RU2338811C1 - Способ получения изделий из титановых сплавов и изделия, полученные этим способом (варианты) - Google Patents

Способ получения изделий из титановых сплавов и изделия, полученные этим способом (варианты) Download PDF

Info

Publication number
RU2338811C1
RU2338811C1 RU2007106952/02A RU2007106952A RU2338811C1 RU 2338811 C1 RU2338811 C1 RU 2338811C1 RU 2007106952/02 A RU2007106952/02 A RU 2007106952/02A RU 2007106952 A RU2007106952 A RU 2007106952A RU 2338811 C1 RU2338811 C1 RU 2338811C1
Authority
RU
Russia
Prior art keywords
titanium
product
nanocrystalline
hydrogen
core
Prior art date
Application number
RU2007106952/02A
Other languages
English (en)
Other versions
RU2007106952A (ru
Inventor
Александр Анатольевич Ильин (RU)
Александр Анатольевич Ильин
Андрей Михайлович Мамонов (RU)
Андрей Михайлович Мамонов
Леонид Михайлович Петров (RU)
Леонид Михайлович Петров
Светлана Владимировна Скворцова (RU)
Светлана Владимировна Скворцова
Василий Николаевич Карпов (RU)
Василий Николаевич Карпов
Николай Васильевич Загородний (RU)
Николай Васильевич Загородний
Александр Викторович Балберкин (RU)
Александр Викторович Балберкин
Александр Матвеевич Надежин (RU)
Александр Матвеевич Надежин
Алексей Витальевич Овчинников (RU)
Алексей Витальевич Овчинников
Original Assignee
Общество с ограниченной ответственностью "ИЛЬКОМ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "ИЛЬКОМ" filed Critical Общество с ограниченной ответственностью "ИЛЬКОМ"
Priority to RU2007106952/02A priority Critical patent/RU2338811C1/ru
Publication of RU2007106952A publication Critical patent/RU2007106952A/ru
Application granted granted Critical
Publication of RU2338811C1 publication Critical patent/RU2338811C1/ru

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к получению изделий из псевдо-α или (α+β) титановых сплавов, предназначенных для длительной эксплуатации в парах трения с полимерными или металлическими материалами и биологическими тканями. Изготавливают заготовку, затем ее подвергают термоводородной обработке путем насыщения водородом термодиффузионным методом до концентрации водорода 0,5-0,9% по массе при температуре 700-850°С. Проводят выдержку, охлаждение до комнатной температуры со скоростью 0,1-10 град/сек. Затем осуществляют отжиг в вакууме не ниже 5-10-5 мм рт.ст. при температуре 550-700°С с выдержкой 4-20 часов до получения концентрации водорода не более 0,01 мас.%. Полировку проводят до получения параметра шероховатости поверхности Ra от 0,02 до 0,08 мкм. Затем осуществляют вакуумное ионно-плазменное азотирование при температуре 300-700°С с получением азотированного слоя толщиной не менее 50 мкм. Заявленным способом получено изделие, содержащее азотированный поверхностный слой, состоящий из нитридов титана состава от Ti2N до TiN и подслоя из твердого раствора азота в титане, и сердцевину. Создают комплексную технологию, обеспечивающую высокую износостойкости и низкий коэффициент трения, а также высокую коррозионную стойкость изделиям в агрессивных, том числе биологических средах. 5 н. и 12 з.п. ф-лы, 1 ил.

