RU2332296C1 - Method of processing defective spherical surfaces by plastic deformation - Google Patents

Method of processing defective spherical surfaces by plastic deformation Download PDF

Info

Publication number
RU2332296C1
RU2332296C1 RU2006140580/02A RU2006140580A RU2332296C1 RU 2332296 C1 RU2332296 C1 RU 2332296C1 RU 2006140580/02 A RU2006140580/02 A RU 2006140580/02A RU 2006140580 A RU2006140580 A RU 2006140580A RU 2332296 C1 RU2332296 C1 RU 2332296C1
Authority
RU
Russia
Prior art keywords
deforming
workpiece
spherical surface
ring
spindle
Prior art date
Application number
RU2006140580/02A
Other languages
Russian (ru)
Other versions
RU2006140580A (en
Inventor
Юрий Сергеевич Степанов (RU)
Юрий Сергеевич Степанов
Андрей Викторович Киричек (RU)
Андрей Викторович Киричек
Борис Иванович Афанасьев (RU)
Борис Иванович Афанасьев
Николай Николаевич Самойлов (RU)
Николай Николаевич Самойлов
Александр Валентинович Катунин (RU)
Александр Валентинович Катунин
Андрей Александрович Катунин (RU)
Андрей Александрович Катунин
Дмитрий Сергеевич Фомин (RU)
Дмитрий Сергеевич Фомин
Владимир Ильич Сотников (RU)
Владимир Ильич Сотников
Павел Сергеевич Золотарев (RU)
Павел Сергеевич Золотарев
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Орловский государственный технический университет" (ОрелГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Орловский государственный технический университет" (ОрелГТУ) filed Critical Государственное образовательное учреждение высшего профессионального образования "Орловский государственный технический университет" (ОрелГТУ)
Priority to RU2006140580/02A priority Critical patent/RU2332296C1/en
Publication of RU2006140580A publication Critical patent/RU2006140580A/en
Application granted granted Critical
Publication of RU2332296C1 publication Critical patent/RU2332296C1/en

Links

Images

Abstract

FIELD: technological processes.
SUBSTANCE: invention pertains to the technology of machine building and particularly to processing defective spherical surfaces by surface plastic deformation. There is rotatory movement of the work piece and the deforming instrument. The deforming instrument is mounted on a spindle of a device with individual actuation and made in form of a screwed coil spring. One end of the screwed coil spring is made in form of deforming ring for contact with the work piece, and the other end is wound on the above mentioned spindle. Electrical current is supplied to the deforming instrument and the processed work piece from a low voltage source and a static load is applied to the deforming ring. Rotatory motion of the deforming instrument is applied under the condition that, the deforming ring is rotated in a plane, displaced relative the centre of the spherical surface.
EFFECT: high quality and accuracy of processing spherical work pieces by surface plastic deformation.
2 dwg, 1 ex

Description

Изобретение относится к технологии машиностроения, в частности к способам, основанным на сочетании термического воздействия и отделочно-упрочняющей обработки неполных сферических поверхностей деталей, например, автомобильных шаровых пальцев из сталей и сплавов поверхностным пластическим деформированием (ППД) со статическим и электрическим нагружением инструмента.The invention relates to mechanical engineering technology, in particular to methods based on a combination of thermal exposure and finishing hardening of incomplete spherical surfaces of parts, for example, automobile ball fingers made of steels and alloys by surface plastic deformation (PPD) with static and electric loading of the tool.

Известен способ обработки неполных сферических поверхностей деталей ППД, при котором обрабатываемой заготовке и деформирующему инструменту сообщают вращательное движение, причем деформирующему устройству сообщают вращение по окружности, лежащей в плоскости, смещенной относительно центра обрабатываемой сферической поверхности, при этом угловая скорость деформирующего устройства связана с угловой скоростью обрабатываемой заготовки соотношением ωин>>ωд, кроме того, дано математическое соотношение между усилием нагружения и усилием обкатывания [1].A known method of processing incomplete spherical surfaces of PPD parts, in which rotary movement is reported to the workpiece and the deforming tool, and the deformation device is informed of rotation along a circle lying in a plane offset from the center of the processed spherical surface, while the angular velocity of the deforming device is related to the angular velocity of the workpiece blanks with the ratio ω in >> ω d , in addition, a mathematical relationship between the loading force and the We run in [1].

