RU2329435C2 - Скважинный теплоисточник - Google Patents

Скважинный теплоисточник Download PDF

Info

Publication number
RU2329435C2
RU2329435C2 RU2006132584/03A RU2006132584A RU2329435C2 RU 2329435 C2 RU2329435 C2 RU 2329435C2 RU 2006132584/03 A RU2006132584/03 A RU 2006132584/03A RU 2006132584 A RU2006132584 A RU 2006132584A RU 2329435 C2 RU2329435 C2 RU 2329435C2
Authority
RU
Russia
Prior art keywords
heat
well
water
consumer
thermal
Prior art date
Application number
RU2006132584/03A
Other languages
English (en)
Other versions
RU2006132584A (ru
Inventor
Александр Дмитриевич Елисеев (RU)
Александр Дмитриевич Елисеев
Original Assignee
Александр Дмитриевич Елисеев
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Александр Дмитриевич Елисеев filed Critical Александр Дмитриевич Елисеев
Priority to RU2006132584/03A priority Critical patent/RU2329435C2/ru
Publication of RU2006132584A publication Critical patent/RU2006132584A/ru
Application granted granted Critical
Publication of RU2329435C2 publication Critical patent/RU2329435C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Изобретение относится к энергетике, в частности к устройствам для получения тепла, образующегося иначе, чем в результате сжигания топлива. Технический результат: упрощение канала сообщения теплоисточника с теплопотребителем, повышение технического гидроэнергопотенциала в многоводный период, повышение скрытности и неуязвимости. Скважинный теплоисточник, содержащий тепловодоснабжающую скважину, соединенную с источником воды, зону стока и тепловодопотребителя, тепловодоснабжающая скважина пробурена таким образом, что ее забоем пересечена штольня, при этом тепловодоснабжающая скважина служит водоводом. За источник воды приняты поверхностный водоем, в зоне которого пробурена тепловодоснабжающая скважина, или подземная водоносная зона или зоны, или поверхностный водоем с подземной зоной или зонами. А за зону стока принято пересечение тепловодоснабжающей скважины с нижерасположенной штольней. Он также содержит соединенный со скважиной вихревой тепловодоснабжающий теплогенератор, установленный под ее динамический уровень. Напор воды достаточен для выработки тепловой энергии, а тепловодопотребитель посредством тепловодопровода подключен в зоне стока тепловодоснабжающей скважины к выходу вихревого теплогенератора. Вихревой теплогенератор расположен в штольне и соединен со скважиной в ее пересечении со штольней и снабжен насосной установкой с обвязкой. Тепловодопроводом является дополнительная скважина, пробуренная из штольни до пересечения ее с дневной поверхностью в зоне тепловодопотребителя, к которой подключен трубопровод тепловодопотребителя. Устье дополнительной скважины соединено с обвязкой насосной установки. 2 з.п. ф-лы, 1 ил.

Description

Предлагаемое изобретение относится к энергетике, в частности к устройствам для получения тепла, образующегося иначе, чем в результате сгорания топлива. Оно может быть использовано для производства тепловой энергии и организации теплоснабжения потребителей в местностях, преимущественно в горных районах, в которых имеются необходимые условия для работы скважинного источника, в том числе для децентрализованного теплоснабжения автономных, удаленных от централизованных коммуникаций потребителей, без подвода для этого энергии из вне. Он может работать с использованием низкотемпературных поверхностных, подземных вод, как правило, расположенных в верхних интервалах земных недр.
Обладая большей скрытностью и неуязвимостью в сравнении с традиционными теплоисточниками, предлагаемый скважинный теплоисточник может иметь двойное (гражданское и военное) назначение. Предлагаемый скважинный теплоисточник может расширить номенклатуру нетрадиционных возобновляемых источников энергии (НВИЭ).
Известны повсеместно распространенные теплоисточники - ТЭЦ, котельные (Баскаков А.П. и др. Теплотехника. Учебн. для ВУЗов. Под ред. А.П.Баскакова. - 2-е изд. перераб. - М.: Энергоатомиздат, 1991 г., ч.III, стр.118-206, [1]), в которых тепловая энергия вырабатывается за счет сжигания органического топлива. Недостатки их заключаются в том, что используемые при этом ресурсы (газ, нефть, уголь, торф, дрова и др.) истощаемы. Стоимость их имеет тенденцию к повышению из-за того, что усложняются условия их добычи, доставки. Кроме того, сжигание топлива сопровождается загрязнением атмосферы и недр, что отрицательно сказывается на экологии окружающей среды.
