RU2341814C2 - Геофизическая система регистрации данных - Google Patents

Геофизическая система регистрации данных Download PDF

Info

Publication number
RU2341814C2
RU2341814C2 RU2006103995/28A RU2006103995A RU2341814C2 RU 2341814 C2 RU2341814 C2 RU 2341814C2 RU 2006103995/28 A RU2006103995/28 A RU 2006103995/28A RU 2006103995 A RU2006103995 A RU 2006103995A RU 2341814 C2 RU2341814 C2 RU 2341814C2
Authority
RU
Russia
Prior art keywords
seismic
electromagnetic
signals
voltage
marine geophysical
Prior art date
Application number
RU2006103995/28A
Other languages
English (en)
Other versions
RU2006103995A (ru
Inventor
Свейн Эрлинг ЙОНСТАД (NO)
Свейн Эрлинг ЙОНСТАД
Original Assignee
Норск Хюдро Аса
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Норск Хюдро Аса filed Critical Норск Хюдро Аса
Publication of RU2006103995A publication Critical patent/RU2006103995A/ru
Application granted granted Critical
Publication of RU2341814C2 publication Critical patent/RU2341814C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/38Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/16Receiving elements for seismic signals; Arrangements or adaptations of receiving elements
    • G01V1/20Arrangements of receiving elements, e.g. geophone pattern
    • G01V1/201Constructional details of seismic cables, e.g. streamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/002Details, e.g. power supply systems for logging instruments, transmitting or recording data, specially adapted for well logging, also if the prospecting method is irrelevant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V11/00Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00
    • G01V11/007Prospecting or detecting by methods combining techniques covered by two or more of main groups G01V1/00 - G01V9/00 using the seismo-electric effect
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Oceanography (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение представляет собой геофизическую аппаратуру обнаружения, предназначенную для использования в водной среде. Сущность: система содержит один или несколько источников сейсмических сигналов, множество сейсмических датчиков, расположенных на приемном кабеле; один или несколько источников электромагнитных сигналов, множество электромагнитных датчиков, расположенных на указанном приемном кабеле или иным образом связанных с ним. Электромагнитные датчики имеют в основном фиксированные соотношения расстояний в отношении сейсмических датчиков вдоль указанного приемного кабеля. Технический результат: повышение точности получаемых данных. 27 з.п. ф-лы, 16 ил.