Известный способ отличается низким КПД, недостаточно большой глубиной упрочненного слоя и не высокой степенью упрочнения обрабатываемой поверхности, что не приводит к изменению физико-механических показателей поверхностного слоя заготовки, не повышаются износостойкость, предел выносливости и другие эксплуатационные характеристики, при этом примененный не самоустанавливающийся инструмент не позволяет получать качественную обрабатываемую поверхность.The known method is characterized by low efficiency, insufficiently large depth of the hardened layer and not a high degree of hardening of the treated surface, which does not change the physical and mechanical properties of the surface layer of the workpiece, does not increase wear resistance, endurance and other operational characteristics, while the applied non-self-aligning tool does not allows you to get a high-quality machined surface.

Задачей изобретения является расширение технологических возможностей ППД благодаря использованию электромеханической обработки, основанной на сочетании термического и силового воздействий на поверхность обрабатываемой заготовки, что приводит к изменению показателей поверхностного слоя заготовки, повышению износостойкости, предела выносливости и других эксплуатационных характеристик, управлению глубиной упрочненного слоя, степенью упрочнения и микрорельефом поверхности, а также повышению качества и точности обработки путем самоустановки инструмента на неполной сферической поверхности обрабатываемой заготовки.The objective of the invention is to expand the technological capabilities of PPD through the use of electromechanical processing, based on a combination of thermal and power effects on the surface of the workpiece, which leads to a change in the surface layer of the workpiece, increase wear resistance, endurance and other performance characteristics, control the depth of the hardened layer, the degree of hardening and surface microrelief, as well as improving the quality and accuracy of processing by itself installation of the tool on an incomplete spherical surface of the workpiece.

Поставленная задача решается предлагаемым способом обработки заготовок с неполной сферической поверхностью поверхностным пластическим деформированием, включающим сообщение вращательного движения заготовке и деформирующему инструменту, при этом используют деформирующий инструмент, установленный на шпинделе устройства с индивидуальным приводом и выполненный в виде винтовой цилиндрической пружины, один торец которой выполнен в виде деформирующего кольца для контакта с заготовкой, а другой ее торец навернут на упомянутом шпинделе, при этом подводят электрический ток к деформирующему инструменту и обрабатываемой заготовке от низковольтного источника и прикладывают к деформирующему кольцу статическую нагрузку, а вращательное движение деформирующему инструменту сообщают из условия осуществления вращения деформирующего кольца в плоскости, смещенной относительно центра сферической поверхности на величину h, мм, которую определяют по формулеThe problem is solved by the proposed method of processing workpieces with an incomplete spherical surface by surface plastic deformation, including a message of rotational movement of the workpiece and a deforming tool, using a deforming tool mounted on the device’s spindle with an individual drive and made in the form of a coil spring, one end of which is made in in the form of a deforming ring for contact with the workpiece, and its other end face is screwed on the said spindle, In this case, an electric current is supplied to the deforming tool and the workpiece from a low-voltage source and a static load is applied to the deforming ring, and the rotational movement of the deforming tool is reported from the condition that the deforming ring rotates in a plane offset from the center of the spherical surface by h, mm, which is determined according to the formula

Н=(DСФ·sinα)/2,H = (D SF · sinα) / 2,

где DСФ - диаметр сферической поверхности, мм;where D SF - the diameter of the spherical surface, mm;

α=arccos(H/d) - угол наклона оси деформирующего инструмента к плоскости, перпендикулярной продольной оси заготовки и проходящей через центр сферической поверхности, град;α = arccos (H / d) is the angle of inclination of the axis of the deforming tool to a plane perpendicular to the longitudinal axis of the workpiece and passing through the center of the spherical surface, deg;

Н - размер, определяющий неполную сферическую поверхность заготовки, мм;H is the size that determines the incomplete spherical surface of the workpiece, mm;

d=H/cosα - диаметр окружности, по которой происходит контакт деформирующего кольца с обрабатываемой неполной сферической поверхностью, мм.d = H / cosα is the diameter of the circle along which the deforming ring contacts the machined incomplete spherical surface, mm.

α=arccos (H/d) - угол наклона оси шпинделя к плоскости, перпендикулярной продольной оси заготовки и проходящей через центр сферической поверхности, град;α = arccos (H / d) - the angle of inclination of the spindle axis to a plane perpendicular to the longitudinal axis of the workpiece and passing through the center of the spherical surface, deg;

Н - размер, определяющий неполную сферическую поверхность заготовки, мм;H is the size that determines the incomplete spherical surface of the workpiece, mm;

d - диаметр окружности, по которой происходит контакт деформирующего кольца с обрабатываемой неполной сферической поверхностью заготовки, мм.d is the diameter of the circle along which the deforming ring contacts with the incomplete spherical surface of the workpiece being processed, mm.

