия устройства демодуляции амплитудно-модулированных сигналов (прототипа) состоит в следующем.
Амплитудно-модулированный сигнал от источника 1 подают на демодулятор из последовательно включенного полупроводникового диода к ФНЧ. Принцип действия устройства, реализующего этот способ, состоит в том, что с помощью нелинейного элемента 3 разрушается спектр АМС на высокочастотные и низкочастотные составляющие. Последние выделяются с помощью ФНЧ 4 и поступают в низкочастотную нагрузку 6. Между источником модулированных сигналов и нелинейным элементом включен реактивный четырехполюсник 2 для согласования и селекции сигнала и помехи. Разделительная емкость 5 устраняет постоянную составляющую. В результате на выходе устройства имеем низкочастотное колебание, амплитуда которого изменяется по закону изменения огибающей входного высокочастотного амплитудно-модулированного колебания.
Недостаток способа и устройства его реализации состоит в том, что при прохождении АМС через указанную цепь глубина модуляции уменьшается, причем, чем уже полоса пропускания контура, т.е., чем лучше помехоустойчивость, тем глубина модуляции уменьшается на большую величину.
Высокочастотная часть структурной схемы обобщенного предлагаемого устройства по п.1 (фиг.2) состоит из каскадно-соединенных источника сигнала 1, резистивного четырехполюсника 2, двухполюсного нелинейного элемента 3, включенного между источником АМС и четырехполюсником в продольную цепь (последовательно), и высокочастотной нагрузки 7. Низкочастотная часть структурной схемы содержит ФНЧ 4, разделительную емкость 5 и низкочастотную нагрузку 6.
Принцип действия данного устройства состоит в том, что при подаче АМС от источника 1 с сопротивлением z0 в результате специального выбора значений параметров классической матрицы передачи четырехполюсника 2 из условий обеспечения заданной глубины амплитудной модуляции АМС после прохождения его через высокочастотную часть достигается минимум искажений входного сигнала. В дальнейшем спектр АМС разрушается при помощи нелинейного элемента 3, ФНЧ 4 выделяет низкочастотную составляющую, постоянная составляющая устраняется с помощью разделительной емкости 5. В результате низкочастотное колебание, амплитуда которого изменяется по закону огибающей АМС, выделяется на низкочастотной нагрузке 6. При непрерывном изменении амплитуды амплитудно-модулированного сигнала будет реализована демодуляция входного сигнала.
Предлагаемое устройство демодуляции АМС по п.2 отличается от устройства по п.1 тем, что резистивный четырехполюсник (фиг.3) выполнен из четырех двухполюсников 5, 6, 7, 13 с резистивными сопротивлениями r1, r2, r3=r1, r4 соединенных между собой по симметричной перекрытой Т схеме. Принцип действия этого устройства аналогичен принципу действия устройства по п.1.
Предлагаемое устройство демодуляции АМС по п.3 отличается от устройства по п.1 тем, что резистивный четырехполюсник (фиг.4) выполнен в виде Г-образного соединения двух двухполюсников. Принцип действия этого устройства аналогичен принципу действия устройства по п.1.
Предлагаемое устройство демодуляции АМС по п.4 отличается от устройства по п.1 тем, что резистивный четырехполюсник выполнен в виде
Figure 00000045
-образного соединения двух двухполюсников. Принцип действия этого устройства аналогичен принципу действия устройства по п.1.
Предлагаемое устройство демодуляции АМС по п.5 отличается от устройства по п.1 тем, что резистивный четырехполюсник выполнен в виде симметричного Т-образного соединения трех двухполюсников. Принцип действия этого устройства аналогичен принципу действия устройства по п.1.
Предлагаемое устройство демодуляции АМС по п.6 отличается от устройства по п.1 тем, что резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех двухполюсников. При этом в явном виде определяются с помощью математических выражений оптимальные значения сопротивлений r1, r2. Значение сопротивления r3 выбирается из условия обеспечения физической реализуемости сопротивлений r1, r2 (из условия обеспечения их неотрицательными). Принцип действия этого устройства аналогичен принципу действия устройства по п.1.
Предлагаемое устройство демодуляции АМС по п.7 отличается от устройства по п.1 тем, что резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех двухполюсников. При этом в явном виде определяются с помощью математических выражений оптимальные значения сопротивлений r1, r3. Значение сопротивления r2 выбирается из условия обеспечения физической реализуемости сопротивлений r1, r3 (из условия обеспечения их неотрицательными). Принцип действия этого устройства аналогичен принципу действия устройства по п.1.
Предлагаемое устройство демодуляции АМС по п.8 отличается от устройства по п.1 тем, что резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех двухполюсников. При этом в явном виде определяются с помощью математических выражений оптимальные значения сопротивлений r2, r3. Значение сопротивления r1 выбирается из условия обеспечения физической реализуемости сопротивлений r2, r3 (из условия обеспечения их неотрицательными). Принцип действия этого устройства аналогичен принципу действия устройства по п.1.