Description

Изобретение относится к сочетанию сейсмических датчиков (гидрофонов, и/или геофонов, и/или акселерометров) и электромагнитных датчиков (электрических и/или магнитных), при этом система с датчиками может быть погружена в морскую воду. Сейсмические и электромагнитные волны, излучаемые соответствующими источниками сигналов, преломляются и отражаются от геологических подземных пластов и принимаются соответствующими датчиками.
Более конкретно изобретением является система, в которой две различные геофизические приемные системы, сейсмическая и электромагнитная, объединены в комбинированный блок, предназначенный для использования в морской среде для поиска/разведки нефти и контроля коллектора. Комбинация двух способов повышает значимость данных до более чем суммы двух отдельных наборов данных, поскольку могут быть получены более точные совместные картирование и контроль (поскольку относительные положения приемников являются постоянными, а пространственная выборка является плотной), и возможна более доказательная интерпретация (поскольку в данные включаются геофизические данные двух независимых видов). Кроме того, поскольку два различных набора данных могут быть зарегистрированы посредством одного комплекта приемной системы, а не двух, затраты на регистрацию данных могут быть значительно снижены. Эти концепции позволяют записывать сейсмические и электромагнитные данные одновременно или набор данных одного типа за один раз. Обычно приемники могут принимать сигналы, сформированные сейсмическими источниками p-волн, и/или электромагнитными источниками в водяном столбе, и/или сейсмическими источниками p- и s-волн, и/или электромагнитными источниками на дне моря, обычно в частотном диапазоне от нуля до нескольких сотен герц. Источники могут быть подвижными или стационарными. Кроме того, приемная система будет регистрировать данные от так называемых сейсмоэлектрических и электросейсмических эффектов, когда электромагнитные волны формируются сейсмическими волнами и наоборот.
Примеры из известного уровня техники
Существуют многочисленные примеры, в которых электромагнитный приемный кабель (или морская коса) не включает в себя гидрофонов.
В патенте США № 6236212 (Wynn) описана морская коса, имеющая электроды для приема сигналов из слоев дна моря и снабженная хвостовой частью, выполненная с возможностью протягивания по дну моря и инжекции электрических прямоугольных импульсов в донные осадки. Приемники в косе используются для обнаружения любых вторичных сигналов, формируемых поляризацией, наведенной источником, расположенным на дне моря или под ним, в ответ на этот электрический сигнал.
Кроме того, в патенте США № 4617518 (Srnka) представлена электромагнитная морская коса (приемный кабель), не имеющая гидрофонов и снабженная питающими электродами и несколькими парами приемных электродов.
В патенте США № 5770945 (Constable) магнитотеллурический датчик, имеющий пары электродов, использован для измерения электромагнитных сигналов. Штанги образуют X-конфигурацию, а на концах каждой штанги поддерживаются электроды. Но в аппаратуре Constable отсутствуют гидрофоны или иные сейсмические датчики, и поэтому невозможно одновременно регистрировать электромагнитные и сейсмические данные.
В Международной заявке на патент PCT/GB99/02823-WO00/13046 (Eidesmo) описаны электромагнитная излучающая антенна и ряд приемных антенн. Передающая антенна и приемные антенны расположены вдоль кабеля без гидрофонов или геофонов. Кабель должен быть расположен на дне моря. В п.22 формулы изобретения Eidesmo предложил проводить сначала сейсмические исследования, а затем проводить электромагнитные исследования. Применительно к нефти такая последовательность выполнения морских сейсмических исследований требует больших затрат времени, но заявителю на момент подачи этой заявки неизвестны системы для проведения одновременной регистрации сейсмических и электромагнитных данных.
Другая сейсмическая система описана в Международной заявке PCT/US94/02626 (Birdwell) под названием "Method and apparatus for detecting local precursor seismic activity". Аппаратура предназначена для обнаружения акустических волн, создаваемых естественным образом возникающей сейсмической активностью в земле, имеющих частоты от 0 до 15 Гц, и электромагнитных волн, имеющих частоты от 0 до 35 Гц, для прогнозирования землетрясения. Однако указанная система не предназначена для использования при сейсмических исследованиях и не содержит какой-либо сейсмической морской косы или приемного кабеля.
Электромагнитный излучатель на дне моря и электромагнитный приемник, расположенный на удалении от излучателя, также на дне моря, описаны в Международной заявке PCT/GB01/00419 (Ellingsrud) под названием "Method and apparatus for determining the nature of subterranean reservoirs". Отраженные и преломленные волны находят в отклике волнового поля, чтобы с некоторой вероятностью обнаруживать коллектор.
Постановка задачи
Новые морские способы электромагнитного зондирования с управляемым источником, так называемый «морской способ ЭЗУИ» или «каротаж дна моря» (КДМ), могут быть использованы для непосредственной идентификации углеводородов в пределах придонного объекта исследований в глубоководном районе. Другим способом, который может быть использован для непосредственной идентификации углеводородов, является технология донных сейсмических исследований. В обоих способах используют приемники на дне моря, а источник буксируют и используют так называемый анализ зависимости амплитуды отражения от удаления, "AVO"-анализ, для получения оценки содержания флюида в коллекторе. Оба способа также могут быть использованы при контроле коллектора для прослеживания перемещения флюида или изменения объема флюида. В известном уровне техники эти два способа не объединяют. Оба способа требуют очень больших затрат из-за высокой стоимости регистрации данных, поскольку для работы обычно требуются дорогостоящие, динамически позиционирующие судна. Затраты на отдельную разведку обычно составляют порядка 1 млн долларов США. Очевидно, что если бы эти два способа можно было объединить, и особенно электромагнитную часть, улучшенную в соответствии с изобретением, то основные расходы могли бы быть снижены благодаря одновременной регистрации данных, могли бы быть получены улучшенные относительные положения пунктов регистрации данных и относительные направления измерения, захватываемые сейсмическими и электромагнитными датчиками. Кроме того, можно было бы получать больше данных и большую плотность их и динамические комбинации данных, что приводило бы к повышенному качеству данных (особенно электромагнитных) и к повышенной значимости обработки объединенных данных и интерпретации данных, обеспечивающей в результате более точную идентификацию углеводородов.
Тот факт, что электромагнитные сигналы, которые формируют сигналы напряжения на датчике электромагнитных сигналов, почти так же, как это осуществляется на сейсмическом датчике, можно легко предварительно обработать малошумным предварительным усилителем, а затем записать в сейсмической регистрирующей системе, раскрывает важность плотной и высококачественной регистрации электромагнитных данных в комбинации с содержащей большое количество приемников (многоканальной) сейсмической приемной системой, например с системой, содержащей донную сейсмическую приемную кабельную систему. Кроме того, в предложенной системе можно устранить ограничения по выбираемому разнесению электромагнитных датчиков. Повышение качества электромагнитных данных как следствие лишь использования такой электромагнитной системы приведет к повышению глубины исследований, разрешения и общей возможности идентификации углеводородов в коллекторе по сравнению с известным уровнем техники в морской электромагнитной разведке.
Краткие описания чертежей
Изобретение иллюстрируется нижеследующими чертежами, при этом чертежи выполнены только для иллюстрации изобретения и не должны толковаться как ограничивающие изобретение, которое должно быть ограничено только прилагаемой формулой изобретения. На чертежах:
фиг.1а и 1b - упрощенный вид в плане и вертикальный вид сбоку, соответственно, иллюстрирующие способ донной регистрации сейсмических данных согласно изобретению, в котором сейсмические приемники расположены в виде линейной группы приемников на дне моря и в котором сейсмический источник (воздушная пушка, излучатель) расположен в море позади сигнального судна или «судна с источником волн»; в показанной ситуации судно может перемещать всю морскую косу («буксируемую группу») между всеми положениями излучения сигнала или второе судно может буксировать источник, в то время как на судне, соединенном с приемной группой, записываются данные; на фиг.1 также показана упрощенная схема способа донной регистрации подобным образом электромагнитных данных, в котором электромагнитные приемники расположены на дне моря в виде такой же линейной группы и в котором электромагнитная антенна излучает в морскую воду электромагнитные волны, далее распространяющиеся в слои дна моря и вниз к нефтяному коллектору с низкой удельной проводимостью и преломляющиеся/отражающиеся обратно к группе электромагнитных приемников в приемном кабеле;
фиг.1с - вид, иллюстрирующий вариант осуществления изобретения, в котором группа морских кос, содержащих электромагнитные датчики и сейсмические датчики (которыми могут быть геофоны или гидрофоны, или оба типа датчиков), неподвижно расположена на дне моря, а сигнальное судно пересекает площадь по заданной схеме с источником электромагнитных сигналов и сейсмическим источником, которым может быть донный вибратор или воздушная пушка;
фиг.1d - вид конфигурации, в которой судно буксирует всю группу морских кос с датчиками между каждой формирующей сигналы станцией, при этом предпочтительно, чтобы во время формирования сигналов и регистрации морские косы покоились на дне моря;
фиг.2 - вид секции приемного кабеля согласно изобретению, содержащей сейсмические датчики и электромагнитные датчики, соединенные с электромагнитными усилителями в электронных модулях;
фиг.3а - иллюстрация морской системы регистрации, содержащей судно, получающей результаты измерений от приемного кабеля и имеющей один или несколько сейсмических источников, аналогичных воздушной пушке и/или донному вибрационному источнику, и электромагнитный излучатель в море, предпочтительно на дне моря;
фиг.3b-f - виды различных конфигураций электромагнитных приемных антенн, где на фиг.3b каждая последовательная пара электродов принимает напряжение, содержащееся в электромагнитном сигнале, который достигает этой конкретной части приемного кабеля; на фиг.3c-е показано удвоение и повторное удвоение длины пары датчиков между соединенными электродами электромагнитных датчиков; на фиг.3f показано соединение двух или более электродов в одной группе, которая удалена от другой группы связанных электродов, при этом вследствие большого разнесения значительно повышается отношение сигнала к шуму в результатах измерения электромагнитного напряжения;