Сущность способа обработки неполных сферических поверхностей поверхностным пластическим деформированием (ППД) поясняется чертежами.The essence of the method of processing incomplete spherical surfaces by surface plastic deformation (PPD) is illustrated by drawings.

На фиг.1 представлена схема обработки поверхностным пластическим деформированием заготовки автомобильного шарового пальца со статическим нагруженном деформирующего инструмента; на фиг.2 - сечение А - А на фиг.1.Figure 1 presents a diagram of the processing of surface plastic deformation of the workpiece automobile ball finger with a static loaded deforming tool; figure 2 - section a - a in figure 1.

Предлагаемый способ служит для поверхностного пластического деформирования неполной сферической поверхности 1 в сочетании с термическим и силовым воздействиями деформирующего инструмента 2, при котором обрабатываемой заготовке 3, например, типа автомобильного шарового пальца сообщают вращательное движение Vз, а инструменту - вращательное движение VИ и продольную подачу SПР к центру О неполной сферической поверхности, при этом к месту контакта инструмента и заготовки подводится электрический ток от неподвижных контактов через вращающиеся элементы оборудования.The proposed method is used for surface plastic deformation of an incomplete spherical surface 1 in combination with the thermal and force effects of a deforming tool 2, in which the workpiece 3, for example, such as an automobile ball finger, is given a rotational movement V s , and a rotational motion V And and a longitudinal feed S PR to the center On an incomplete spherical surface, while an electric current is supplied from the fixed contacts to the junction of the tool and the workpiece by rotating existing equipment items.

Способ реализуется с помощью устройства для ППД неполных сферических поверхностей, которое содержит индивидуальный привод (не показан) со шпинделем 4 с установленным на нем деформирующим инструментом 2, выполненным в виде винтовой цилиндрической пружины 5.The method is implemented using a device for PPD of incomplete spherical surfaces, which contains an individual drive (not shown) with a spindle 4 with a deforming tool 2 mounted on it, made in the form of a coil spring 5.

Винтовая цилиндрическая пружина 5 одним торцом навернута на шпиндель 4, на котором нарезана специальная винтовая канавка под закрепляемую пружину.A coil spring 5 is screwed onto the spindle 4 with one end face, on which a special screw groove has been cut for a fixed spring.

Второй торец пружины 5, контактирующий с неполной сферической поверхностью 1 заготовки 3, выполнен в виде деформирующего кольца 2 для контакта с заготовкой.The second end face of the spring 5 in contact with the incomplete spherical surface 1 of the workpiece 3 is made in the form of a deforming ring 2 for contact with the workpiece.

Продольное расположение винтовой цилиндрической пружины 5 позволяет одновременно передавать вращательное движение VИ от шпинделя 4 и статическую нагрузку деформирующему инструменту 2 за счет продольной подачи SПР всего устройства, при этом пружина реализует возможность самоцентрирования деформирующего инструмента относительно заготовки.The longitudinal arrangement of the coil spring 5 makes it possible to simultaneously transmit the rotational movement V AND from the spindle 4 and the static load to the deforming tool 2 due to the longitudinal feed S PR of the entire device, while the spring realizes the possibility of self-centering of the deforming tool relative to the workpiece.

В связи с особенностью конструкции обрабатываемой заготовки 3, а именно негодной сферической поверхностью 1, устройство смещено относительно центра сферы на величину h, определяемую по формулеDue to the design feature of the workpiece 3, namely the unusable spherical surface 1, the device is offset from the center of the sphere by a value of h, determined by the formula

h=(Dсф·sinα)/2, мм;h = (D sf · sinα) / 2, mm;

где Dсф - диаметр обрабатываемой неполной сферической поверхности 1, мм;where D sf - diameter of the processed incomplete spherical surface 1, mm;

α=arccos (H/d) - угол наклона оси шпинделя устройства к плоскости, перпендикулярной продольной оси заготовки и проходящей через центр О неполной сферической поверхности, град;α = arccos (H / d) - the angle of inclination of the axis of the spindle of the device to a plane perpendicular to the longitudinal axis of the workpiece and passing through the center O of an incomplete spherical surface, deg;

Н - размер, определяющий неполную сферическую поверхность заготовки, мм;H is the size that determines the incomplete spherical surface of the workpiece, mm;

d - диаметр окружности, по которой происходит контакт деформирующего кольца с обрабатывающей неполной сферической поверхностью, мм.d is the diameter of the circle along which the deforming ring contacts the machining incomplete spherical surface, mm.