Description

Изобретение относится к получению изделий из титановых сплавов псевдо-α или (α+β)-классов, предназначенных для длительной эксплуатации в парах трения с полимерными или металлическими материалами и биологическими тканями, обладающих высокой стойкостью к износу и высокой коррозионной стойкостью в агрессивных, в том числе биологических средах.
Примерами таких изделий являются компоненты эндопротеза тазобедренного сустава человека - головка и ножка бедренного компонента. В наиболее распространенных конструкциях эндопротезов сферическая головка работает в паре трения с вкладышем из сверхвысокомолекулярного полиэтилена (СВМПЭ), а ножка - в паре с костным цементом на основе полиметилметакрилата.
Необходимость высокой стойкости к износу при трении обусловлена тем, что износ компонентов шарнира или пары ножка - цементная мантия приводит к нестабильности эндопротеза, а также к миграции продуктов износа и их накоплению в окружающих мягких тканях и органах.
Стойкость к износу при трении обеспечивается высокой чистотой поверхности (параметр шероховатости Rа головок должен быть не более 0,05 мкм по ИСО 7206-2, ножек цементной фиксации - не более 0,05 мкм) и высокой твердостью поверхности изделия. Высокая коррозионная стойкость изделия в биологических средах обеспечивается как использованием для их изготовления титановых сплавов, так и высокой чистотой поверхности.
Достижение высокой степени полировки и достаточной поверхностной твердости обеспечивает использование для изготовления указанных компонентов эндопротезов сплавов системы Со-Мо-Cr («комохром») или нержавеющих сталей. Однако эти материалы не обладают достаточной биологической инертностью, и ионы металлов (Со, Cr) способны накапливаться в окружающих имплантат тканях и органах человека (А.В.Карлов, В.П.Шахов. Системы внешней фиксации и регуляторные механизмы оптимальной биомеханики, Томск, 2001, с.132-134).
Наиболее близким к изобретению, как в части «Способа получения изделия», так и в части «Изделия, полученного этим способом» является способ поверхностного упрочнения ортопедических имплантируемых устройств из титана или сплава Ti-6Al-4V (Патент Канады №2049809). В результате использования способа на поверхности изделия формируется слой толщиной до 0,01 мм, включающий нитриды титана переменного состава от Ti2N до TiN, подслой твердого раствора азота в титане толщиной до 0,02 мм, далее располагается сердцевина изделия.
Изделие с указанными поверхностными слоями получают в процессе выдержки в атмосфере молекулярного азота при давлении 108-115 кПа, температуре 399-704°С, в течение 8 часов.
Этот способ имеет ряд недостатков, не позволяющих получить изделие с высокой износостойкостью в паре трения титан - СВМПЭ до уровня, достигаемого в паре «комохром» - СВМПЭ, а биомеханические характеристики искусственного сустава - крутящий момент и коэффициент трения - до уровня естественного здорового сустава.
Причинами этих недостатков являются:
- недостаточная твердость и прочность металла основы, обусловленная исходной структурой металла, не подвергающегося предварительной термической или иной обработке;
- недостаточная чистота обработки поверхности изделия перед азотированием, обусловленная параметрами исходной структуры (размер структурных составляющих 2-10 мкм, в лучшем случае горячекатанных по стандартной технологии прутков сплава Ti-6Al-4V, BT-6), что не позволяет добиться необходимой чистоты поверхности изделия после азотирования и обеспечить низкий коэффициент трения фрикционной пары;
- недостаточная глубина упрочненного слоя, обусловленная, с одной стороны физико-химической природой печного азотирования при указанных параметрах процесса, а с другой - структурой материала основы, которая не обеспечивает интенсификацию процесса азотирования.
Недостаточная глубина упрочненного поверхностного слоя, а также недостаточная прочность и твердость (HRC от 26 до 34 ед. в зависимости от состава сплава и его структуры) сердцевины изделия при высоких контактных давлениях в паре трения приводит к повышенной деформации подповерхностного слоя, и, следовательно, износу и разрушению поверхностного слоя при длительной эксплуатации.
Задачей изобретения в части «Способа получения изделия» является создание комплексной технологии, обеспечивающей последовательное формирование в изделии структурного состояния, необходимого для придания ему высокой износостойкости и низкого коэффициента трения в паре с полимерными, металлическими материалами и биологическими тканями, а также высокой коррозионной стойкости в агрессивных, в том числе биологических, средах.