фиг.4 - вид варианта осуществления изобретения, в котором отдельные электронные модули, содержащие как сейсмические, так и электромагнитные электронные блоки, расположены вдоль приемного кабеля, при этом каждый из модулей снабжен электромагнитным электродом; кабельное соединение модулей образует линии напряжения, сигнала и питания;
фиг.5а - иллюстрация электромагнитных компонентов сегмента донного сейсмического кабеля, имеющего электромагнитные приемные электроды, усилители и аналого-цифровые преобразователи (АЦП), согласно одному предпочтительному варианту осуществления изобретения;
фиг.5b - иллюстрация варианта осуществления изобретения, в котором один конкретный электрод используется в качестве электрода опорного напряжения для ближайшего соседнего электрода;
фиг.5с - иллюстрация варианта осуществления изобретения, в котором один конкретный электрод используется в качестве электрода опорного напряжения для второго конкретного электрода для получения требуемого разнесения электродов датчиков;
фиг.5d - иллюстрация варианта осуществления изобретения, в котором один конкретный электрод используется в качестве электрода опорного напряжения для нескольких других электродов для получения опорного электрода общей массы; и
фиг.6 - вид приемного кабеля, содержащего отдельные стаканы инструментальных блоков, выполненные с возможностью противостояния давлению и иным тяжелым скважинным условиям, при этом указанные стаканы инструментальных блоков расположены вблизи стенки в буровой или нефтяной скважине.
Преимущества изобретения
- Известные положения и ориентации приемников облегчают разделение электромагнитных сигналов поперек и вдоль линий приема и поэтому делают электромагнитные (ЭМ) данные более пригодными для идентификации углеводородов.
- Общие места расположения сейсмического и электромагнитного приемников облегчают объединение и интерпретацию объединенных сейсмических и электромагнитных данных. Оценки признаков углеводородов становятся более точными.
- Повышенные количества полевых зарегистрированных данных (плотная пространственная выборка, небольшое разнесение между приемниками и выбираемое расстояние разнесения пар электродов датчиков) повышают качество электромагнитных данных и возможности/факультативные возможности обработки.
- Возможность выбора значительного разнесения электромагнитных (ЭМ) датчиков повышает чувствительность, пространственное разрешение и повышает глубину исследований.
- Комбинированная электромагнитная (ЭМ) и сейсмическая приемная система сберегает время, затрачиваемое на регистрацию данных.
- Сниженная стоимость работ.
Несмотря на то, что комбинация сейсмической и электромагнитной регистрирующей аппаратуры кажется очевидным, и на то, что Eidesmo и другие были очень близки к идее комбинации сейсмического и электромагнитного оборудования, они реально не сделали этого. Изобретение опровергает обычную идею о том, что две такие операции должны проводиться как две отдельные работы. Eidesmo использовал только сейсмическую структурную информацию, структуры, интерпретированные на основании морских сейсмических данных, для интерпретации различия электромагнитных откликов от структуры (потенциальной ловушки углеводородов), которая может содержать или может не содержать углеводородов, и вне структуры. Он не объединял непосредственные показатели углеводородов на основании анализа сейсмических данных (например путем анализа зависимости амплитуды от удаления) и не заметил значительного синергизма в совместных непосредственных интерпретациях показателей углеводородов и возможностей повышения качества данных, точности прогнозирования и экономической эффективности комбинированной системы, описанной в этом изобретении. Синергизм, являющийся результатом объединения сейсмической и электромагнитной регистрирующей аппаратуры (описываемой в этом описании), в объединенном способе является удивительно высоким, выходящим за рамки известного уровня техники.
Описание предпочтительного варианта осуществления изобретения
Изобретение относится к морской геофизической системе регистрации, показанной на прилагаемых фиг.1а (вид в плане) и 1b (вертикальный вид сбоку) и также на фиг.1с, фиг.1d и фиг.3a-f, содержащей следующие признаки:
Один или несколько источников 2 сейсмических сигналов расположены в море или на дне моря и предназначены для испускания сейсмических сигналов. Источником сейсмических сигналов может быть воздушная пушка в водных массах, создающая P-волны, или сейсмический вибратор, выполненный с возможностью создания P- или S-волн в морском дне.
На приемном кабеле 5 размещено множество сейсмических датчиков 1. Приемный кабель выполнен с возможностью растягивания в море или буксировки в водных массах позади судна 30, или предпочтительно, чтобы по причинам, поясненным ниже, приемный кабель во время измерения был расположен на дне моря. Сейсмические датчики 1 предназначены для обнаружения прошедших сейсмических сигналов, испускаемых от указанного источника 2 сигналов и распространившихся через геологические формации, образующие грунт морского дна выше коллектора 20, и частично отраженных и/или преломленных обратно вверх через вышележащие геологические формации. Новизна изобретения относится преимущественно к объединению такой геофизической системы регистрации с таким сейсмическим приемным кабелем в комбинации со следующими признаками.
По меньшей мере один источник 3 электромагнитных (ЭМ) сигналов расположен в море, или в водных массах, или на дне моря. Для излучения электромагнитных сигналов, которые будут проходить через дно моря вниз к коллектору 20 и будут приниматься электромагнитными датчиками 4, на источник 3 сигналов подается сигнал переменного напряжения и тока.
Множество упомянутых электромагнитных датчиков 4 расположено вдоль указанного приемного кабеля 5, при этом вдоль указанной морской косы 5 указанные датчики 4 имеют фиксированные соотношения расстояний в отношении указанных сейсмических датчиков 4. Электрические датчики 4 могут быть связаны с приемным кабелем иным образом, когда они расположены на требуемом расстоянии относительно края указанного приемного кабеля, но иным образом соединены с приемным кабелем.
Как показано на фиг.1a, 1b и 3а, в предпочтительном варианте осуществления изобретения указанный источник 3 электромагнитных сигналов снабжается электрической энергией по изолированному электрическому кабелю 26, подключенному к генератору 24 электрических сигналов на борту морского судна 30.
В предпочтительном варианте осуществления изобретения приемный кабель 5 имеет буксировочный разъемный или подъемный кабель 23, показанный на фиг.1а и 3а, служащий проводником энергии с указанного судна и сигналов на указанное судно 30 и с него в случае, если система должна быть перемещена между регистрациями данных или должна иным способом эксплуатироваться в течение короткого периода времени.
Донная морская коса
Морская геофизическая система регистрации согласно предпочтительному варианту осуществления изобретения имеет приемный кабель 5, выполненный с отрицательной плавучестью. Следовательно, морская коса выполнена с возможностью пребывания на дне моря по меньшей мере в течение регистрации данных путем использования указанных ЭМ датчиков 4. При использовании приемного кабеля на дне моря предотвращается затухание электромагнитных волн в морской воде, распространяющихся вверх из нижележащих геологических формаций, и предотвращается или ослабляется шум, создаваемый относительным перемещением воды вблизи датчика, и шум, распространяющийся из воздуха или возникающий в результате волновой деятельности и проходящий вниз через водный слой. Точно так же использование электромагнитного источника на дне моря будет предотвращать ослабление электромагнитных сигналов в морской воде.
Находящиеся на одной линии электромагнитный источник и электромагнитный приемный кабель
Согласно предпочтительному варианту осуществления изобретения морская геофизическая система регистрации с достижением преимущества имеет источник электромагнитных сигналов, расположенный на длинной оси указанного приемного кабеля 5 со множеством электромагнитных датчиков 4. Кроме того, как видно на вертикальной проекции на горизонтальную плоскость, то есть, как видно из вышеизложенного, приемный кабель 5 должен быть в основном линейным.
Еще более преимущественной является компоновка, имеющая биполярный источник 3 ЭМ сигналов, имеющий биполярную ось 3а, направленную более или менее в той же самой плоскости, что и указанный приемный кабель 5. Причина этого заключается в том, что в этом режиме электромагнитная волна, преломленная и/или отраженная на коллекторе углеводородов, будет иметь сильную горизонтальную составляющую вдоль оси приемного кабеля. Это хорошо согласуется с электромагнитными датчиками, расположенными вдоль кабеля с выбираемыми горизонтальными разнесениями.
Локальные электронные электромагнитные блоки с усилителем
В предпочтительном варианте осуществления изобретения, показанном на фиг.5а, морская коса снабжена электронными блоками 141, 142, ..., 14n-1, 14n, 14n+1,..., 14q,... Каждый электронный блок 14n снабжен усилителем 19n напряжения, имеющим первую входную линию 19а напряжения и вторую входную линию 19b напряжения, при этом указанные входные линии 19a, 19b соединены с отдельными электродами 4.
Первая входная линия 19а напряжения соединена с электродом 4n. Выход усилителя напряжения соединен с аналого-цифровым преобразователем (АЦП) 21n сигналов. Усилитель 19n напряжения выполнен для усиления разности переменных напряжений между по меньшей мере двумя электродами 4n, 4x, при этом электроды принимают удаленные сигналы от источника электромагнитных сигналов.
Общая линия массы
В предпочтительном варианте осуществления изобретения морская коса снабжена общей линией 7 массы. Один или несколько электродов 4n могут быть соединены через первый переключатель 18An с этой общей линией 7 массы. Поэтому выбираемый электрод будет образовывать опорное напряжение массы для одного или нескольких других электродов 4. Переключатели, упоминаемые в этой заявке, как обычно, полагаются управляемыми дистанционно, например, с указанного судна 30 по общей сигнальной линии 6.
Разнесение пар электродов может быть выбрано в соответствии с требованием, например, при выборе конкретного пространственного разрешения и чувствительности (которые пропорциональны разнесению электродов) путем переключения соответствующих переключателей для соединения пар электродов датчиков или антенн с усилителем. В случае регистрации электромагнитных данных это повысит чувствительность и значительно повысит отношение сигнала к шуму. Используя большое разнесение электродов датчиков, можно облегчить задачу измерения в тех случаях, когда отклик коллектора слабый или когда присутствует шум. В существующих технологиях, например в аппаратуре института океанографии имени Скриппса, трудно получить большое разнесение электродов. Кроме того, используя известный уровень техники, нелегко расположить достаточно плотно размещаемые электроды. Изобретение делает возможным любую требуемую комбинацию разнесений электродов, например от 10 до 100 м и более. При наличии кабеля согласно изобретению пользователь будет без труда иметь больше и полученных при более высокой чувствительности ЭМ данных, собираемых при требуемых разнесениях электродов, и это обеспечит более быструю хорошую и менее дорогостоящую регистрацию данных, чем обеспечиваемая в известном уровне техники.