Деформирующий элемент - кольцо 2 совершает вращательное движение по окружности диаметром d, лежащей в плоскости, которая смещена относительно центра О обрабатываемой неполной сферической поверхности на величину h, зависящую от конструктивных особенностей обрабатываемой заготовки.The deforming element - ring 2 rotates in a circle with a diameter d lying in a plane that is offset relative to the center O of the incomplete spherical surface being machined by the value h, depending on the design features of the workpiece being processed.

Диаметр окружности d, по которой происходит контакт деформирующего кольца с обрабатывающей неполной сферической поверхностью, зависит от размера Н, определяющего неполную сферическую поверхность заготовки, и угла наклона оси шпинделя устройства к плоскости, перпендикулярной продольной оси заготовки и проходящей через центр О неполной сферической поверхности, и определяется по формуле: d=Н/cos α, мм. Этот диаметр можно считать внутренним диаметром деформирующего кольца 2 инструмента.The diameter of the circle d along which the deforming ring contacts the machining incomplete spherical surface depends on the size H, which defines the incomplete spherical surface of the workpiece, and the angle of inclination of the spindle axis of the device to a plane perpendicular to the longitudinal axis of the workpiece and passing through the center O of the incomplete spherical surface, and determined by the formula: d = N / cos α, mm. This diameter can be considered the inner diameter of the deforming ring 2 of the tool.

Неполная сферическая поверхность обрабатываемой заготовки вынуждает устанавливать продольную ось головки под углом α относительно плоскости, перпендикулярной продольной оси заготовки, величина которого также зависит от конструктивных особенностей обрабатываемой заготовки.The incomplete spherical surface of the workpiece being processed forces the longitudinal axis of the head to be set at an angle α relative to a plane perpendicular to the longitudinal axis of the workpiece, the value of which also depends on the design features of the workpiece.

Пружинное соединение 5 шпинделя 4 с деформирующим инструментом - кольцом 2 позволяет осуществить самоцентрирование и самоустановку последнего на обрабатываемой заготовке 3 при случайном отклонении продольной оси шпинделя 4 от центра О обрабатываемой неполной сферической поверхности 1. Величина статической силы деформирования, создаваемая путем продольного перемещения устройства, зависит от свойств пружины 6, а именно от материала проволоки, из которой навита пружина, ее диаметра, диаметра витков пружины и количества рабочих витков, расположенных между торцом шпинделя 4 и кольцом 2.The spring connection 5 of the spindle 4 with the deforming tool - the ring 2 allows for self-centering and self-installation of the latter on the workpiece 3 with a random deviation of the longitudinal axis of the spindle 4 from the center O of the incomplete spherical surface 1. The value of the static deformation force created by the longitudinal movement of the device depends on properties of the spring 6, namely, from the material of the wire from which the spring is wound, its diameter, the diameter of the turns of the spring and the number of working turns, laid between the end face of the spindle 4 and the ring 2.

С целью снижения величины статической силы деформирования, которая выбирается наибольшей из обеспечивающих упругие контактные деформации обрабатываемого материала, к деформирующему инструменту и обрабатываемой заготовке подведен электрический ток от низковольтного источника [2].In order to reduce the value of the static deformation force, which is chosen to be the largest among those providing elastic contact deformations of the processed material, an electric current from a low-voltage source was supplied to the deforming tool and the workpiece [2].

ППД с подводом электрического тока приводит к изменению физико-механических и геометрических показателей поверхностного слоя и, как следствие, к повышению износостойкости, предела выносливости и других эксплуатационных характеристик. Эффект ППД с пропусканием электрического тока достигается благодаря тому, что реализуются сверхбыстрые скорости нагрева и охлаждения и достигается высокая степень измельченности аустенитного зерна, которая обуславливает мелкокристаллические структуры закалки поверхностного слоя, обладающего высокими физико-механическими и эксплуатационными свойствами.PPD with the supply of electric current leads to a change in the physico-mechanical and geometric parameters of the surface layer and, as a result, to increase wear resistance, endurance and other operational characteristics. The effect of PPD with the passage of electric current is achieved due to the fact that superfast heating and cooling rates are realized and a high degree of fineness of the austenitic grain is achieved, which determines the fine-crystalline quenching structures of the surface layer, which has high physical, mechanical and operational properties.