Техническим результатом изобретения является получение изделий из псевдо-α или малолегированного (α+β)-титанового сплава, обладающих высокой износостойкостью и низким коэффициентом трения в паре с полимерными, металлическими материалами и биологическими тканями и высокой коррозионной стойкостью в агрессивных, в том числе биологических, средах.
Поставленная задача решается тем, что в способе получения изделий из псевдо-α или малолегированных (α+β)-титановых сплавов, включающем азотирование, предварительно заготовку из титанового сплава подвергают термоводородной обработке, включающей насыщение водородом термодиффузионным методом до концентрации водорода 0,5-0,9% по массе при температуре 700-850°С, выдержку и охлаждение до комнатной температуры со скоростью 0,1-10 град/сек и последующий отжиг в вакууме не хуже 5-10-5 мм рт.ст. при температуре 550-700°С с выдержкой 4-20 часов и полировке до получения параметра шероховатости поверхности Ra от 0,02 до 0,08 мкм, а азотирование проводят при температуре 300-700°С вакуумным ионно-плазменным способом с получением азотированного слоя толщиной не менее 50 мкм.
Для усиления эффекта повышения износостойкости изделия после азотирования проводят осаждение нескольких нанометрических слоев нитрида титана (TiN) конденсационным методом с получением слоя общей толщиной 0,1-3,0 мкм.
Для получения градиентной структуры, плавно изменяющейся от нанокристаллической или субмикрокристаллической с размером структурных составляющих менее 1 мкм на поверхности, до структуры с размером структурных составляющих от 2 до 10 мкм в сердцевине насыщение водородом проводят до средней концентрации 0,5-0,6% по массе.
Для получения равномерной нанокристаллической или субмикрокристаллической структуры с размером структурных составляющих менее 1 мкм насыщение водородом проводят до средней концентрации 0,7-0,9% по массе.
Причем азотирование проводят ионами с первичной энергией от 60 до 200 эВ.
Указанная первичная энергия ионов азота, достигающая поверхности изделия, с одной стороны, обеспечивает их глубокое проникновение в материал изделия, причем на поверхности изделия на ранних стадиях процесса не образуется сплошного слоя нитридных фаз, препятствующего дальнейшему внедрению в материал последующих порций ионов азота и их диффузии вглубь материала. Наряду с субмикрокристаллической структурой материала, увеличивающей удельную площадь межфазных и межзеренных границ, это создает условия для образования большой глубины азотированного поверхностного слоя (более 50 мкм).
С другой стороны, проведение процесса азотирования с первичной энергией ионов от 60 до 200 эВ не приводит к «распылению» материала изделия, обеспечивая сохранение требуемой чистоты поверхности.
Задачей изобретения в части «Изделия» является создание изделия из псевдо-α или малолегированного (α+β)-титанового сплава, обладающего высокой износостойкостью и низким коэффициентом трения в паре с полимерными, металлическими материалами и биологическими тканями и высокой коррозионной стойкостью в агрессивных, в том числе биологических, средах.
Поставленная задача решается тем, что изделие из псевдо-α или малолегированного (α+β)-титанового сплава (по первому варианту) содержит упрочненный поверхностный слой, представляющий собой слой нитридов титана состава от Ti2N до TiN, подслой твердого раствора азота в титане, и сердцевину, причем толщина азотированного слоя составляет не менее 50 мкм, причем изделие имеет градиентную структуру, плавно изменяющуюся от нанокристаллической или субмикрокристаллической с размером структурных составляющих менее 1 мкм на поверхности до структуры с размером структурных составляющих от 2 до 10 мкм в сердцевине, а шероховатость поверхности изделия составляет Ra от 0,02 до 0,08 мкм.
Изделие из псевдо-α или малолегированного (α+β)-титанового сплава (по второму варианту) содержит упрочненный поверхностный слой, представляющий собой слой нитридов титана состава от Ti2N до TiN, подслой твердого раствора азота в титане, и сердцевину, причем на поверхности оно дополнительно содержит слой нитрида титана TiN с нанокристаллической структурой с общей толщиной 0,1-3,0 мкм, а толщина азотированного слоя составляет не менее 50 мкм; изделие имеет градиентную структуру, плавно изменяющуюся от нанокристаллической или субмикрокристаллической с размером структурных составляющих менее 1 мкм на поверхности до структуры с размером структурных составляющих от 2 до 10 мкм в сердцевине, а шероховатость поверхности изделия составляет Ra от 0,02 до 0,08 мкм.