Известна тепловодоснабжающая скважина (заявка на изобретение РФ №2005100306/03(000326), дата подачи 11.01.2005 г. Решение о выдаче патента на изобретение от 23.05.2006 г., [2]), содержащая источник воды, зону стока и тепловодопотребитель, тепловодоснабжающая скважина пробурена таким образом, что ее забоем пересечен склон горы, и он сопряжен с дневной поверхностью, при этом тепловодоснабжающая скважина служит водоводом, за источник воды приняты поверхностный водоем, в зоне, которого пробурена скважина, или подземная водоносная зона или зоны, или поверхностный водоем с подземной зоной или зонами, а за зону стока принято пересечение скважины с нижерасположенной штольней, при этом в камере установлен соединенный со скважиной вихревой теплогенератор дискового типа под ее динамический уровень, напор воды достаточен для выработки тепловой энергии, а тепловодопотребитель подключен в зоне стока скважины к выходу вихревого теплогенератора через обвязку.
Тепловодоснабжающая скважина избавлена от недостатков, характерных для теплоисточников, предусматривающих сжигание органического топлива.
Однако недостатком ее является следующее.
Как правило, соединение теплоисточника с теплопотребителем осуществляется трубопроводом. Недостаток этого заключается в том, что кроме высокой затратности самих труб и их доставки в удаленные районы требуется затрата на их теплоизоляцию и устройство покровного слоя (окожушки) снаружи, что очень важно, особенно в районах с резкоконтинентальным климатом. Затратными являются прокладка теплотрассы, особенно в горных районах, и последующее её обслуживание в процессе эксплуатации. Ограничен срок эксплуатации применяемых труб. То есть известное соединение теплоисточника с теплопотребителем характеризуется сложностью.
При использовании в качестве рабочего энергоресурса поверхностных вод, в частности, в многоводные периоды (весеннее полноводье, летне-осенние дожди) возникает противоречие, заключающееся в несовпадении времени существования многоводных периодов (лето) и выработки посредством них тепловой энергии, с преимущественным периодом ее потребления (осень-зима, весна). Поэтому представляет интерес осуществление схемы, предусматривающей выработку тепла и его термоаккумулирование в летнее время и последующее его использование в отопительный период. Это позволит повысить технический гидроэнергопотенциал (термин согласно ГОСТ 51238-98. Нетрадиционная энергетика. Гидроэнергетика малая. Термины и определения. Госстандарт России. М., ИПК Изд-во стандартов, 1999 г., стр.2, [3]).
Расположение источника тепла на дневной поверхности или около неё (характерно для большинства используемых теплоисточников) не придает ему качества скрытности и неуязвимости.
Задачей изобретения является упрощение канала сообщения теплоисточника с теплопотребителем, повышение технического гидроэнергопотенциала в многоводный период, повышение скрытности и неуязвимости.
Задача решается тем, что в скважинном теплоисточнике, содержащем тепловодоснабжающую скважину, соединенную с источником воды, зону стока и тепловодопотребителя, тепловодоснабжающая скважина пробурена таким образом, что ее забоем пересечена штольня, при этом тепловодоснабжающая скважина служит водоводом, за источник воды приняты поверхностный водоем, в зоне которого пробурена тепловодоснабжающая скважина, или подземная водоносная зона или зоны, или поверхностный водоем с подземной зоной или зонами, а за зону стока принято пересечение тепловодоснабжающей скважины с нижерасположенной штольней, при этом соединенный со скважиной вихревой теплогенератор установлен под ее динамический уровень, напор воды достаточен для выработки тепловой энергии, а тепловодопотребитель посредством тепловодопровода подключен в зоне стока тепловодоснабжающей скважины к выходу вихревого теплогенератора, а вихревой теплогенератор установлен в штольне и соединен со скважиной в ее пересечении со штольней насосной установкой с обвязкой, тепловодопроводом является дополнительная скважина, пробуренная из штольни до пересечения ее с дневной поверхностью в зоне тепловодопотребителя, к которой подключен трубопровод тепловодопотребителя, устье дополнительной скважины соединено с обвязкой насосной установки.