Локальная линия массы
В том же самом предпочтительном варианте осуществления изобретения электрод 4n может быть соединен через второй переключатель 18Cn с указанной второй входной линией 19Bn напряжения и дополнительно соединен с третьим переключателем 18Bn, с локальной линией 8n массы, с аналогичным образом расположенным переключателем 18Bn+1 в ближайшем соседнем электронном блоке 14n+1. Переключатель 18Bn+1 дополнительно соединен со второй входной линией 19Bn+1 напряжения усилителя 19n+1 напряжения указанного ближайшего соседнего электронного блока 14n+1. Такая ситуация показана на фиг.5b, при этом описанные относящиеся к данному случаю переключатели замкнуты так, что на усилитель 19n+1 подаются сигналы с электродов 4n и 4n+1.
Аналого-цифровое преобразование напряжения
Как показано на фиг.5а, в варианте осуществления изобретения усиленный сигнал V21an переменного напряжения преобразуется в цифровую форму с образованием цифрового сигнала V21dn напряжения путем использования аналого-цифрового преобразователя (АЦП) 21n. Цифровой сигнал V21dn напряжения передается по упомянутой выше основной сигнальной линии 6 в средство 36 хранения данных. Предпочтительно, чтобы с целью хранения и анализа указанного цифрового сигнала V21dn напряжения память 36 для хранения данных была расположена на указанном судне 30. В альтернативном варианте осуществления изобретения, показанном на фиг.1с, средство 13 хранения данных может быть расположено в водонепроницаемом погруженном контейнере и соединено с одной или несколькими морскими косами 5 для транспортировки его на поверхность для анализа данных после выполнения процедуры регистрации сигналов. Эта последняя ситуация может соответствовать постоянно размещенной системе морских кос на дне море, предназначенной для длительного контроля коллектора при проходе корабля с электромагнитным и сейсмическим источниками согласно требуемому графику работ.
Использование одного электрода в качестве общего опорного электрода
В одном варианте осуществления изобретения морская коса может быть выполнена с возможностью измерения одного или нескольких сигналов переменного напряжения в окружающей среде путем использования электрода 4q, соединенного с электронным блоком 14q, в качестве общего опорного электрода. В случае варианта осуществления изобретения, показанного на фиг.5d, переключатель 18Aq может быть замкнут для соединения электрода 4q с указанной общей линией 7 массы. При замыкании ключа 18Bn вторая входная линия 19bn усилителя 19n будет соединяться с общей линией 7 массы для использования 14q в качестве опорного электрода при измерении переменного сигнала V21an на электроде 4n.
Приемный кабель
В морской геофизической системе регистрации по п.1 формулы изобретения указанный приемный кабель 5 имеет гибкую электроизолирующую и водонепроницаемую наружную оболочку 25. Обычно оболочка 25 приемного кабеля является непрерывной и в основном одинакового диаметра на протяжении всей длины приемного кабеля 5, аналогично буксируемым приемным кабелям с небольшим уровнем акустического шума, и имеет полость или ряд полостей 9, предпочтительно содержащих жидкость для противостояния внешнему давлению и для размещения указанных электромагнитных электронных блоков 14, при этом указанные электроды 4 расположены так, что одна поверхность их проходит по наружной стороне указанной оболочки 25, чтобы, как показано на фиг.2, они были в непосредственном электрическом контакте с морем или с дном моря.
В качестве альтернативы приемный кабель может быть скомпонован как имеющий отдельные инструментальные блоки, разделенные сигнальными/потенциальными секциями кабеля, и при этом указанный приемный кабель 5 содержит отдельные стаканы 10 инструментальных блоков, содержащие сейсмические датчики 1 и электроды 4 ЭМ датчиков, а стаканы инструментальных блоков соединены посредством пропускающих сигналы и напряжения секций 15b кабеля. Такой донный кабель может иметь множество блоков сейсмических/электрических датчиков, обычно разнесенных на 10-50 м. В типичном случае для исключения коррозии электродов как источника потенциального шума блоки и кабели могут быть покрыты пластиковым/резиновым изолятором.
Приемный кабель 5, имеющий сейсмические 1 и ЭМ 4 датчики, может быть выполнен из двух или более секций 15 приемного кабеля. Секции 15 приемного кабеля могут содержать в одной секции как электроды 4 ЭМ датчиков, так и сейсмические датчики 1. В качестве альтернативы приемный кабель может быть подразделен на отдельные секции 15, секциями одного типа являются электромагнитные секции 15ЕМ приемного кабеля, обычно содержащие электроды 4 ЭМ датчиков, при этом каждая указанная электромагнитная секция 15ЕМ приемного кабеля расположена на одной линии с сейсмическими приемными секциями 15S, обычно содержащими в основном сейсмические датчики 1, и между ними.
Сигналы сигнальных датчиков 4 ЭМ типа могут быть усилены и преобразованы в цифровую форму путем использования усилителей, в других случаях используемых для одного из сейсмических датчиков, например, линии гидрофонного усилителя и дискретизатора, оставляющей геофонный усилитель и дискретизатор для их обычного использования, и путем использования обычной сейсмической приемной сигнальной линии 6 для передачи электромагнитного сигнала и сейсмического сигнала в цифровой форме. В качестве альтернативы для ЭМ датчиков может быть организован дополнительный канал усилителя и дискретизатора.
Фиксированная группа для контроля
Согласно предпочтительному варианту осуществления изобретения, показанному на фиг.1с, морская геофизическая система регистрации может быть выполнена с одним или несколькими приемными кабелями 5, скомпонованными в виде фиксированной группы датчиков 1, 4 на одной линии или в виде сети на дне моря. В таком случае при регистрации данных система может перемещаться посредством судна, несущего источник сейсмических и/или электромагнитных сигналов. Данные могут собираться непосредственно на судне или в блоке 13 хранения данных на дне моря, а блок 13 хранения данных может быть выполнен с возможностью разъединения и подъема после подачи требуемого сигнала или по прошествии времени задержки для передачи собранных данных на судно для последующего анализа. Кроме того, во время регистрации сигналов с помощью основной сигнальной линии 6 данные могут быть собраны в реальном масштабе времени на находящемся на поверхности судне или платформе.
Источник сейсмических волн
В морской геофизической системе регистрации согласно изобретению может использоваться сейсмический источник, являющийся сейсмическим источником поперечных волн, расположенный на дне моря или в грунте морского дна, предпочтительно, чтобы им был сейсмический вибратор 2а с вертикальной или горизонтальной поляризацией. В качестве альтернативы в системе может использоваться сейсмический источник, являющийся источником продольных волн, предпочтительно воздушная пушка, буксируемая позади судна 30 или буксируемая отдельным сейсморазведочным судном с источником волн.
Электромагнитный излучатель
Электромагнитный (ЭМ) источник 3 может быть довольно простым, содержащим два электрических питающих электрода 3a, 3b, разнесенных в морской воде, при этом на указанные электроды 3a, 3b подается заданный сигнал электрического напряжения и тока по паре изолированных электрических кабелей 26 с электрического генератора 24, предпочтительно находящегося на борту указанного судна 30. Кроме того, с целью предотвращения активных потерь энергия к ЭМ источнику 3 может передаваться с судна по высоковольтной линии и преобразовываться в сигнал низкого напряжения/большого тока, предназначенный для подачи на электромагнитный источник с трансформатора вблизи ЭМ источника 3.
Сейсмическая электронная аппаратура
В предпочтительном варианте осуществления изобретения приемный кабель 5 содержит сейсмические электронные блоки 16n, аналогичные блокам из известного уровня техники, содержащие один или несколько сейсмических электронных усилителей 17n для усиления выходных сигналов V17n сейсмических датчиков 1 и аналого-цифровые преобразователи (АЦП) 22Sn для цифрового преобразования усиленных сигналов V22Sn напряжения с указанных сейсмических электронных усилителей 17 в цифровые сейсмические сигналы S22Sn напряжения и передачи указанных цифровых сигналов S22Sn напряжения по указанной основной сигнальной линии 6 в средство 36 хранения данных, предпочтительно расположенное на указанном судне 30, для хранения и анализа указанных цифровых сейсмических сигналов S22Sn.
Донный приемный кабель
Для предотвращения ослабления сигнала в морской воде при распространении электромагнитной волны вниз в предпочтительном варианте осуществления изобретения электромагнитный источник 3 расположен непосредственно на дне моря.
На фиг.4 показан вариант осуществления, в котором отдельные электронные модули, содержащие сейсмические 16 и электромагнитные электронные 14 блоки, расположены вдоль кабеля, при этом каждый из модулей снабжен электромагнитным электродом 4. Сегменты кабеля, соединяющие модули, снабжены линиями передачи напряжения, энергии и сигналов.
Скважинный приемный кабель
В одном альтернативном предпочтительном варианте осуществления изобретения, показанном на фиг.6, приемный кабель 5, содержащий стаканы 10 отдельных инструментальных блоков, выполненных с возможностью противостояния давлению и иным тяжелым скважинным условиям, расположен вблизи стенки в буровой или нефтяной скважине. Кабель содержит сейсмические датчики 1 и электроды 4 электромагнитных датчиков. Противостоящие давлению стаканы 10 соединены передающими сигналы и напряжения секциями 15b кабеля, при этом указанный кабель 5 расположен в буровой или нефтяной скважине вне какой-либо проводящей обсадной колонны. Для получения и/или анализа сигналов в реальном масштабе времени верхний конец кабеля может быть соединен с судном или платформой. С целью контроля скважинный кабель может быть постоянно расположен в стволе скважины. Эта концепция также может быть использована в необсаженном стволе скважины. В таком случае блоки сейсмических станций прижаты к стенке ствола скважины (как в обычных скважинных сейсмических приборах и в приборах для вертикального сейсмического профилирования), тогда как электроды могут быть либо прижатыми, либо нет (находящимися в скважинном флюиде).