Предлагаемое устройство демодуляции АМС по п.9 отличается от устройства по п.1 тем, что резистивный четырехполюсник выполнен в виде мостовой схемы соединения четырех двухполюсников. При этом в явном виде определяются с помощью математических выражений оптимальные значения сопротивлений r3=r1, r4=r2. Принцип действия этого устройства аналогичен принципу действия устройства по п.1.
Предлагаемое устройство демодуляции АМС по п.10 отличается от устройства по п.1 тем, что резистивный четырехполюсник выполнен в виде симметричной схемы П-образного соединения трех двухполюсников. При этом в явном виде определяются с помощью математических выражений оптимальные значения сопротивлений r1, r2, r3=r1. Принцип действия этого устройства аналогичен принципу действия устройства по п.1.
Анализ условий физической реализуемости указанных девяти вариантов выполнения резистивного четырехполюсника (фиг.3-фиг.9) предлагаемого устройства (фиг.2) показывает, что из этого количества вариантов при произвольных заданных сопротивлений источника сигнала и нагрузки всегда найдется такой вариант, что значения резистивных сопротивлений этого четырехполюсника, рассчитанные по вышеприведенным формулам, будут положительными, то есть физически реализуемыми. Наоборот, для каждого отдельно взятого варианта всегда найдутся такие значения сопротивлений источников сигнала и нагрузки, что значения резистивных сопротивлений четырехполюсников, рассчитанные по выше приведенным формулам, окажутся физически реализуемыми.
Докажем возможность реализации указанных свойств.
Пусть на вход демодулятора воздействует амплитудно-модулированное колебание
Figure 00000046
, где Uн, ωн - амплитуда и частота несущего высокочастотного колебания; mа - глубина амплитудной модуляции; φо - начальная фаза; Ω - частота первичного информационного низкочастотного сигнала. Входной модулированный высокочастотный сигнал Sвх и преобразованный с помощью демодулятора высокочастотный сигнал (до фильтра нижних частот) Sвых связаны между собой следующим образом: Sвых=S21Sвх, где под входным и выходным сигналом подразумевается входное и выходное напряжения; S21 - коэффициент передачи.
Рассмотрим амплитудно-модулированные колебания в двух состояниях, характеризуемых крайними значениями диапазона изменения амплитуды.
Запишем указанные физические величины в двух состояниях в комплексной форме
Figure 00000047
;
Figure 00000048
;
Figure 00000049
.
Таким образом на выходе высокочастотной части демодулятора модули коэффициента передачи и входного сигнала перемножаются, а их фазы складываются. Выходные напряжения в двух состояниях связаны между собой следующим образом:
Figure 00000050
где
Figure 00000051
;
Figure 00000052
- отношения модулей коэффициента передачи высокочастотной части демодулятора и входного сигнала в двух состояниях входного сигнала;
Figure 00000053
;
Figure 00000054
- разности фаз коэффициента передачи высокочастотной части демодулятора и входного сигнала в двух состояниях входного сигнала. Фаза входного АМС постоянна, поэтому разность фаз φвх=0. Для уменьшения искажений необходимо положить φ21=0.
Введем обозначения: m=m21mвх. Отношения модулей коэффициента передачи высокочастотной части демодулятора и входного сигнала, а также отношения модулей коэффициента передачи высокочастотной части демодулятора и сигнала на высокочастотной нагрузке связаны с глубиной амплитудной модуляции следующим образом:
Figure 00000055
, при m21>1 или
Figure 00000056
, при m21<1;
Figure 00000057
, при mвх>1 или
Figure 00000058
, при mвх<1;
Figure 00000059
, при m>1 или
Figure 00000060
, при m>1.
В двух крайних состояниях входного сигнала нелинейный элемент принимает два значения комплексного сопротивления z1,2=r1,2+jx1,2. Пусть, кроме того, комплексные сопротивления высокочастотной нагрузки zн=rн+jxн, источника сигнала z0=r0+jx0 на несущей частоте известны. Классическая матрица передачи нелинейного элемента известна и имеет вид:
Figure 00000061
Резистивный четырехполюсник описывается матрицей передачи:
Figure 00000062
где
Figure 00000063
;
Figure 00000064
;
Figure 00000065
; а, b, с, d - элементы классической матрицы передачи четырехполюсника [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1965. 40 с].
Эквивалентная схема демодулятора представляется в виде 4-х каскадно-соединенных четырехполюсников (фиг.2).
Общая нормированная классическая матрица передачи демодулятора имеет вид:
Figure 00000066
Используя известную связь элементов матрицы рассеяния [Фельдштейн А.Л., Явич Л.Р. Синтез четырехполюсников и восьмиполюсников на СВЧ. М.: Связь, 1965. 40 с], получим выражение для коэффициента передачи демодулятора S21I,II в двух состояниях диода:
Figure 00000067