Скважинный теплоисточник может быть снабжен альтернативным дополнительной скважине тепловодопроводом, которым является вторая скважина, пробуренная из штольни до подземного или поверхностного аккумулятора тепла в горячей воде, устье второй скважины соединено с обвязкой насосной установки, подземными аккумуляторами тепла являются подземный водоносный горизонт с замещаемой в нем водой аккумулируемым теплом в горячей воде, либо пустотные образования или водогерметичные подземные выработки, поверхностные аккумуляторы тепла расположены на дневной поверхности земли, а несущими и герметизирующими элементами в них являются природные, чашеобразные или легко доводимые до чашеобразной формы, например, водоемы, складки поверхности, распадки, аккумуляторы тепла соединены с тепловодопотребителем тепловодопроводом потребителя, при этом тепловодопроводом потребителя до подземного аккумулятора тепла является пробуренная и освоенная эксплуатационная тепловодоснабжающая скважина, устье которой расположено в зоне тепловодопотребителя.
В скважинном теплоисточнике из штольни может быть пробурен куст дополнительных наклонных или направленных скважин до территориально рассредоточенных тепловодопотребителей и вторых скважин до подземных или поверхностных аккумуляторов тепла, сообщенных с тепловодопотребителями.
Установка вихревого теплогенератора в штольне, сообщение его выхода с насосной установкой, а также использование в качестве водопровода дополнительной скважины, пробуренной от штольни до тепловодопотребителя, позволяет получить следующие преимущества:
- исключить существенный критерий для скважинного размещения вихревого теплогенератора - его габариты. В штольне они могут быть существенно выше, а в качестве вихревых теплогенераторов могут быть использованы устройства общепромышленного назначения;
- использование в качестве водотеплопровода дополнительной скважины, в сравнении с теплопроводом, позволяет упростить его конструкцию. Ограничивающими объем являются стенки скважины. При ее бурении выбирается траектория, которая «пересекает» устойчивые, в меньшей степени подверженные воздействию горячей воды породы (растворение, поглощения - утечки и др.). Интервалы пород, склонные к негативному воздействию горячей воды и поглощению, могут тампонироваться (с последующим перебуриванием осложненных интервалов) либо перекрываться трубами стальными, керамическими или из синтетических материалов.
Упрощение конструкции связано еще и с тем, что в скважине не требуется установка теплоизоляции и окожушки. Объясняется это тем, что в земных недрах температура всегда положительна и является хорошим теплоизолятором (Kabus F., Bartels Y. Подземное аккумулирование тепла и холода. Журнал «Теплоэнергетика», №6, 2004 г., стр.70-76, [4]).
В случае ниспадающих скважин в определенных условиях насосная установка может не потребоваться. При этом движение горячей воды в скважине осуществляется за счет напора, возникающего в наклонной скважине. Насосная установка используется и востребована в случае восстающих скважин.
Наличие в скважинном теплоисточнике аккумуляторов тепла, до которых пробурены вторые скважины, позволяет сгладить противоречие, привносимое тем, что тепловая энергия вырабатывается в многоводный летний период, а полезно используется преимущественно спустя несколько месяцев - в зимний период года. При этом установлено (Kabus F., Bartels Y. Подземное аккумулирование тепла и холода. Журнал «Теплоэнергетика», №6, 2004 г., стр.74, [4]), что наилучшим и наиболее экономичным водотеплоаккумулятором является природный - земные недра. При его использовании температура теплоносителя в нем за 2 месяца уменьшается всего на 2-3°С.
Совершенно очевидно, что при этом повышается технический гидроэнергопотенциал скважинного теплоисточника в многоводный период года (ГОСТ 51238-98. Нетрадиционная энергетика. Гидроэнергетика малая. Термины и определения. Госстандарт России. М., ИПК Изд-во стандартов, 1999 г., стр.2 [3]).
Размещение вихревого теплогенератора и отходящих от него к потребителям теплопроводов (скважин) в земных недрах делает его более скрытным и неуязвимым.
Относительно скрытности. В настоящее время обнаружение теплоисточников легко осуществляется с использование инфракрасных, в том числе оптических систем. Такими системами известные теплоисточники обнаруживаются просто.
Предлагаемый скважинный теплоисточник такими системами не может быть обнаружен, так как его тепловое излучение и излучения отходящих от него тепловодопроводов (дополнительной и второй скважин) экранируется слоем земных недр, расположенных выше них.