Изделие из псевдо-α или малолегированного (α+β)-титанового сплава (по третьему варианту) содержит упрочненный поверхностный слой, представляющий собой слой нитридов титана состава от Ti2N до TiN, подслой твердого раствора азота в титане, и сердцевину, причем толщина азотированного слоя составляет не менее 50 мкм, изделие имеет нанокристаллическую или субмикрокристаллическую структуру с размером структурных составляющих менее 1 мкм, а шероховатость поверхности изделия составляет Ra от 0,02 до 0,08 мкм.
Изделие из псевдо-α или малолегированного (α+β)-титанового сплава (по четвертому варианту) содержит упрочненный поверхностный слой, представляющий собой слой нитридов титана состава от Ti2N до TiN, подслой твердого раствора азота в титане, и сердцевину, причем на поверхности оно дополнительно содержит слой нитрида титана TiN с нанокристаллической структурой и общей толщиной 0,1-3,0 мкм, а толщина азотированного слоя составляет не менее 50 мкм, изделие имеет нанокристаллическую или субмикрокристаллическую структуру с размером структурных составляющих менее 1 мкм, а шероховатость поверхности изделия составляет Ra от 0,02 до 0,08 мкм.
Изделие по всем четырем вариантам выполнено как имплантируемое медицинское изделие, а так же как медицинский режущий инструмент.
В качестве имплантируемых медицинских изделий могут являться титановые компоненты эндопротезов крупных и мелких суставов и межпозвонковых дисков, имплантаты для артродеза суставов, имплантаты для остеосинтеза - винты и пластины доля костей, интрамедулярные крепежные приспособления, изделия для фиксации концов бедренной кости, костей голени, костей предплечья и плечевой кости, скелетные штифты и спицы, скобы, устройства для фиксации позвоночника и другие изделия в соответствии с показателями назначения по ГОСТ ИСО 14602-99. В качестве режущего медицинского инструмента - кусачки, долота, стамески, пилы, фрезы, боры, сверла, метчики, рашпили, экскаваторы и другие изделия в соответствии с ГОСТ 25725-89.
Технологическая схема включает следующие основные операции.
1. Изготовление заготовки изделия из титанового сплава (Ti-6Al-4V; Ti-6,5Al-1Mo-1V-2Zr; Ti-3Al-5V-5Mo и др.) любыми методами механической обработки, например резанием, давлением и др., или фасонным литьем, или гранульной или порошковой технологией. Очистка поверхности заготовки от технологических окислов, если они образуются в процессе ее получения. Заготовка имеет форму готового изделия с припуском на шлифование и полирование поверхности.
2. Термоводородную обработку, обеспечивающую (в зависимости от ее режима и типа изделия) формирование либо градиентной структуры с размером структурных составляющих, плавно изменяющимся от размера менее 1 мкм на поверхности до размера от 2 до 10 мкм в сердцевине, либо нанокристаллической или субмикрокристаллической структуры с размером структурных составляющих менее 1 мкм, что приводит к повышению твердости заготовки до величины HRC не менее 38 ед. Термоводородная обработка включает насыщение заготовки водородом термодиффузионным методом и последующий отжиг в вакууме не хуже 5-10-5 мм рт.ст. для удаления водорода до концентрации не более 0,01% по массе.
Градиентная структура должна быть создана в изделиях, испытывающих функциональные нагрузки, которые приводят к формированию напряженно-деформированного состояния с растягивающими компонентами нормальных напряжений (например, нагрузки, приводящие к изгибу). В этом случае структура сердцевины (пластинчатого, глобулярного или смешанного типа) с более крупными структурными составляющими α-фазы обеспечивает более высокую вязкость разрушения и минимальную скорость распространения усталостной трещины, если она все-таки зародилась, что повышает ресурс изделия.
Однородная нанокристаллическая или субмикрокристаллическая структура, как правило, может быть создана в изделиях, в которых при эксплуатации не возникает значительных растягивающих напряжений. При этом продолжительность технологических этапов термоводородной обработки (насыщения водородом и вакуумного отжига) для преобразования структуры исходного полуфабриката тем больше, чем на большую глубину требуется распространить зону с нанокристаллической или субмикрокристаллической структурой по сечению изделия.
3. Шлифование и механическое полирование заготовки до достижения шероховатости Ra от 0,02 до 0,08 мкм.
4. Вакуумное ионно-плазменное азотирование по режиму, обеспечивающему получение поверхностного слоя нитридов титана состава от Ti2N до TiN и приповерхностного слоя, представляющего собой твердые растворы азота в α- и β-фазах, глубиной не менее 50 мкм с микротвердостью не менее H0,05=6000 МПа, либо поверхностного слоя твердых растворов азота в α- и β-фазах глубиной не менее 50 мкм с микротвердостью поверхностного слоя не менее H0,05=5000 МПа без ухудшения шероховатости поверхности изделия.