Claims (28)

1. Морская геофизическая система регистрации, содержащая следующие признаки:
один или несколько источников (2) сейсмических сигналов, предназначенных для размещения в море или на дне моря и для излучения сейсмических сигналов;
множество сейсмических датчиков (1), расположенных на приемном кабеле (5), предназначенных для протягивания в море, при этом указанные сейсмические датчики (1) предназначены для обнаружения распространяющихся сейсмических сигналов, излучаемых от указанного источника (2) сигналов,
отличающаяся тем, что
один или несколько источников (3) электромагнитных (ЭМ) сигналов расположены в море или на дне моря, указанный источник (3) ЭМ сигналов предназначен для излучения электромагнитных сигналов;
множество электромагнитных (ЭМ) датчиков (4) расположено вдоль и на указанном приемном кабеле (5) или иным образом связано с ним, и эти указанные электромагнитные датчики (4) имеют в основном фиксированные соотношения расстояний в отношении указанных сейсмических датчиков (1) вдоль указанного приемного кабеля (5), при этом указанные электромагнитные датчики (4) предназначены для обнаружения электромагнитных сигналов, распространяющихся от указанных источников (3) электромагнитных сигналов.
2. Морская геофизическая система регистрации по п.1, в которой указанный источник (3) электромагнитных сигналов снабжается энергией по изолированному электрическому кабелю (26), соединенному с генератором (24) электрических сигналов на борту морского судна (30).
3. Морская геофизическая система регистрации по п.1, в которой указанный приемный кабель (5) имеет буксировочный разъемный или подъемный кабель (23) от указанного судна (30).
4. Морская геофизическая система регистрации по п.3, в которой указанный приемный кабель (5) выполнен с отрицательной плавучестью для пребывания на дне моря по меньшей мере во время регистрации данных путем использования указанных ЭМ датчиков (4), для исключения затухания в морской воде электромагнитных волн, распространяющихся вверх от нижележащих геологических формаций, и снижения шума в результате физических перемещений относительно водного потока вблизи датчика и от волн, распространяющихся вниз из воздуха или от поверхности моря через водные массы.
5. Морская геофизическая система регистрации по п.1, в которой указанный источник (3) ЭМ сигналов расположен в той же самой плоскости или близко к той же самой плоскости, что и продольная ось указанного приемного кабеля (5) с указанным множеством ЭМ датчиков (4), при этом указанный приемный кабель (5) является в основном линейным в вертикальной проекции на горизонтальную плоскость.
6. Морская геофизическая система регистрации по п.5, в которой указанный источник (3) ЭМ сигналов является биполярным и имеющим биполярную ось (3а) в той же самой плоскости, что и указанный приемный кабель (5).
7. Морская геофизическая система регистрации по п.1, в которой указанный приемный кабель (5) снабжен электронными блоками (141, 142, ..., 14n-1, 14n, 14n+1, ..., 14q, ...), каждый электронный блок (14n) снабжен усилителем (19n) напряжения, имеющим первую входную линию (19а) напряжения и вторую входную линию (19b) напряжения, при этом указанные входные линии (19а, 19b) соединены с отдельными электродами (4), представляющими собой ЭМ датчик.
8. Морская геофизическая система регистрации по п.7, в которой указанная первая входная линия (19а) напряжения соединена с электродом (4n), выход указанного усилителя напряжения соединен с аналого-цифровым преобразователем (21n) сигналов, указанный усилитель (19n) напряжения предназначен для усиления разности переменных напряжений между по меньшей мере двумя электродами (4n, 4х).
9. Морская геофизическая система регистрации по п.7, в которой указанный приемный кабель снабжен общей линией (7) массы, а один или несколько из указанных электродов (4n) выполнены с возможностью соединения через первый переключатель (18Аn) с указанной общей линией (7) массы для формирования опорного напряжения массы для одного или нескольких других электродов (4).
10. Морская геофизическая система регистрации по п.8, в которой указанный электрод (4n) выполнен с возможностью соединения через второй переключатель (18Сn) с указанной второй входной линией (19Вn) напряжения и дополнительно соединен с третьим переключателем (18Вn), с локальной линией (8n) массы, с аналогично выполненным переключателем (18Bn+1) в ближайшем соседнем электронном блоке (14n+1), при этом указанный переключатель (18Bn+1) дополнительно соединен со второй входной линией (19Bn+1) напряжения усилителя (19n+1) напряжения из указанного ближайшего соседнего электронного блока (14n+1).
11. Морская геофизическая система регистрации по п.10, выполненная с возможностью измерения одного или нескольких сигналов переменного напряжения в окружающей среде путем использования двух последовательных электродов (4n, 4n+1) при оставлении переключателя (18Аn) разомкнутым, замыкании переключателя (18Сn), замыкании переключателя (18Вn) для соединения с локальной линией (8n) массы, с переключателем (18Bn+1), соединенным с указанной второй входной линией (19b) в указанном усилителе (19n) напряжения в указанном последующем электронном блоке (14n+1).
12. Морская геофизическая система регистрации по п.10 или 11, осуществляющая цифровое преобразование усиленного сигнала (V21an) переменного напряжения в цифровой сигнал (V21dn) напряжения путем использования указанного аналого-цифрового преобразователя (21n) сигналов и передачи указанного цифрового сигнала (V21dn) напряжения по основной сигнальной линии (6) в средство (36) хранения данных, предпочтительно расположенное на указанном судне (30), для хранения и анализа указанного цифрового сигнала (V21dn) напряжения.
13. Морская геофизическая система регистрации по п.11, выполненная с возможностью измерения одного или нескольких сигналов переменного напряжения в окружающей среде путем использования электрода (4q), соединенного с электронным блоком (14q), в качестве общего опорного электрода при замыкании переключателя (18Aq), соединяющего электрод (4q) с указанной общей линией (7) массы, и замыкании переключателя (18Вn), соединяющего указанную вторую входную линию (19bn) в усилителе (19n) с указанной общей линией (7) массы, для использования электрода (4q) в качестве опорного электрода при измерении переменного сигнала (V21аn) на электроде (4n).
14. Морская геофизическая система регистрации по п.1, в которой указанный приемный кабель (5) имеет гибкую, электроизолирующую и водонепроницаемую наружную оболочку (25).
15. Морская геофизическая система регистрации по п.14, в которой указанная оболочка (25) приемного кабеля является в основном непрерывной на протяжении в основном всей длины приемного кабеля (5) и имеет полость или ряд полостей (9), предпочтительно содержащих жидкость, включающих в себя указанные электромагнитные электронные блоки (14), указанные электроды (4) выполнены с одной поверхностью, проходящей по наружной стороне указанной оболочки (25), чтобы они были в непосредственном электрическом контакте с морем или дном моря.
16. Морская геофизическая система регистрации по п.1, в которой указанный приемный кабель (5) выполнен из двух или более секций (15) приемного кабеля.
17. Морская геофизическая система регистрации по п.16, в которой каждая из указанных секций (15) приемного кабеля содержит как электроды (4) ЭМ датчиков, так и сейсмические датчики (1).
18. Морская геофизическая система регистрации по п.16, в которой некоторые из указанных секций (15) приемного кабеля, являющиеся электромагнитными секциями (15EM) приемного кабеля, содержат в основном электроды (4) ЭМ датчиков, при этом каждая указанная электромагнитная секция (15EM) приемного кабеля расположена на одной линии с секциями (15S) сейсмических приемников, обычно содержащими в основном сейсмические датчики (1), и между ними.
19. Морская геофизическая система регистрации по п.1, в которой указанный приемный кабель (5) содержит отдельные стаканы (10) инструментальных блоков, содержащие сейсмические датчики (1) и электроды (4) ЭМ датчиков, при этом указанные стаканы соединены пропускающими сигналы и напряжения секциями (15b) кабеля.
20. Морская геофизическая система регистрации по п.4, в которой указанный приемный кабель (5) выполнен в виде фиксированной группы датчиков (1, 4) на одной линии или в виде сети на дне моря.
21. Морская геофизическая система регистрации по п.1, в которой указанный сейсмический источник (2), являющийся источником (2а) сейсмических Р- или S-волн, расположен на дне моря или в слоях дна моря, предпочтительно сейсмический вибратор (2а) с горизонтальной или вертикальной поляризацией.
22. Морская геофизическая система регистрации по п.1, в которой указанный сейсмический источник (2), являющийся источником (2b) продольных волн, предпочтительно воздушная пушка.
23. Морская геофизическая система регистрации по п.1, в которой указанный электромагнитный источник (3) содержит два электрических питающих электрода (3а, 3b), расположенных с разнесением в морской воде, при этом указанные электроды (3а, 3b) снабжаются требуемым электрическим сигналом напряжения и тока по паре изолированных электрических кабелей (26) от электрического генератора (24), предпочтительно на борту указанного судна (30).
24. Морская геофизическая система регистрации по п.1, в которой указанный приемный кабель (5) содержит сейсмический электронный блок (16n), содержащий один или несколько сейсмических электронных усилителей (17n) для усиления выходных сигналов (V17n) сейсмических датчиков (1) и аналого-цифровые преобразователи (22Sn) для цифрового преобразования усиленных сигналов (V22Sn) напряжения с указанных сейсмических электронных усилителей (17) в цифровые сейсмические сигналы (S22Sn) напряжения и передачи указанных цифровых сейсмических сигналов (S22Sn) напряжения по указанной основной сигнальной линии (6) в средство (36) хранения данных, предпочтительно расположенное на указанном судне (30), для хранения и анализа указанных цифровых сейсмических сигналов (S22Sn).
25. Морская геофизическая система регистрации по п.1, в которой указанный электромагнитный источник (3) расположен непосредственно на дне моря, для предотвращения ослабления сигнала морской водой при распространении электромагнитной волны вниз.
26. Морская геофизическая система регистрации по п.4, в которой указанный блок (13) хранения данных расположен вместе с приемным кабелем (5) на дне моря для извлечения судном (30) после пересечения указанной приемной косы (5) указанным электромагнитным излучателем (3) и указанным источником (2) сейсмических сигналов.
27. Морская геофизическая система регистрации по п.25, в которой указанный блок (13) хранения данных расположен на удалении от указанного приемного кабеля (5) для извлечения в реальном масштабе времени данных в процессе регистрации данных в то время, когда указанный источник (3) ЭМ сигналов и источник (2) сейсмических сигналов пересекают указанный приемный кабель (5).
28. Морская геофизическая система регистрации по п.1, в которой указанный приемный кабель (5) содержит отдельные стаканы (10) инструментальных блоков, содержащие сейсмические датчики (1) и электроды (4) ЭМ датчиков, при этом указанные стаканы соединены пропускающими сигналы и напряжения секциями (15b) кабеля, при этом указанный кабель (5) расположен в буровой скважине или нефтяной скважине за пределами какой-либо проводящей обсадной колонны.
RU2006103995/28A 2003-07-10 2004-06-18 Геофизическая система регистрации данных RU2341814C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20033169 2003-07-10
NO20033169A NO326506B1 (no) 2003-07-10 2003-07-10 Et maringeofysisk innsamlingssystem med en kabel med seismiske kilder og mottakere og elektromagnteiske kilder og mottakere