Относительно неуязвимости. Расположенная над скважинным теплоисточником и тепловодопроводами земная масса велика, велика и мощность (по глубине), расположенных сверху пород, и разрывы снарядов на земной поверхности не сказываются на их состоянии. Этим объясняется большая живучесть и неуязвимость предлагаемого скважинного теплоисточника, и возможность двойного применения его в гражданских технологиях и в военных целях и в военные периоды.
На чертеже приведена упрощенная схема предлагаемого скважинного теплоисточника и приняты следующие обозначения:
1 - тепловодоснабжающая скважина с фильтрами в пересечении с водоемом и подземной водоносной зоной и затворами; 2 - поверхностный источник воды; 3 - подземная водоносная зона; 4 - камера штольни; 5 - штольня; 6 - пересечение скважины со штольней; 7 - вихревой теплогенератор; 8 - задвижка в штольне на входе скважины; 9 - задвижка на выходе вихревого теплогенератора; 10 - емкость-коллектор; 11 - насосная установка; 12 - входной трубопровод насосной установки; 13 - задвижка на входном трубопроводе насосной установки; 14 - вторая скважина от штольни до поверхностного аккумулятора тепла в виде распадка второго тепловодопотребителя; 15 - фундаментные опоры поверхностного аккумулятора тепла в распадке; 16 - перекрытие поверхностного аккумулятора; 16' - ограждающая дамба аккумулятора тепла в распадке; 17 - траектория дна распадка; 18 - горячая вода в аккумуляторе тепла в распадке; 19 - задвижка от насосной установки в трубопроводе ко второй скважине второго тепловодопотребителя; 20 - задвижка в линии от аккумулятора тепла в распадке ко второму тепловодопотребителю; 21 - насос второго тепловодопотребителя; 22 - дополнительная скважина от штольни до дневной поверхности к трубопроводу второго тепловодопотребителя; 23 - задвижка в линии от насосной установки в трубопроводе к дополнительной скважине второго тепловодопотребителя; 24 - задвижка на дневной поверхности в трубопроводе от дополнительной скважины ко второму тепловодопотребителю; 25 - дополнительная скважина от штольни до дневной поверхности к трубопроводу первого теплопотребителя и задвижки 26 - на его входе и 26' - на его выходе; 27 - вторая скважина от штольни до подземного аккумулятора тепла; 28 - скважинный перфорированный трубопровод, предназначенный для улучшения условий заполнения подземного аккумулирующего горизонта; 29 - задвижка в трубопроводе от емкости-коллектора до устья второй скважины к подземному аккумулятору тепла; 30-32 - контуры подземного аккумулятора тепла; 33 - заборная, оборудованная фильтром, часть эксплуатационной тепловодоснабжающей скважины первого тепловодопотребителя; 34 - эксплуатационная тепловодоснабжающая скважина первого тепловодопотребителя; 35 - задвижка от устья эксплуатационной тепловодоснабжающей скважины к первому тепловодопотребителю; 36 - скважина (совмещенная дополнительная и вторая) от штольни до поверхностного аккумулятора тепловой энергии, представляющего собой часть залива водохранилища, отделенного от основного водохранилища теплоизолирующей плотиной (не показана); 37 - задвижка в линии скважины от штольни до поверхностного аккумулятора первого водопотребителя; 38, 39 - задвижки, обеспечивающие направление потока горячей воды от емкости-коллектора 10 либо в аккумулятор тепла - часть водоема, либо к третьему тепловодопотребителю; 40 - задвижка в трубопроводе от поверхностного аккумулятора тепла (часть водоема) к третьему тепловодопотребителю.
Ввиду плотности графического материала на чертеже не указаны имеющиеся следующие контрольно-измерительные приборы, установленные в штольне на скважинном теплоисточнике и у тепловодопотребителей.
На пересечении скважины со штольней: манометр, расходомер - счетчик количества, термометр.
На выходе вихревого теплогенератора: манометр, термометр.
На входах скважин 14; 22; 25; 27; 36: манометр, расходомеры - счетчики количества, термометры.
У каждого тепловодопотребителя: манометры, расходомеры - счетчики количества, термометры.
Нд - динамический уровень воды в скважине.