Для усиления эффекта повышения износостойкости изделия после азотирования проводят осаждение нескольких слоев нитрида титана (TiN) конденсационным методом путем дополнительного испарения титана, его активации и подачи в рабочий объем камеры. При этом концентрация азота в камере увеличивается до 100%. В результате плазмохимической реакции на поверхности формируют слой нитрида титана суммарной толщиной 0,1-3,0 мкм с нанокристаллической структурой.
Описанная технология позволяет получить изделие с низким коэффициентом трения во фрикционных парах, высокие износостойкость, коррозионную стойкость и ресурс эксплуатации в условиях действия знакопеременных механических нагрузок.
Нанокристаллическая или субмикрокристаллическая структура подповерхностных слоев и поверхности изделия, а также легирование азотом, обеспечивают:
- высокую твердость;
- достижение высокого класса чистоты обработки поверхности;
- значительное увеличение глубины упрочненного поверхностного слоя при азотировании вследствие интенсификации диффузии азота, обусловленной увеличением удельной площади межфазных и межзеренных границ;
- снижение деформации поверхностного слоя изделия при высоких контактных давлениях в паре трения, повышение износостойкости изделия и ресурса его эксплуатации.
Примеры осуществления способа получения заявленного изделия.
Изделием по первому варианту являлась ножка бедренного компонента эндопротеза тазобедренного сустава цементной фиксации. Дистальная часть ножки имеет коническую форму и изготавливается из горячекатаной плиты титанового сплава сплава Ti-6Al-4V путем механической обработки. Заготовка имеет смешанную глобулярно-пластинчатую структуру с размерами структурных составляющих α-фазы от 2 до 7 мкм и твердость 30-32 ед. HRC. Ножка насыщалась водородом до концентрации 0,6% по массе термодиффузионным методом при температуре 800°С, охлаждалась до комнатной температуры и далее подвергалась отжигу при температуре 650°С в течение 8 часов в вакууме 5-10-5 мм рт.ст. В результате обработки в материале ножки сформировалась градиентная структура с размерами структурных составляющих, плавно изменяющимися от размеров менее 1 мкм на поверхности до размеров от 2 до 5 мкм в сердцевине. Твердость составила 38 ед. HRC. Дистальная часть ножки подвергалась последовательному шлифованию и механическому полированию до достижения окончательных размеров и параметра шероховатости Ra=0,08 мкм. Далее проводилось вакуумное ионно-плазменное азотирование ионами со средней первичной энергией 120 эВ в смеси азота и аргона при давлении около 0,03 Па, температуре 500°С и продолжительности 40 минут. Дистальная часть ножки имела упрочненный поверхностный слой глубиной 50 мкм, состоящий из поверхностного слоя нитридов титана от Ti2N до TiN и приповерхностного слоя твердого раствора азота в α- и β-титане. Микротвердость поверхности составила Н0,05=6200 МПа, параметр шероховатости Ra=0,08 мкм.
Изделием по второму варианту являлась медицинская фреза - шестилезвийный режущий медицинский инструмент в форме стержня диаметром 10 мм со спиральными режущими кромками для разработки костномозгового канала кости под ножку эндопротеза или интрамедулярную крепежную систему. Фреза изготавливалась из горячекатаного прутка диаметром 14 мм из титанового сплава Ti-6,5Al-1Mo-1V-2Zr механической обработкой и имела глобулярно-пластинчатую структуру с размером структурных составляющих α-фазы 3-6 мкм и твердость HRC=30 ед. Фреза насыщалась водородом до концентрации 0,6% по массе термодиффузионным методом при температуре 800°С, охлаждалась до комнатной температуры со скоростью 5 град/сек и далее подвергалась отжигу при температуре 650°С в течение 8 часов в вакууме 5-10-5 мм рт.ст. В результате обработки в материале фрезы сформировалась градиентная структура с размером структурных составляющих, плавно изменяющимися от размеров менее 1 мкм на поверхности до размеров 3-6 мкм в сердцевине. Твердость HRC составила 40 ед. Фреза подвергалась механической обработке до достижения окончательных размеров. Далее проводилось вакуумное ионно-плазменное азотирование ионами со средней первичной энергией 150-180 эВ в смеси азота и аргона при давлении около 0,03 Па, температуре 500°С и продолжительности 40 мин. Фреза имела азотированный слой толщиной 50 мкм, состоящий из поверхностного слоя нитридов титана от Ti2N до TiN и приповерхностного слоя твердого раствора азота в α- и β-титане. Микротвердость поверхности составила H0,05=6600 МПа. На рабочую поверхность фрезы после азотирования дополнительно осаждалось несколько слоев нитрида титана (TiN) конденсационным методом, в результате чего образовался слой толщиной 1,0 мкм с нанокристаллической структурой.