При реализации ППД с пропусканием электротока использовали постоянный и переменный ток. Применение постоянного тока при небольших усилиях позволяет значительно уменьшить исходную шероховатость. Так, при одинаковых значениях силы тока высотные параметры исходной шероховатости поверхности могут быть уменьшены в 2...3 раза, при переменном токе они могут быть увеличены в 4...6 раз. Это объясняется лучшим прогревом микронеровностей, уменьшением их сопротивляемости деформированию и снижением вибрации. Однако при упрочнении постоянным током наблюдается резкий перепад твердости упрочненного слоя и неупрочненной сердцевины, что может привести к отслаиванию поверхностного слоя и к уменьшению усталостной и контактной прочности.When implementing PPD with electric current transmission, direct and alternating current were used. The use of direct current with small efforts can significantly reduce the initial roughness. So, with the same current strength, the height parameters of the initial surface roughness can be reduced by 2 ... 3 times, with alternating current they can be increased by 4 ... 6 times. This is due to better heating of micro-irregularities, a decrease in their resistance to deformation and a decrease in vibration. However, when hardening by direct current, there is a sharp difference in the hardness of the hardened layer and the unhardened core, which can lead to peeling of the surface layer and to a decrease in fatigue and contact strength.

Применение переменного тока обеспечивает плавный переход твердости от поверхности к сердцевине, большую глубину упрочнения и более высокую микротвердость упрочненного слоя.The use of alternating current provides a smooth transition of hardness from the surface to the core, a greater depth of hardening and a higher microhardness of the hardened layer.

Точность формы обрабатываемой неполной сферической поверхности заготовки предлагаемым способом с помощью электродеформирующего устройства повышается и снижается величина шероховатости благодаря самоцентрированию и самоустановке инструмента на обрабатываемой заготовке при ее биениях и вибрациях.The accuracy of the shape of the processed incomplete spherical surface of the workpiece by the proposed method with the help of an electrodeforming device increases and decreases the roughness due to self-centering and self-installation of the tool on the workpiece during its beating and vibration.

Глубина упрочненного слоя предлагаемым способом достигает 0,5...1,5 мм, что значительно (в 1,5...2 раза) больше, чем при традиционном упрочнении. Наибольшая степень упрочнения составляет 15...25%. В результате обработки предлагаемым способом по сравнению с традиционным ППД эффективная глубина слоя, упрочненного на 20% и более, возрастает в 1,5...2,2 раза, а глубина слоя, упрочненного на 10% и более, - в 1,3...1,6 раза.The depth of the hardened layer of the proposed method reaches 0.5 ... 1.5 mm, which is significantly (1.5 ... 2 times) more than with traditional hardening. The highest degree of hardening is 15 ... 25%. As a result of processing the proposed method in comparison with traditional PPD, the effective depth of the layer, hardened by 20% or more, increases by 1.5 ... 2.2 times, and the depth of the layer hardened by 10% or more, by 1.3 ... 1.6 times.

Пример. Для оценки параметров качества поверхностного слоя, упрочненного предлагаемым способом, проведены экспериментальные исследования обработки автомобильного шарового пальца с использованием электродеформирующего устройства. Заготовку пальца шарового верхнего 2101-2904187, установленную в специальном электромеханическом приспособлении, упрочняли на станке мод. 16К20 предлагаемым способом. Заготовка изготовлена из стали 40Х ГОСТ 1050-74. Обрабатывали неполную сферу диаметром 32,7±0,1; исходный параметр шероховатости Ra=3,2 мкм, достигнутый - Ra=0,63; деформирующим инструментом в виде цилиндрической винтовой пружины, изготовленной из термообработанной стали марки 65Г, рабочая поверхность деформирующего кольца пружины полировалась до Ra=0,08...0,16 мкм. Обрабатывали неполную сферу заготовки на следующих режимах: скорость вращения заготовки Vз=10 м/мин (nз=100 мин-1); скорость деформирования Vи=50 м/мин (nи=500 мин-1); продольная подача Sпр=0,1 мм-1 деформирующего инструмента осуществлялась до создания величины силы статического поджатия инструмента к обрабатываемой поверхности Pст≥25...40 кН.; глубина слоя повышенной твердости составляла 0,15...0,20 мм; плотность тока 700...1500 А/мм2.Example. To assess the quality parameters of the surface layer hardened by the proposed method, experimental studies of the processing of an automobile ball finger using an electrodeforming device were carried out. The workpiece of the ball upper finger 2101-2904187, installed in a special electromechanical device, was strengthened on the machine mod. 16K20 by the proposed method. The blank is made of steel 40X GOST 1050-74. An incomplete sphere with a diameter of 32.7 ± 0.1 was processed; the initial roughness parameter Ra = 3.2 μm, achieved - Ra = 0.63; deforming tool in the form of a cylindrical helical spring made of heat-treated steel grade 65G, the working surface of the spring deforming ring was polished to Ra = 0.08 ... 0.16 μm. The incomplete scope of the workpiece was processed in the following modes: workpiece rotation speed V s = 10 m / min (n s = 100 min -1 ); the strain rate V and = 50 m / min (n and = 500 min -1 ); longitudinal feed S CR = 0.1 mm -1 of the deforming tool was carried out until the magnitude of the force of static pressing of the tool to the work surface P article ≥25 ... 40 kN .; the depth of the layer of high hardness was 0.15 ... 0.20 mm; current density 700 ... 1500 A / mm 2 .