Подставим (5) в (1) и после несложных, но громоздких преобразований и разделения комплексного уравнения на действительную и мнимую части, получим систему двух алгебраических уравнений:
Figure 00000068
Figure 00000069
Решение системы (6) имеет вид двух взаимосвязей между элементами искомой матрицы передачи, оптимальных по критерию обеспечения заданного закона изменения (1) на фиксированной частоте:
Figure 00000070
где
Figure 00000071
;
Figure 00000072
;
Figure 00000073
.
Поскольку D2-FE=-xн2, то границей области физической реализуемости является область изменения m, которая удовлетворяет условию равенства нулю знаменателя в выражениях для F, Е, D.
Решение уравнения, вытекающего из этого равенства, дает выражение для граничного значения произведения отношений модулей коэффициентов передачи в двух состояниях управляемого элемента, определяемых двумя состояниями входного сигнала, и модулей входного сигнала:
Figure 00000074
Выражение (8) имеет физический смысл, если mгр>0, т.е. числитель и знаменатель должны быть одного знака.
Полученная система двух взаимосвязей (7) между элементами матрицы передачи резистивного четырехполюсника означает, что высокочастотная часть демодулятора амплитуды входного сигнала должна содержать не менее чем два независимых резистивных элемента, значения параметров которых должны удовлетворять системе двух уравнений, сформированных на основе этих взаимосвязей. Для отыскания оптимальных значений параметров резистивного четырехполюсника необходимо выбрать какую-либо схему из М≥2 элементов, найти ее матрицу передачи, элементы которой выражены через параметры схемы резистивного четырехполюсника, и подставить их в (8). Сформированная таким образом система уравнений должна быть решена относительно выбранных двух параметров. Значения остальных М-2 параметров могут быть отнесены к сопротивлению zo или заданы произвольно. После использования описанного алгоритма будет реализована операция обеспечения заданной глубины модуляции принятого АМС при любой его начальной глубине модуляции. В результате в низкочастотной нагрузке, подключенной к ФНЧ, будет выделен низкочастотный сигнал, амплитуда которого изменяется по закону изменения амплитуды первичного информационного сигнала.
На основе использования описанного алгоритма для симметричной схемы резистивного четырехполюсника в виде симметричного перекрытого Т-образного соединения трех двухполюсников (фиг.3) для демодулятора получены математические выражения для определения значений сопротивлений r1, r4 двухполюсников. Здесь же приведена матрица передачи соответствующего четырехполюсника:
Figure 00000075
;
Figure 00000076
где
Figure 00000077
.
Для Г-образного соединения двух двухполюсников (фиг.4):
Figure 00000078
Для
Figure 00000023
-образного соединения двух двухполюсников (фиг.5):
Figure 00000079
Для симметричного Т-образного соединения трех двухполюсников (фиг.6):
Figure 00000080
где
Figure 00000081
Для 3-х вариантов несимметричного Т-образного соединения трех двухполюсников (фиг.7):
Figure 00000082
;
Figure 00000083
Figure 00000084
;
Figure 00000085
.
Для мостовой схемы (фиг.8):
Figure 00000086
где
Figure 00000087
.
Для симметричного П-образного соединения трех двухполюсников (фиг.9):
Figure 00000088
где
Figure 00000089
.
Предлагаемые технические решения имеют изобретательский уровень, поскольку из опубликованных научных данных и известных технических решений явным образом не следует, что заявленная последовательность операций (формирование резистивного четырехполюсника соединенными между собой двухполюсниками по симметричной перекрытой Т-схеме (Г-образной схеме,
Figure 00000023
-образной схеме, симметричной Т-образной схеме, несимметричной Т-образной схеме с тремя вариантами решения задачи параметрического синтеза, симметричной П-образной схеме и мостовой схеме) с выбором значений параметров резистивных элементов двухполюсников из условия обеспечения демодуляции входного АМС со скорректированной глубиной амплитудной модуляции при использовании нелинейного элемента, включенного между источником радиочастотного сигнала и входом резистивного четырехполюсника в продольную цепь (последовательно), к выходу которого подключена высокочастотная нагрузка, при произвольных значениях сопротивлений источника сигнала и нагрузки.
Предлагаемые технические решения практически применимы, так как для их реализации могут быть использованы серийно выпускаемые промышленностью полупроводниковые диоды и резисторы, сформированные в заявленные схемы резистивного четырехполюсника в виде перечисленных схем соединения двухполюсников. Значения параметров резисторов однозначно могут быть определены с помощью математических выражений, приведенных в формуле изобретения.
Технико-экономическая эффективность предложенных устройств заключается в обеспечении заданной глубины амплитудной модуляции принятого амплитудно-модулированного сигнала, что повышает помехоустойчивость, и возможности выбора места включения нелинейного элемента для повышения физической реализуемости и увеличения рабочей полосы частот.