По той же технологии были изготовлены ножки эндопротеза тазобедренного сустава, имеющие форму клина во фронтальной и сагиттальной плоскостях имплантаты для остеосинтеза (диафизарные пластины для накостного остеосинтеза интрамедуллярные штифты и винты для крепления пластин и интрамедуллярных штифтов) из титанового сплава Ti-6Al-4V. Азотированию с последующим осаждением нескольких слоев нитрида титана (TiN) были подвергнуты ножки, головки винтов, включая их опорную поверхность, отверстия пластин и интрамедуллярных штифтов.
Изделием по третьему варианту являлась головка бедренного компонента эндопротеза тазобедренного сустава, которая имеет сферическую рабочую поверхность диаметром 28 мм и работает в искусственном суставе в паре с вкладышем из СВМПЭ. Головка изготавливалась из горячекатаного прутка диаметром 32 мм титанового сплава Ti-6Al-4V токарной обработкой и имела диаметр 28,3 мм, глобулярно-пластинчатую структуру с размером структурных составляющих α-фазы 3-5 мкм (фиг.1а) и твердость 32 ед. HRC.
Изготовленная головка насыщалась водородом термодиффузионным методом до концентрации 0,8% по массе при температуре 800°С, охлаждалась до комнатной температуры и далее подвергалась отжигу при температуре 650°С в течение 7 часов в вакууме не хуже 5-10-5 мм рт.ст. В результате обработки в изделии формируется нанокристаллическая или субмикрокристаллическая структура с размером структурных составляющих менее 1 мкм (фиг.1б). Твердость изделия составляет 42 ед. HRC.
Головка подвергалась последовательному шлифованию и механическому полированию с использованием алмазных паст. Диаметр головки после полирования составлял 27,90 мм, параметр шероховатости - Ra=0,03 мкм.
Далее проводили вакуумное ионно-плазменное азотирование ионами со средней первичной энергией около 180 эВ в смеси азота и аргона при давлении около 0,03 Па, температуре 500°С и продолжительности выдержки 30 минут.
Готовая головка имела упрочненный поверхностный слой глубиной 60 мкм, состоящий из поверхностного слоя нитридов титана от Ti2N до TiN и приповерхностного слоя твердого раствора азота в α- и β-титане. Микротвердость поверхности составляла Н0,05=6500 МПа, параметр шероховатости Ra=0,04 мкм.
На изделие по четвертому варианту после азотирования дополнительно осаждают несколько слоев нитрида титана (TiN) конденсационным методом, в результате чего формируется поверхностный слой суммарной толщиной 2,0 мкм с нанокристаллической структурой.
Эндопротезы тазобедренного сустава с элементами (ножками и головками бедренного компонента) изготовленными по всем предложенным вариантам и ацетабулярной чашей из СВМПЭ полиэтилена марки «Хирулен» (по ISO 5834-2) прошли испытания на надежность в соответствии с ИСО 7206-4 с закреплением ножки в испытательной оснастке костным цементом марки CMW. Амплитуда циклической нагрузки составляла 3300 Н, частота 10 Гц, база испытаний - 8·108 циклов. Испытания проводили в 0,9% водном растворе NaCl (физиологический раствор) при температуре 37°С. Контроль износа головок и ножек проводили взвешиванием на аналитических весах с точностью до 0,0001 г, а также визуально с помощью оптического микроскопа с увеличением до 90 крат. Контроль наличия микротрещин и остаточной деформации ножек проводили на инструментальном микроскопе ИМЦЛ-150. В результате испытаний следов износа головок, а также микротрещин и деформаций ножек не обнаружено. Сравнительные испытания триботехнических характеристик при сухом трении показали, что средний коэффициент трения естественного здорового и искусственного суставов близки (0,04 и 0,024 соответственно).
Износостойкость режущего медицинского инструмента определялась по ГОСТ 28684. Как показали испытания, работоспособность инструмента и радиус притупления режущей кромки не изменились. Предельное состояние одной из трех испытанных фрез было достигнуто только после 43 циклов испытаний, что свидетельствует о их высокой износостойкости.
Коррозионная стойкость изделий оценивалась по стандартам серии ГОСТ Р ИСО 10993 «Оценка биологического действия медицинских изделий». Коррозионная стойкость оценивалась по количеству мигрирующего металла в 0,9% раствор NaCl и определялась атомно-абсорбционным методом. В результате испытаний миграция ионов металлов из материала изделий в раствор не обнаружена, что указывает на их высокую коррозионную стойкость.
Таким образом, использование заявленного способа позволяет получать изделия с высокой износостойкостью и низким коэффициентом трения в паре с полимерными, металлическими материалами и биологическими тканями, а также высокой коррозионной стойкостью в агрессивных, в том числе биологических, средах.