Требуемая шероховатость и точность неполной сферической поверхности была достигнута за Тм=0,7 мин (против Тмбаз=2,75 мин по базовому варианту при традиционной обработке ППД на Орловском сталепрокатном заводе ОСПАЗ). Контроль проводился скобой индикаторной с индикатором ИЧ 10 Б кл. 1 ГОСТ 577-68 и на профилометре мод. 283 тип AII ГОСТ 19300-86. В обработанной партии (равной 100 штук) бракованных деталей не обнаружено. Отклонение обработанной поверхности от сферичности составило не более 0,02 мм, что допустимо ТУ.The required roughness and accuracy of an incomplete spherical surface was achieved in T m = 0.7 min (against T m bases = 2.75 min according to the basic version in the traditional processing of PPD at the Oryol steel rolling mill OSPAZ). The control was carried out by an indicator bracket with an indicator ICh 10 B cells. 1 GOST 577-68 and on the profilometer mod. 283 type AII GOST 19300-86. In the processed batch (equal to 100 pieces), no defective parts were found. The deviation of the treated surface from sphericity was not more than 0.02 mm, which is acceptable TU.

Обработка показала, что параметр шероховатости обработанных неполных сферических поверхностей уменьшился до значения Ra=0,32...0,63 мкм при исходном Ra=3,2...6,3 мкм, производительность повысилась более чем в три раз по сравнению с традиционным деформированием.The processing showed that the roughness parameter of the processed incomplete spherical surfaces decreased to Ra = 0.32 ... 0.63 μm with the initial Ra = 3.2 ... 6.3 μm, the productivity increased more than three times in comparison with traditional warping.

Исследования напряженного состояния упрочненного поверхностного слоя показали, что максимальные остаточные напряжения находятся близко к поверхности, как при чеканке, что благоприятно для большинства сопрягаемых деталей механизмов и машин. Сравнение глубин напряженного и упрочненного слоёв, градиента напряжений и градиента наклепа показывает, что глубина напряженного слоя в 1,1...1,3 раза больше, чем глубина наклепанного слоя, что согласуется с теорией поверхностного - пластического деформирования.Studies of the stress state of the hardened surface layer showed that the maximum residual stresses are close to the surface, as when chasing, which is favorable for most of the mating parts of mechanisms and machines. Comparison of the depths of the stressed and hardened layers, the stress gradient and the hardening gradient shows that the depth of the stressed layer is 1.1 ... 1.3 times greater than the depth of the riveted layer, which is consistent with the theory of surface - plastic deformation.

Достигаемая в процессе обработки предлагаемым способом предельная величина шероховатости составляет Rа=0,08 мкм, возможно снижение исходной шероховатости в 4 раза.The maximum roughness value achieved during processing by the proposed method is Ra = 0.08 μm; a possible initial roughness reduction of 4 times is possible.

Статическая нагрузка, создаваемая самоцентрирующим устройством, благоприятно сказывается на условиях работы инструмента - кольца. Самоцентрирование приводит к более равномерному распределению нагрузки на деформирующий инструмент - кольцо, а использование электрического тока облегчает нормирование упрочняемой поверхности.The static load created by the self-centering device favorably affects the working conditions of the tool - the ring. Self-centering leads to a more even distribution of the load on the deforming tool - the ring, and the use of electric current facilitates the normalization of the hardened surface.