Publications (2)

Publication Number Publication Date
RU2006103995A RU2006103995A (ru) 2006-09-10
RU2341814C2 true RU2341814C2 (ru) 2008-12-20

Family

ID=27800798

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006103995/28A RU2341814C2 (ru) 2003-07-10 2004-06-18 Геофизическая система регистрации данных

Country Status (9)

Country Link
US (1) US7453763B2 (ru)
AU (1) AU2004256370B2 (ru)
BR (1) BRPI0412126B1 (ru)
CA (1) CA2531801C (ru)
GB (1) GB2421800B (ru)
MX (1) MXPA05013867A (ru)
NO (1) NO326506B1 (ru)
RU (1) RU2341814C2 (ru)
WO (1) WO2005006022A1 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012174516A1 (en) * 2011-06-16 2012-12-20 Schlumberger Canada Limited Method of mapping a subterranean formation based upon wellbore position and seismic data and related system
RU2499951C2 (ru) * 2011-09-22 2013-11-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ обнаружения слабоинтенсивных утечек из подводных нефтепроводов мобильным подводным измерительным комплексом
RU2523324C1 (ru) * 2013-04-26 2014-07-20 Открытое акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Способ передачи телеметрической информации с забоя шельфовой скважины на морскую платформу
RU2639649C2 (ru) * 2017-03-17 2017-12-21 Джемма Павловна Земцова Компьютерная система для обработки и анализа геофизических данных
RU199731U1 (ru) * 2020-05-21 2020-09-16 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Береговой комплекс для системы многочастотного акустического зондирования морской среды
RU2799518C2 (ru) * 2021-12-14 2023-07-05 Федеральное государственное бюджетное учреждение науки Институт физики Земли им. О.Ю. Шмидта Российской академии наук Устройство для регистрации и передачи геофизических цифровых данных