Claims (17)

1. Способ получения изделий из псевдо-α или малолегированного (α+β)-титанового сплава, включающий изготовление заготовки и ее азотирование, отличающийся тем, что предварительно заготовку подвергают термоводородной обработке путем насыщения заготовки водородом термодиффузионным методом до концентрации водорода 0,5-0,9 мас.% при температуре 700-850°С, выдержки, охлаждения до комнатной температуры со скоростью 0,1-10 град/с и последующего отжига в вакууме не ниже 5-10-5 мм рт.ст. при температуре 550-700°С с выдержкой 4-20 ч до получения концентрации водорода не более 0,01 мас.% и полировке до получения параметра шероховатости поверхности Ra от 0,02 до 0,08 мкм, а азотирование проводят при температуре 300-700°С вакуумным ионно-плазменным способом с получением азотированного слоя толщиной не менее 50 мкм.
2. Способ по п.1, отличающийся тем, что после азотирования проводят осаждение нанометрических слоев нитрида титана TiN конденсационным методом с общей толщиной 0,1-3,0 мкм.
3. Способ по п.1, отличающийся тем, что для получения градиентной структуры, плавно изменяющейся от нанокристаллической или субмикрокристаллической с размером структурных составляющих менее 1 мкм на поверхности, до структуры с размером структурных составляющих от 2 до 10 мкм в сердцевине, насыщение заготовки водородом проводят до средней концентрации 0,5-0,6 мас.%.
4. Способ по п.1, отличающийся тем, что для получения равномерной нанокристаллической или субмикрокристаллической структуры с размером структурных составляющих менее 1 мкм насыщение заготовки водородом проводят до средней концентрации 0,7-0,9 мас.%.
5. Способ по п.1, отличающийся тем, что азотирование проводят ионами с первичной энергией от 60 до 200 эВ.
6. Изделие из псевдо-α или малолегированного (α+β)-титанового сплава, содержащее азотированный поверхностный слой, состоящий из нитридов титана состава от Ti2N до TiN и подслоя из твердого раствора азота в титане, и сердцевину, отличающееся тем, что толщина азотированного слоя составляет не менее 50 мкм, причем изделие имеет градиентную структуру, плавно изменяющуюся от нанокристаллической или субмикрокристаллической с размером структурных составляющих менее 1 мкм на поверхности, до структуры с размером структурных составляющих от 2 до 10 мкм в сердцевине, и имеет шероховатость поверхности Ra от 0,02 до 0,08 мкм.
7. Изделие по п.6, отличающееся тем, что оно представляет собой имплантируемое медицинское изделие.
8. Изделие по п.6, отличающееся тем, что оно представляет собой медицинский режущий инструмент.
9. Изделие из псевдо-α или малолегированного (α+β)-титанового сплава, содержащее азотированный поверхностный слой, состоящий из нитридов титана состава от Ti2N до TiN и подслоя из твердого раствора азота в титане, и сердцевину, отличающееся тем, что на поверхности оно дополнительно содержит слои нитрида титана TiN с нанокристаллической структурой с общей толщиной 0,1-3,0 мкм, толщина азотированного слоя составляет не менее 50 мкм, причем изделие имеет градиентную структуру, плавно изменяющуюся от нанокристаллической или субмикрокристаллической с размером структурных составляющих менее 1 мкм на поверхности, до структуры с размером структурных составляющих от 2 до 10 мкм в сердцевине, и имеет шероховатость поверхности Ra от 0,02 до 0,08 мкм.
10. Изделие по п.9, отличающееся тем, что оно представляет собой имплантируемое медицинское изделие.
11. Изделие по п.9, отличающееся тем, что оно представляет собой медицинский режущий инструмент.
12. Изделие из псевдо-α или малолегированного (α+β)-титанового сплава, содержащее азотированный поверхностный слой, состоящий из нитридов титана состава от Ti2N до TiN, подслоя из твердого раствора азота в титане, и сердцевину, отличающееся тем, что толщина азотированного слоя составляет не менее 50 мкм, изделие имеет равномерную нанокристаллическую или субмикрокристаллическую структуру с размером структурных составляющих менее 1 мкм и шероховатость поверхности Ra от 0,02 до 0,08 мкм.
13. Изделие по п.12, отличающееся тем, что оно представляет собой имплантируемое медицинское изделие.
14. Изделие по п.12, отличающееся тем, что оно представляет собой медицинский режущий инструмент.
15. Изделие из псевдо-α или малолегированного (α+β)-титанового сплава, содержащее азотированный поверхностный слой, состоящий из нитридов титана состава от Ti2N до TiN, подслоя из твердого раствора азота в титане, и сердцевину, отличающееся тем, что на поверхности оно дополнительно содержит слои нитрида титана TiN с нанокристаллической структурой с общей толщиной 0,1-3,0 мкм, толщина азотированного слоя составляет не менее 50 мкм, изделие имеет равномерную нанокристаллическую или субмикрокристаллическую структуру с размером структурных составляющих менее 1 мкм и шероховатость поверхности Ra от 0,02 до 0,08 мкм.
16. Изделие по п.15, отличающееся тем, что оно представляет собой имплантируемое медицинское изделие.
17. Изделие по п.15, отличающееся тем, что оно представляет собой медицинский режущий инструмент.
RU2007106952/02A 2007-02-27 2007-02-27 Способ получения изделий из титановых сплавов и изделия, полученные этим способом (варианты) RU2338811C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007106952/02A RU2338811C1 (ru) 2007-02-27 2007-02-27 Способ получения изделий из титановых сплавов и изделия, полученные этим способом (варианты)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007106952/02A RU2338811C1 (ru) 2007-02-27 2007-02-27 Способ получения изделий из титановых сплавов и изделия, полученные этим способом (варианты)