При наложении статической нагрузки деформирующая поверхность инструмента - кольца изнашивается одинаково, что способствует увеличению общей стойкости устройства.When applying a static load, the deforming surface of the tool - the ring wears out equally, which helps to increase the overall durability of the device.

Предлагаемый способ расширяет технологические возможности ППД благодаря использованию электродеформирования самоцентрирующим деформирующим инструментом - кольцом, позволяющим весьма просто управлять глубиной упрочненного слоя, степенью упрочнения и микрорельефом поверхности, а также повышает качество и точность обработки путем самоустановки инструмента на неполной сферической поверхности обрабатываемой заготовки.The proposed method extends the technological capabilities of PPD due to the use of electrodeformation with a self-centering deforming tool - a ring, which makes it very easy to control the depth of the hardened layer, the degree of hardening and the surface microrelief, and also improves the quality and accuracy of processing by self-installing the tool on an incomplete spherical surface of the workpiece.

Электродеформирование позволяет добиться не только требуемой шероховатости поверхности, но и возможности получить закаленную структуру поверхностного слоя с повышенной износостойкостью, что обуславливается его высокой твердостью, прочностью и мелкозернистой структурой. Сжимающие остаточные напряжения в поверхностном слое благоприятно влияют на повышение контактной прочности. Кроме того, износостойкость повышается за счет образования после электродеформирования большой несущей способности профиля, чем после механической и термической обработки, что уменьшает время приработки.Electrodeformation allows achieving not only the required surface roughness, but also the ability to obtain a hardened surface layer structure with increased wear resistance, which is caused by its high hardness, strength and fine-grained structure. Compressive residual stresses in the surface layer favorably increase the contact strength. In addition, the wear resistance is increased due to the formation after electrodeformation of a large bearing capacity of the profile than after mechanical and heat treatment, which reduces the running-in time.

Источники информацииInformation sources

1. Патент РФ 2031770, МКП6 В24В 39/04, 39/00. Способ обработки неполных сферических поверхностей деталей поверхностным деформированием. Гаврилин А.М., Самойлов Н.Н. 5045958/27; 14.04.92; 27.03.95. Бюл. №9 - прототип.1. RF patent 2031770, MKP 6 V24V 39/04, 39/00. A method of processing incomplete spherical surfaces of parts by surface deformation. Gavrilin A.M., Samoilov N.N. 5045958/27; 04/14/92; 03/27/95. Bull. No. 9 is a prototype.

2. Суслов А.Г., Горленко А.О., Сухарев С.О. Электромеханическая обработка деталей машин. // Справочник. Инженерный журнал, №1, 1998. С.15-18.2. Suslov A.G., Gorlenko A.O., Sukharev S.O. Electromechanical processing of machine parts. // Reference. Engineering Journal, No. 1, 1998. P.15-18.

Claims (1)