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2409900B (en) 2004-01-09 2006-05-24 Statoil Asa Processing seismic data representing a physical system
GB2420855B (en) 2004-12-02 2009-08-26 Electromagnetic Geoservices As Source for electromagnetic surveying
US7295013B2 (en) 2005-04-11 2007-11-13 Schlumberger Technology Corporation Remotely operable measurement system and method employing same
US8477561B2 (en) * 2005-04-26 2013-07-02 Westerngeco L.L.C. Seismic streamer system and method
EA010674B1 (ru) 2005-06-10 2008-10-30 Эксонмобил Апстрим Рисерч Компани Способ электромагнитной рекогносцировочной съемки с управляемым источником
CA2612259A1 (en) 2005-07-07 2007-01-18 Bp Corporation North America Inc. Method for csem exploration in polar regions
US7330790B2 (en) * 2005-10-03 2008-02-12 Seismic Sciences, Inc. Method of seismo electromagnetic detecting of hydrocarbon deposits
GB0526303D0 (en) * 2005-12-23 2006-02-01 Wireless Fibre Systems Ltd Transmission of underwater electromagnetic radiation through the seabed
GB2434868B (en) 2006-02-06 2010-05-12 Statoil Asa Method of conducting a seismic survey
GB2435693A (en) 2006-02-09 2007-09-05 Electromagnetic Geoservices As Seabed electromagnetic surveying
WO2007094846A2 (en) 2006-02-14 2007-08-23 Exxonmobil Upstream Research Company Source monitoring for electromagnetic surveying
US8064286B2 (en) * 2006-05-05 2011-11-22 Optoplan As Seismic streamer array
NO327007B1 (no) * 2006-05-24 2009-04-06 Norsk Hydro As Fremgangsmate for elektromagnetisk geofysisk kartlegging av undersjoiske bergartsformasjoner
GB2439378B (en) 2006-06-09 2011-03-16 Electromagnetic Geoservices As Instrument for measuring electromagnetic signals
US7340348B2 (en) * 2006-06-15 2008-03-04 Kjt Enterprises, Inc. Method for acquiring and interpreting seismoelectric and electroseismic data
US8923095B2 (en) * 2006-07-05 2014-12-30 Westerngeco L.L.C. Short circuit protection for serially connected nodes in a hydrocarbon exploration or production electrical system
CA2656226C (en) 2006-07-13 2015-12-01 Exxonmobil Upstream Research Company Method to maintain towed dipole source orientation
CA2663662C (en) 2006-09-13 2016-07-05 Exxonmobil Upstream Research Company Rapid inversion of electromagnetic reconnaissance survey data
GB2441786A (en) * 2006-09-15 2008-03-19 Electromagnetic Geoservices As Combined electromagnetic and seismic surveying
GB2442749B (en) 2006-10-12 2010-05-19 Electromagnetic Geoservices As Positioning system
US8064287B2 (en) * 2006-12-28 2011-11-22 Rock Solid Images, Inc. Method for interpreting seismic data and controlled source electromagnetic data to estimate subsurface reservoir properties
CA2674903C (en) * 2007-01-08 2015-07-14 University Of Regina Methods and apparatus for enhanced oil recovery
GB2445582A (en) 2007-01-09 2008-07-16 Statoil Asa Method for analysing data from an electromagnetic survey
US8026723B2 (en) 2007-04-30 2011-09-27 Kjt Enterprises, Inc. Multi-component marine electromagnetic signal acquisition method
US7872477B2 (en) 2007-04-30 2011-01-18 Kjt Enterprises, Inc. Multi-component marine electromagnetic signal acquisition cable and system
US7746077B2 (en) 2007-04-30 2010-06-29 Kjt Enterprises, Inc. Method for measuring the magnetotelluric response to the earth's subsurface
US7602191B2 (en) * 2007-06-29 2009-10-13 Pgs Geophysical As Cable-type electromagnetic receiver system for subsurface exploration
US7705599B2 (en) * 2007-07-09 2010-04-27 Kjt Enterprises, Inc. Buoy-based marine electromagnetic signal acquisition system
US20090058422A1 (en) * 2007-09-04 2009-03-05 Stig Rune Tenghamn Fiber optic system for electromagnetic surveying
US7446535B1 (en) * 2007-09-21 2008-11-04 Pgs Geopysical As Electrode structure and streamer made therewith for marine electromagnetic surveying
US7949470B2 (en) * 2007-11-21 2011-05-24 Westerngeco L.L.C. Processing measurement data in a deep water application
WO2009067015A1 (en) * 2007-11-23 2009-05-28 Bjørge Naxys As Underwater measurement system
US7671598B2 (en) * 2007-12-03 2010-03-02 Pgs Geophysical As Method and apparatus for reducing induction noise in measurements made with a towed electromagnetic survey system
US7834632B2 (en) * 2007-12-03 2010-11-16 Pgs Geophysical As Receiver streamer system and method for marine electromagnetic surveying
CA2703588C (en) 2007-12-12 2015-12-01 Exxonmobil Upstream Research Company Method and apparatus for evaluating submarine formations
NO328811B1 (no) * 2007-12-21 2010-05-18 Advanced Hydrocarbon Mapping A Framgangsmate og apparat for hurtig kartlegging av submarine hydrokarbonreservoarer
US8205502B2 (en) * 2008-01-31 2012-06-26 Bioelectrochemistry, Llc Plant biosensor and method
RU2377606C2 (ru) * 2008-03-04 2009-12-27 Закрытое акционерное общество "ЕММЕТ" Донная станция (варианты)
WO2009131485A1 (ru) * 2008-04-22 2009-10-29 Закрытое Акционерное Общество "Еmmet" Генераторное устройство для морских геофизических исследований
MX2010012863A (es) * 2008-05-30 2010-12-20 Ion Geophysical Corp Exploracion electromagnetica.
US7999552B2 (en) 2008-06-03 2011-08-16 Westerngeco L.L.C. Sensor cable for electromagnetic surveying
NO332562B1 (no) 2008-07-04 2012-10-29 Multifield Geophysics As Marinseismisk og elektromagnetisk streamerkabel
US8080999B2 (en) 2008-07-05 2011-12-20 Westerngeco L.L.C. Sensor cable for electromagnetic surveying
US8649992B2 (en) * 2008-07-17 2014-02-11 Pgs Geophysical As Method for reducing induction noise in towed marine electromagnetic survey signals
US8228208B2 (en) 2008-07-28 2012-07-24 Westerngeco L.L.C. Communication system for survey source and receiver
NO329369B1 (no) 2008-09-30 2010-10-04 Advanced Hydrocarbon Mapping A Undersjoisk, vertikal elektromagnetsignalmottaker for vertikal feltkomponent samt framgangsmate for anbringelse av signalmottakeren i en losmasse
US20100109671A1 (en) * 2008-11-03 2010-05-06 Bruce Alan Hobbs Method for acquiring controlled source electromagnetic survey data to assist in attenuating correlated noise
US8098542B2 (en) * 2009-01-05 2012-01-17 Pgs Geophysical As Combined electromagnetic and seismic acquisition system and method
CN102461214B (zh) * 2009-06-03 2015-09-30 皇家飞利浦电子股份有限公司 扬声器位置的估计
US20110255368A1 (en) * 2010-04-14 2011-10-20 S Dow Gustav G Ran Mattias Method for 2D and 3D electromagnetic field measurements using a towed marine electromagnetic survey system
US20110260730A1 (en) * 2010-04-27 2011-10-27 Suedow Gustav Goeran Mattias Switchable front-end measurement unit for towed marine electromagnetic survey cables
US9778036B2 (en) 2010-04-27 2017-10-03 Pgs Geophysical As Switchable front-end measurement unit for towed marine electromagnetic streamer cables
US8896314B2 (en) * 2010-05-05 2014-11-25 Pgs Geophysical As Multiple component electromagnetic survey signal acquisition method
WO2012015542A1 (en) 2010-07-27 2012-02-02 Exxonmobil Upstream Research Company Inverting geophysical data for geological parameters or lithology
EP2606452A4 (en) 2010-08-16 2017-08-16 Exxonmobil Upstream Research Company Reducing the dimensionality of the joint inversion problem
DE102010035261A1 (de) * 2010-08-24 2012-03-01 Arnim Kaus Verfahren und Messvorrichtung zur Erkundung von Kohlenwasserstoff-Reservoirs im Untergrund
US9335432B2 (en) 2010-08-30 2016-05-10 King Abdulaziz City For Science And Technology Semi-permeable terrain geophysical data acquisition
US8963549B2 (en) * 2010-12-13 2015-02-24 Westerngeco L.L.C. Electromagnetic measurements using a group of two or more electromagnetic receivers
US20120194196A1 (en) * 2011-02-02 2012-08-02 Leendert Combee Electromagnetic Source to Produce Multiple Electromagnetic Components
US8514656B2 (en) * 2011-03-18 2013-08-20 Pgs Geophysical As Sensor arrangement for detecting motion induced noise in towed marine electromagnetic sensor streamers
US8816689B2 (en) * 2011-05-17 2014-08-26 Saudi Arabian Oil Company Apparatus and method for multi-component wellbore electric field Measurements using capacitive sensors
WO2012166228A1 (en) 2011-06-02 2012-12-06 Exxonmobil Upstream Research Company Joint inversion with unknown lithology
EP2721478A4 (en) 2011-06-17 2015-12-02 Exxonmobil Upstream Res Co FREEZING OF DOMAINS IN A CONNECTION VERSION
WO2013012470A1 (en) 2011-07-21 2013-01-24 Exxonmobil Upstream Research Company Adaptive weighting of geophysical data types in joint inversion
US9081106B2 (en) * 2011-10-17 2015-07-14 Pgs Geophysical As Power converter and electrode combinations for electromagnetic survey source
US9057798B2 (en) * 2011-11-07 2015-06-16 Pgs Geophysical As Adjustable sensor streamer stretch section for noise control for geophysical sensor streamers
US8816690B2 (en) 2011-11-21 2014-08-26 Pgs Geophysical As Electromagnetic sensor cable and electrical configuration therefor
US8922214B2 (en) 2011-12-27 2014-12-30 Pgs Geophysical As Electromagnetic geophysical survey systems and methods employing electric potential mapping
US8736269B2 (en) 2011-12-27 2014-05-27 Pgs Geophysical As Electromagnetic geophysical survey systems and methods employing electric potential mapping
US9057801B2 (en) * 2012-01-11 2015-06-16 Kjt Enterprises, Inc. Geophysical data acquisition system
US8797036B2 (en) * 2012-02-29 2014-08-05 Pgs Geophysical Methods and apparatus for adaptive source electromagnetic surveying
US8896313B2 (en) * 2012-03-15 2014-11-25 Pgs Geophyiscal As Electromagnetic receiver assembly for marine electromagnetic surveying
US9188694B2 (en) 2012-11-16 2015-11-17 Halliburton Energy Services, Inc. Optical interferometric sensors for measuring electromagnetic fields
US10591638B2 (en) 2013-03-06 2020-03-17 Exxonmobil Upstream Research Company Inversion of geophysical data on computer system having parallel processors
US20140269171A1 (en) * 2013-03-15 2014-09-18 Westerngeco L.L.C. Seismic streamer system
US9846255B2 (en) 2013-04-22 2017-12-19 Exxonmobil Upstream Research Company Reverse semi-airborne electromagnetic prospecting
US11092710B2 (en) 2013-06-27 2021-08-17 Pgs Geophysical As Inversion techniques using streamers at different depths
US10459100B2 (en) 2013-06-27 2019-10-29 Pgs Geophysical As Survey techniques using streamers at different depths
US9651707B2 (en) 2013-06-28 2017-05-16 Cgg Services Sas Methods and systems for joint seismic and electromagnetic data recording
RU2545365C2 (ru) * 2013-08-07 2015-03-27 Российская Федерация, От Имени Которой Выступает Министерство Промышленности И Торговли Российской Федерации Донная кабельная антенна для мониторинга сейсмоакустической эмиссии на шельфе
US10605947B2 (en) * 2014-06-18 2020-03-31 Pgs Geophysical As Marine streamer connector used as an electrode
US10012751B2 (en) * 2014-06-18 2018-07-03 Pgs Geophysical As Electrode adapter for geophysical surveys
US10254432B2 (en) 2014-06-24 2019-04-09 Schlumberger Technology Corporation Multi-electrode electric field downhole logging tool
US9766361B2 (en) 2014-10-10 2017-09-19 Pgs Geophysical As Methods and apparatus for electromagnetic surveying using dynamically-selected source waveforms
WO2016060678A1 (en) * 2014-10-17 2016-04-21 Halliburton Energy Services, Inc. Well monitoring with optical electromagnetic sensing system
WO2016108868A1 (en) * 2014-12-31 2016-07-07 Halliburton Energy Services, Inc. Acousto-electromagnetic apparatus and method for acoustic sensing
CN104678456A (zh) * 2015-02-14 2015-06-03 合肥国为电子有限公司 兼具电磁和地震数据采集功能的地球物理勘探仪器
US9759829B2 (en) * 2015-02-28 2017-09-12 Glenn Dale Chubak System and method for geophysical data collection
AU2015201070B2 (en) * 2015-03-02 2021-07-29 Glenn Dale Chubak System and method for geophysical data collection
US10132947B2 (en) 2015-10-19 2018-11-20 Pgs Geophysical As Marine data acquisition node
US10379256B2 (en) 2015-12-16 2019-08-13 Pgs Geophysical As Combined seismic and electromagnetic survey configurations
CN108415091B (zh) * 2018-03-29 2024-04-05 山东蓝海可燃冰勘探开发研究院有限公司 一种拖曳式海洋电磁数据采集缆
CN109143325B (zh) * 2018-09-29 2024-05-21 山东蓝海可燃冰勘探开发研究院有限公司 一种海底四分量节点地震仪器系统及海底地震数据采集方法
CN109738958B (zh) * 2019-02-21 2024-03-19 山东蓝海可燃冰勘探开发研究院有限公司 一种海洋可控源电磁探测系统
CN110045241B (zh) * 2019-04-18 2022-12-09 中国电力科学研究院有限公司 一种用于对高压交联海缆工程接头的电容耦合局放检测的方法及系统
US20220206181A1 (en) * 2019-04-26 2022-06-30 King Abdullah University Of Science And Technology Submersible sensing system for water and sediment monitoring
CN110208866B (zh) * 2019-07-10 2024-03-22 中油奥博(成都)科技有限公司 地井阵列式光纤时频电磁数据采集装置及其数据采集方法
CN110579791B (zh) * 2019-09-09 2020-08-14 自然资源部第二海洋研究所 一种通过优化气枪空间分布减小空气枪震源子波方向性的方法
AU2022284623A1 (en) * 2021-06-04 2024-01-18 Bhp Innovation Pty Ltd A geophysical data acquisition device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617518A (en) * 1983-11-21 1986-10-14 Exxon Production Research Co. Method and apparatus for offshore electromagnetic sounding utilizing wavelength effects to determine optimum source and detector positions
USH1490H (en) * 1992-09-28 1995-09-05 Exxon Production Research Company Marine geophysical prospecting system
US5486764A (en) * 1993-01-15 1996-01-23 Exxon Production Research Company Method for determining subsurface electrical resistance using electroseismic measurements
WO1995024658A1 (en) * 1994-03-10 1995-09-14 Farnsworth David F Method and apparatus for detecting local precursor seismic activity
USH1561H (en) * 1994-09-22 1996-07-02 Exxon Production Research Company Method and apparatus for detection of seismic and electromagnetic waves
US5841280A (en) * 1997-06-24 1998-11-24 Western Atlas International, Inc. Apparatus and method for combined acoustic and seismoelectric logging measurements
GB9818875D0 (en) * 1998-08-28 1998-10-21 Norske Stats Oljeselskap Method and apparatus for determining the nature of subterranean reservoirs
US6823262B2 (en) * 1999-09-21 2004-11-23 Apache Corporation Method for conducting seismic surveys utilizing an aircraft deployed seismic source
GB0002422D0 (en) * 2000-02-02 2000-03-22 Norske Stats Oljeselskap Method and apparatus for determining the nature of subterranean reservoirs
US6427774B2 (en) * 2000-02-09 2002-08-06 Conoco Inc. Process and apparatus for coupled electromagnetic and acoustic stimulation of crude oil reservoirs using pulsed power electrohydraulic and electromagnetic discharge
US6227293B1 (en) * 2000-02-09 2001-05-08 Conoco Inc. Process and apparatus for coupled electromagnetic and acoustic stimulation of crude oil reservoirs using pulsed power electrohydraulic and electromagnetic discharge
US6477113B2 (en) * 2000-03-21 2002-11-05 Exxonmobil Upstream Research Company Source waveforms for electroseismic exploration
US6584406B1 (en) * 2000-06-15 2003-06-24 Geo-X Systems, Ltd. Downhole process control method utilizing seismic communication
GB2383133A (en) * 2001-08-07 2003-06-18 Statoil Asa Investigation of subterranean reservoirs
GB2413188B (en) * 2001-08-07 2006-01-11 Electromagnetic Geoservices As Method and apparatus for determining the nature of subterranean reservoirs
US6541975B2 (en) * 2001-08-23 2003-04-01 Kjt Enterprises, Inc. Integrated borehole system for reservoir detection and monitoring
GB2382875B (en) * 2001-12-07 2004-03-03 Univ Southampton Electromagnetic surveying for hydrocarbon reservoirs
US6842006B2 (en) * 2002-06-27 2005-01-11 Schlumberger Technology Corporation Marine electromagnetic measurement system
US7023213B2 (en) * 2002-12-10 2006-04-04 Schlumberger Technology Corporation Subsurface conductivity imaging systems and methods
US6739165B1 (en) * 2003-02-05 2004-05-25 Kjt Enterprises, Inc. Combined surface and wellbore electromagnetic measurement system and method for determining formation fluid properties
GB2399640B (en) * 2003-03-17 2007-02-21 Statoil Asa Method and apparatus for determining the nature of submarine reservoirs
US7042801B1 (en) * 2004-02-04 2006-05-09 Seismoelectric Soundings, Inc. System for geophysical prospecting using induce electrokinetic effect
US20060186887A1 (en) * 2005-02-22 2006-08-24 Strack Kurt M Method for identifying subsurface features from marine transient controlled source electromagnetic surveys
US7203599B1 (en) * 2006-01-30 2007-04-10 Kjt Enterprises, Inc. Method for acquiring transient electromagnetic survey data