Publications (2)

Publication Number Publication Date
RU2007106952A RU2007106952A (ru) 2008-09-10
RU2338811C1 true RU2338811C1 (ru) 2008-11-20

Family

ID=39866290

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007106952/02A RU2338811C1 (ru) 2007-02-27 2007-02-27 Способ получения изделий из титановых сплавов и изделия, полученные этим способом (варианты)

Country Status (1)

Country Link
RU (1) RU2338811C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2594548C1 (ru) * 2015-03-05 2016-08-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Способ термоводородной обработки полуфабрикатов и изделий из пористого материала на основе титана и его сплавов
RU2641594C1 (ru) * 2016-10-26 2018-01-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483587B (zh) * 2016-01-18 2017-10-03 合肥工业大学 一种提高tc4钛合金室温塑性的循环热氢处理工艺

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2594548C1 (ru) * 2015-03-05 2016-08-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Способ термоводородной обработки полуфабрикатов и изделий из пористого материала на основе титана и его сплавов
RU2641594C1 (ru) * 2016-10-26 2018-01-18 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Способ получения высокопористого остеоинтегрирующего покрытия на имплантатах из титановых сплавов

Also Published As

Publication number Publication date
RU2007106952A (ru) 2008-09-10

Similar Documents

Publication Publication Date Title
Davis et al. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing
Kunčická et al. Advances in metals and alloys for joint replacement
US20190388128A1 (en) Dmls orthopedic intramedullary device and method of manufacture
US11717597B2 (en) Surface alloyed medical implant
Denkena et al. Biocompatible magnesium alloys as absorbable implant materials–adjusted surface and subsurface properties by machining processes
Dearnley et al. The corrosion–wear behaviour of thermally oxidised CP-Ti and Ti–6Al–4V
Davidson et al. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty
Manivasagam et al. Corrosion and microstructural aspects of titanium and its alloys as orthopaedic devices
Nasab et al. Metallic biomaterials of knee and hip-a review
Mishra et al. Mechanical and tribological properties and biocompatibility of diffusion hardened Ti-13Nb-13Zr-a new titanium alloy for surgical implants
Sun et al. Improved surface integrity from cryogenic machining of Ti-6Al-7Nb alloy for biomedical applications
Peron et al. Enhancement of stress corrosion cracking of AZ31 magnesium alloy in simulated body fluid thanks to cryogenic machining
JP2007502372A (ja) コバルト合金、コバルト合金の製造方法、並びにこれから製造したインプラント及び製造物品
EP1663330B1 (en) Biocompatible porous ti-ni material
WO2010028060A1 (en) Method for enhancing fretting fatigue resistance of alloys
Nouri et al. Stainless steels in orthopedics
ASM International et al. Materials for medical devices
RU2338811C1 (ru) Способ получения изделий из титановых сплавов и изделия, полученные этим способом (варианты)
Schuh et al. Deep rolling of titanium rods for application in modular total hip arthroplasty
US20170367827A1 (en) Medical implants with 100% subsurface boron carbide diffusion layer
Liu et al. High cycle fatigue behavior of implant Ti-6Al-4V in air and simulated body fluid
Ben-Nissan et al. Alumina ceramics
Adamus Forming of the titanium implants and medical tools by metal working
Triyono et al. Surface modification and hardness behavior of aisi 304 as an artificial hip joint using ammonia and scallop shell powder as a nitriding agent
Gil et al. Fracture and fatigue behavior of shot-blasted titanium dental implants

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
PC41 Official registration of the transfer of exclusive right

Effective date: 20181217