Способ обработки заготовок с неполной сферической поверхностью поверхностным пластическим деформированием, включающий сообщение вращательного движения заготовке и деформирующему инструменту, отличающийся тем, что используют деформирующий инструмент, установленный на шпинделе устройства с индивидуальным приводом и выполненный в виде винтовой цилиндрической пружины, один торец которой выполнен в виде деформирующего кольца для контакта с заготовкой, а другой ее торец навернут на упомянутом шпинделе, при этом подводят электрический ток к деформирующему инструменту и обрабатываемой заготовке от низковольтного источника и прикладывают к деформирующему кольцу статическую нагрузку, а вращательное движение деформирующему инструменту сообщают из условия осуществления вращения деформирующего кольца в плоскости, смещенной относительно центра сферической поверхности на величину h, мм, которую определяют по формулеA method of processing workpieces with an incomplete spherical surface by surface plastic deformation, including a message of rotational movement of the workpiece and a deforming tool, characterized in that they use a deforming tool mounted on the device’s spindle with an individual drive and made in the form of a coil spring, one end of which is made in the form of a deforming rings for contact with the workpiece, and its other end face is screwed on the said spindle, while the electric ca. to the deforming tool and workpiece by a low voltage source and is applied to the deforming ring static load, and rotational movement of the deforming tool reports the condition of the rotation of the ring deforming in a plane offset from the center of the spherical surface by an amount h, mm, which is defined by the formula h=(Dсф·sinα)/2,h = (D sp · sinα) / 2, где Dсф - диаметр сферической поверхности, мм;where D SF - the diameter of the spherical surface, mm; α=arccos(H/d) - угол наклона оси деформирующего инструмента к плоскости перпендикулярной продольной оси заготовки и проходящей через центр сферической поверхности, град;α = arccos (H / d) - the angle of inclination of the axis of the deforming tool to the plane perpendicular to the longitudinal axis of the workpiece and passing through the center of the spherical surface, deg; Н - размер, определяющий неполную сферическую поверхность заготовки, мм;H is the size that determines the incomplete spherical surface of the workpiece, mm; d=H/cosα - диаметр окружности по которой происходит контакт деформирующего кольца с обрабатываемой неполной сферической поверхностью, мм;d = H / cosα is the diameter of the circle along which the deforming ring contacts the machined incomplete spherical surface, mm; α=arccos (H/d) - угол наклона оси шпинделя к плоскости перпендикулярной продольной оси заготовки и проходящей через центр сферической поверхности, град;α = arccos (H / d) - the angle of inclination of the spindle axis to the plane perpendicular to the longitudinal axis of the workpiece and passing through the center of the spherical surface, deg; Н - размер, определяющий неполную сферическую поверхность заготовки, мм;H is the size that determines the incomplete spherical surface of the workpiece, mm; d - диаметр окружности, по которой происходит контакт деформирующего кольца с обрабатываемой неполной сферической поверхностью заготовки, мм.d is the diameter of the circle along which the deforming ring contacts with the incomplete spherical surface of the workpiece being processed, mm.
RU2006140580/02A 2006-11-16 2006-11-16 Method of processing defective spherical surfaces by plastic deformation RU2332296C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006140580/02A RU2332296C1 (en) 2006-11-16 2006-11-16 Method of processing defective spherical surfaces by plastic deformation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006140580/02A RU2332296C1 (en) 2006-11-16 2006-11-16 Method of processing defective spherical surfaces by plastic deformation

Publications (2)

Publication Number Publication Date
RU2006140580A RU2006140580A (en) 2008-05-27
RU2332296C1 true RU2332296C1 (en) 2008-08-27

Family

ID=39586124

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006140580/02A RU2332296C1 (en) 2006-11-16 2006-11-16 Method of processing defective spherical surfaces by plastic deformation

Country Status (1)

Country Link
RU (1) RU2332296C1 (en)

Also Published As

Publication number Publication date
RU2006140580A (en) 2008-05-27

Similar Documents

Publication Publication Date Title
JP2006349058A (en) Screw groove machining method for ball screw
CN111094776B (en) Method for manufacturing a bearing component and bearing component
RU2332296C1 (en) Method of processing defective spherical surfaces by plastic deformation
RU2332295C1 (en) Device for surface plastic deformation of defective spherical surfaces
WO2005026580A1 (en) Ball screw nut and method of producing the same
RU2337807C1 (en) Device for static-pulse rolling of screws
RU2333092C1 (en) Device for sequential diamond-abrasive and finishing-strengthening processing
RU2333095C1 (en) Device for combined diamond-abrasive and strengthening treatment of partial spherical surfaces
RU2333093C1 (en) Device for sequential diamond-abrasive and finishing-strengthening processing of partial spherical surfaces
RU2332291C1 (en) Method of processing spherical surfaces by surface plastic deformation
RU2333094C1 (en) Method of combined diamond-abrasive and strengthening treatment of partial spherical surfaces
US7196009B2 (en) Lapping carrier, apparatus for lapping a wafer and method of fabricating a lapping carrier
JP2004138165A (en) Disk for traction drive and its manufacturing method
RU2370355C1 (en) Method of pulsed strengthening of spherical surfaces
RU2347664C1 (en) Method for combined static-impulse processing by surface plastic deformation
RU2325265C1 (en) Device for statico-pulse surface plastic deformation
RU2324584C1 (en) Method of statico-impulse surface plastic deformation
RU2347662C1 (en) Method for static-impulse processing of shafts
RU2366558C1 (en) Method of flat surface hardening using rotor-type generator of mechanical pulses
RU2716329C1 (en) Method of hardening of hard-alloy tool
RU2372182C1 (en) Composite grinding wheel for face grinding
RU2371299C1 (en) Device for pulse strengthening of spherical surfaces
RU2347666C1 (en) Method of static-impulse rolling
RU2259909C1 (en) Method for rolling around non-rigid and eccentric shafts
RU2296664C1 (en) Process for electric static-pulse treatment

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081117