Тепловодоснабжающая скважина 1, которая сообщена с источником воды - озером 2 и(либо) с подземной водоносной зоной 3 посредством поворотной трубы снаружи или внутри обсадной колонны, которая в интервале сообщения с источником воды 2 или 3 перфорирована и пробурена до штольни 4. Поворотная труба, установленная в интервале перфорирования также перфорирована, причем в одном положении поворотной трубы перфорация в поворотной и обсадной трубах совпадают - положение «открыто». В другом положении поворотной трубы перфорация в обсадной и поворотной трубах не совпадает и ему соответствует положение «закрыто». Тепловодоснабжающая скважина 7 в интервале пересечения 6 со штольней 5 посредством трубы сообщена с задвижкой 8, которая соединена трубопроводом с входом вихревого теплогенератора 7, выход которого посредством задвижки 9 сообщен с емкостью-коллектором 10. Режим питания от поверхностного источника воды и(или) подземной водоносной зоны, а также положения вихревого теплогенератора устанавливаются такими, что динамические уровень воды в скважине Нд - напор воды, поступающей в вихревой теплогенератор, не меньше значения, регламентированного техническими характеристиками. Для принятого вихревого теплогенератора «Юсмар-5М», как правило, оно составляет 0,58 МПа и расход - 150 м3/ч. Посредством задвижек 13', 26; 29; 37 емкость-коллектор сообщена с тепловодопотребителем 2, тепловодопотребителем 1 и тепловодопотребителем 3, соответственно. При этом сообщение емкости-коллектора 10 с теплопотребителями 7 и 3 осуществляется по безнасосной схеме, а требуемый напор создается разностью абсолютных отметок положения емкости-коллектора (она выше) и абсолютных отметок положения теплопотребителей 1 и 3. К тепловодопотребителю 2, расположенному выше емкости-коллектора, горячая вода подается насосом 11.
Горячая вода из емкости-коллектора 10 посредством обвязки, включающей систему задвижек и трубопроводов может подаваться к тепловодопотребителям либо непосредственно, либо вначале в аккумулятор тепла каждого из тепловодопотребителей, а в периоды востребованности - из аккумулятора тепла к тепловодопотребителю.
Сообщение с тепловодопотребителем 2. Насос 11 входным патрубком 12 подключен к задвижке 15. Напорная линия насоса посредством задвижек 19 и 23 подключена ко второй скважине от штольни до поверхностного аккумулятора тепла в виде распадка либо к дополнительной скважине от штольни до дневной поверхности соответственно.
Конструкция аккумулятора тепла содержит фундаментные опоры 15, на которые уложены теплоизолирующие и покровные плиты 16. Донная часть аккумулятора тепла представляет собой земные складки распадка 17, который имеет ограждающую дамбу 16' и посредством которой в распаде образуется емкость чашеобразной формы. Эта емкость и заполняется горячей водой при аккумулировании тепла.
Посредством вентиля 20, насоса 21 горячая вода из аккумулятора тепла по трубопроводу может подаваться к тепловодопотребителю 2.
Минуя аккумулятор тепла при его непосредственной востребованности, горячая вода к тепловодопотребителю 2 может подаваться от емкости-аккумулятора 10 посредством насоса 77, задвижек 23, 24 и дополнительной скважины 22.
Сообщение с тепловодопотребителем 1. Посредством задвижек 26 и 29 и трубопроводов к емкости-коллектору подключены дополнительная скважина 25 и вторая скважина 27 от штольни до подземного аккумулятора тепла с его контурами 30-32. Подземный аккумулятор тепла перебурен скважиной 27 и оборудован перфорированной обсадной колонной с сеткой 28, через которую горячая вода из второй скважины поступает в подземный аккумулятор тепла 30-32. Известно, что природные подземные аккумуляторы тепла являются наиболее эффективными и экономичными (Kabus F., Bartels Y. Подземное аккумулирование тепла и холода. Журнал «Теплоэнергетика», №6, 2004 г., стр.74, [4]).
Из района расположения тепловодопотребителя 7 до тепловодоаккумулятора 30-32 пробурена тепловодоснабжающая эксплуатационная скважина 34, оборудованная фильтром в забойной ее части, и в которой установлен погружной электронасос, подключенный кабелем к сети электроснабжения. Оборудована скважина по аналогии с водоснабжающей скважиной (Башкатов Д.Н. и др. Справочник по бурению скважин на воду. Под редакцией Д.Н.Башкатова, М., Недра, 1979 г., стр.488-540, [5]).