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012174516A1 (en) * 2011-06-16 2012-12-20 Schlumberger Canada Limited Method of mapping a subterranean formation based upon wellbore position and seismic data and related system
RU2499951C2 (ru) * 2011-09-22 2013-11-27 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Способ обнаружения слабоинтенсивных утечек из подводных нефтепроводов мобильным подводным измерительным комплексом
RU2523324C1 (ru) * 2013-04-26 2014-07-20 Открытое акционерное общество "Концерн "Центральный научно-исследовательский институт "Электроприбор" Способ передачи телеметрической информации с забоя шельфовой скважины на морскую платформу
RU2639649C2 (ru) * 2017-03-17 2017-12-21 Джемма Павловна Земцова Компьютерная система для обработки и анализа геофизических данных
RU199731U1 (ru) * 2020-05-21 2020-09-16 Федеральное государственное бюджетное учреждение науки Тихоокеанский океанологический институт им. В.И. Ильичева Дальневосточного отделения Российской академии наук (ТОИ ДВО РАН) Береговой комплекс для системы многочастотного акустического зондирования морской среды
RU2799518C2 (ru) * 2021-12-14 2023-07-05 Федеральное государственное бюджетное учреждение науки Институт физики Земли им. О.Ю. Шмидта Российской академии наук Устройство для регистрации и передачи геофизических цифровых данных

Also Published As

Publication number Publication date
BRPI0412126B1 (pt) 2016-07-19
RU2006103995A (ru) 2006-09-10
NO20033169D0 (no) 2003-07-10
CA2531801A1 (en) 2005-01-20
US7453763B2 (en) 2008-11-18
CA2531801C (en) 2013-07-09
GB2421800B (en) 2007-12-27
AU2004256370A1 (en) 2005-01-20
GB2421800A (en) 2006-07-05
NO20033169L (no) 2005-01-11
AU2004256370B2 (en) 2010-04-22
NO326506B1 (no) 2008-12-15
GB0602354D0 (en) 2006-03-15
BRPI0412126A (pt) 2006-08-15
US20060238200A1 (en) 2006-10-26
WO2005006022A1 (en) 2005-01-20
MXPA05013867A (es) 2006-03-13

Similar Documents

Publication Publication Date Title
RU2341814C2 (ru) Геофизическая система регистрации данных
CN100339724C (zh) 利用受控源电磁场监测碳氢化合物储藏层的系统和方法
RU2323456C2 (ru) Способ и система для геологических исследований дна моря с использованием измерения вертикального электрического поля
RU2428719C2 (ru) Способ картирования коллектора углеводородов и устройство для осуществления этого способа
US2531088A (en) Electrical prospecting method
US7483792B2 (en) Electromagnetic surveying for hydrocarbon reservoirs
US7924014B2 (en) Electromagnetic surveying for hydrocarbon reservoirs
US7805249B2 (en) Method for performing controlled source electromagnetic surveying with multiple transmitters
US7667464B2 (en) Time segmentation of frequencies in controlled source electromagnetic (CSEM) applications
US20060153004A1 (en) System for geophysical prospecting using induced electrokinetic effect
MXPA06011329A (es) Sistema electromagnetico de sondeo con multiples fuentes.
EP3346299A1 (en) Data collection systems for marine modification with streamer and receiver module
CN105807326B (zh) 一种利用天波进行深部勘探的系统和方法
Brady et al. Electromagnetic sounding for hydrocarbons
CN208984585U (zh) 一种海底底质透声性能测量装置
Constable Natural Resource Exploration Using Marine Controlled-Source Electromagnetic Sounding

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20140527

PC41 Official registration of the transfer of exclusive right

Effective date: 20140902