Claims (10)

1. Устройство демодуляции амплитудно-модулированных сигналов, состоящее из каскадно-соединенных четырехполюсника, двухполюсного нелинейного элемента, фильтра нижних частот, последовательно включенной разделительной емкости и низкочастотной нагрузки, отличающееся тем, что нелинейный элемент включен между источником амплитудно-модулированных сигналов и четырехполюсником в продольную цепь, к выходу четырехполюсника подключена высокочастотная нагрузка, к которой подключен фильтр нижних частот, четырехполюсник выполнен из числа резистивных двухполюсников, не меньшего двух, значения параметров которых выбраны из условия обеспечения требуемого значения глубины амплитудной модуляции принятого амплитудно-модулированного сигнала путем использования следующих математических выражений:
Figure 00000090
m21, mвх, m - отношения модулей коэффициента передачи высокочастотной части демодулятора, входного сигнала и сигнала на высокочастотной нагрузке в двух состояниях входного сигнала, характеризуемых двумя крайними значениями амплитуды амплитудно-модулированного сигнала; М21, Мвх, М - глубина модуляции коэффициента передачи высокочастотной части демодулятора, входного сигнала и сигнала на высокочастотной нагрузке; z1,2=r1,2+jx1,2 - заданные значения сопротивлений управляемого двухполюсного элемента в двух состояниях (1 и 2), определяемых двумя крайними уровнями входного амплитудно-модулированного сигнала; zн=rн+jxн, z0=r0+jx0 - заданные комплексные сопротивления нагрузки и источника сигнала.
2. Устройство демодуляции амплитудно-модулированных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде симметричного перекрытого Т-образного соединения четырех резистивных двухполюсников, резистивные сопротивления r1, r2, r3, r4 двухполюсников, составляющих симметричное перекрытое Т-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000091
3. Устройство демодуляции амплитудно-модулированных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде Г-образного соединения двух резистивных двухполюсников, резистивные сопротивления r1, r2 двухполюсников, составляющих Г-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000092
4. Устройство демодуляции амплитудно-модулированных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде
Figure 00000093
-образного соединения двух резистивных двухполюсников, резистивные сопротивления r1, r2 двухполюсников, составляющих
Figure 00000093
-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000094
5. Устройство демодуляции амплитудно-модулированных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде симметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1 двухполюсников, составляющих симметричное Т-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000095
6. Устройство демодуляции амплитудно-модулированных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000096
7. Устройство демодуляции амплитудно-модулированных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000097
8. Устройство демодуляции амплитудно-модулированных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде несимметричного Т-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3 двухполюсников, составляющих несимметричное Т-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000098
9. Устройство демодуляции амплитудно-модулированных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде мостовой схемы соединения четырех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1, r4=r2 двухполюсников, составляющих мостовое соединение, выбраны с помощью следующих математических выражений:
Figure 00000099
10. Устройство демодуляции амплитудно-модулированных сигналов по п.1, отличающееся тем, что резистивный четырехполюсник выполнен в виде симметричного П-образного соединения трех резистивных двухполюсников, резистивные сопротивления r1, r2, r3=r1 двухполюсников, составляющих П-образное соединение, выбраны с помощью следующих математических выражений:
Figure 00000100
RU2007107039/09A 2007-02-26 2007-02-26 Устройства демодуляции амплитудно-модулированных радиочастотных сигналов RU2341870C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007107039/09A RU2341870C1 (ru) 2007-02-26 2007-02-26 Устройства демодуляции амплитудно-модулированных радиочастотных сигналов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007107039/09A RU2341870C1 (ru) 2007-02-26 2007-02-26 Устройства демодуляции амплитудно-модулированных радиочастотных сигналов

Publications (2)

Publication Number Publication Date
RU2007107039A RU2007107039A (ru) 2008-09-10
RU2341870C1 true RU2341870C1 (ru) 2008-12-20

Family

ID=39866318

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007107039/09A RU2341870C1 (ru) 2007-02-26 2007-02-26 Устройства демодуляции амплитудно-модулированных радиочастотных сигналов

Country Status (1)

Country Link
RU (1) RU2341870C1 (ru)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
БАСКАКОВ С.И. Радиотехнические цепи и сигналы. - М.: Высшая школа, 1988, с.289. ГОЛОВКОВ А.А. и др. Взаимосвязи между элементами матрицы сопротивлений и их использование для синтеза согласующе-фильтрующих устройств амплитудно-фазовых манипуляторов. - Телекоммуникации, 2004, №8, с.29-32. *
БУГА Н.Н. и др. Радиоприемные устройства. - М.: Радио и связь, 1986, 149, рис.5.13а). *

Also Published As

Publication number Publication date
RU2007107039A (ru) 2008-09-10

Similar Documents

Publication Publication Date Title
RU2341890C1 (ru) Устройства демодуляции фазомодулированных радиочастотных сигналов
RU2354039C1 (ru) Способ модуляции амплитуды и фазы радиочастотных сигналов и устройство его реализации
RU2341882C1 (ru) Устройства демодуляции фазомодулированных радиочастотных сигналов
RU2366075C1 (ru) Способ и устройство демодуляции амплитудно-модулированных радиочастотных сигналов
RU2341887C1 (ru) Устройства демодуляции фазомодулированных радиочастотных сигналов
RU2341888C1 (ru) Устройства демодуляции фазомодулированных радиочастотных сигналов
RU2369005C1 (ru) Способ демодуляции амплитудно-модулированных радиочастотных сигналов и устройство его реализации
RU2341877C1 (ru) Способ демодуляции амплитудно-модулированных радиочастотных сигналов и устройства его реализации
RU2341886C1 (ru) Устройства демодуляции фазомодулированных радиочастотных сигналов
RU2341870C1 (ru) Устройства демодуляции амплитудно-модулированных радиочастотных сигналов
RU2351060C2 (ru) Способ демодуляции амплитудно-модулированных радиочастотных сигналов и устройство его реализации
RU2341869C1 (ru) Устройства демодуляции амплитудно-модулированных радиочастотных сигналов
RU2341871C1 (ru) Устройства демодуляции амплитудно-модулированных радиочастотных сигналов
RU2342771C2 (ru) Способ демодуляции амплитудно-модулированных радиочастотных сигналов и устройства его реализации
RU2341875C1 (ru) Устройства демодуляции амплитудно-модулированных радиочастотных сигналов
RU2341872C1 (ru) Устройство демодуляции амплитудно-модулированных радиочастотных сигналов
RU2341883C1 (ru) Устройства демодуляции фазомодулированных радиочастотных сигналов
RU2341880C1 (ru) Способ демодуляции фазомодулированных радиочастотных сигналов и устройства его реализации
RU2341878C1 (ru) Способ демодуляции амплитудно-модулированных радиочастотных сигналов и устройства его реализации
RU2341874C1 (ru) Устройства демодуляции амплитудно-модулированных радиочастотных сигналов
RU2341873C1 (ru) Устройства демодуляции амплитудно-модулированных радиочастотных сигналов
RU2341876C1 (ru) Устройства демодуляции амплитудно-модулированных радиочастотных сигналов
RU2373631C1 (ru) Способ демодуляции амплитудно-модулированных радиочастотных сигналов и устройство его реализации
RU2373632C1 (ru) Способ демодуляции амплитудно-модулированных радиочастотных сигналов и устройство его реализации
RU2341879C1 (ru) Устройства демодуляции фазомодулированных радиочастотных сигналов

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090227