Подача горячей воды от тепловодоаккумулятора 30-32 к тепловодопотребителю 7 может осуществляться посредством задвижки 35.
При текущей востребованности, минуя аккумулятор тепла, горячая вода к тепловодопотребителю 1 может подаваться от емкости-аккумулятора 10 посредством задвижек 26 и 26', а также дополнительной скважины 25.
Сообщение с тепловодопотребителем 3. Посредством задвижки 37 и трубопровода к емкости-коллектору 10 может быть подключена дополнительная скважина 36, пробуренная от штольни до дневной поверхности в районе размещения третьего тепловодопотребителя, выполняющая одновременно и роль второй скважины от штольни до аккумулятора тепла, представляющего собой часть залива водохранилища, отделенная от основного водохранилища.
Конструкция аккумулятора тепла содержит фундаментные опоры 75, на которые уложены теплоизолирующие и покровные щиты 16. Аккумулятор тепла является частью водоема (водохранилища), которая отделена и теплоизолирована от основного водохранилища теплоизолирующей стенкой, которая выполнена с возможностью нести нагрузку при разных уровнях воды в емкости аккумулятора тепла и основного водохранилища. Донная часть аккумулятора тепла никак не изолирована.
Посредством вентиля 40 и насоса 21 по трубопроводу вода из тепловодоаккумулятора может подаваться к третьему тепловодопотребителю.
Минуя аккумулятор тепла, вода из скважины 36 может подаваться непосредственно третьему тепловодопотребителю посредством задвижки 39.
Пробуренные тепловодоснабжающая, дополнительные, вторые и тепловодоснабжающая эксплуатационная скважины при сооружении скважинного теплоисточника имеют следующие конструктивные параметры.
Тепловодоснабжающая скважина. Диаметр бурения составляет 151 мм, обсадные трубы диаметром 146 мм. Фильтры в интервалах поступления воды в скважину - сетчатые. Глубина скважины (до пересечения со штольней) - 150 м. Глубина озера в месте установки скважины - 6,3 м. Мощность водоносной зоны 3 составляет 5 м. Динамический уровень воды в скважине Нд=56 м, положение статического уровня водоносной зоны - 48 м.
Сообщение с тепловодопотребителем №2. Вторая 14 и дополнительная 22 скважины пробурены диаметром 76 мм. В начале (у устья) и у выхода (забоя) скважины оборудованы соответственно отрезками труб с задвижками 19, 19' и 23, 24. Породы, в которых пробурены скважины устойчивы, представлены гранитами и гнейсами. После перебуривания скважины испытаны на герметичность и теплопотери. В результате испытаний установлено, что скважины не имеют поглощений, то есть герметичны, тепловые потери отвечают установленным требованиям, при этом уменьшение температуры в установившемся режиме не превысило 1°С. Протяженность второй скважины 14 составила 958 м, а дополнительной скважины 22 - 1374 м.
Для сравнения следует отметить, что согласно проекту длина классического трубопровода, проложенного от скважинного теплоисточника до тепловодопотребителя №2, оборудованного теплоизоляцией и покровным слоем, проложенного в штольне 5 и по пересеченной местности до тепловодопотребителя №2, составляет 2523 м.
Средняя техническая скорость бурения сплошным забоем скважин 14 и 22 составила 56 м в сутки. Затраты времени на бурение скважин 14 и 22 составили около 42 суток.
Ввиду того что при бурении скважин не встретилось геологических осложнений, это время и составило время сооружения и устройства каналов сообщения скважинного теплоисточника с тепловодопотребителем №2.
Сообщение с тепловодопотребителем №1. Дополнительная 25 и вторая 27 скважины пробурены диаметром 76 мм. У устьев и забоев скважины оборудованы отрезками труб и задвижками 26, 26' и 29 соответственно. По телу подземного аккумулятора тепла скважина перебурена с установкой перфорированной с сетчатым фильтром трубы 28. Из района расположения тепловодопотребителя №1 пробурена тепловодоснабжающая эксплуатационная скважина (ТЭС) 34 так, что ее забойная часть 33 расположена в подземном аккумуляторе тепла в горячей воде. Основной диаметр бурения ТЭС составляет 93 мм, в ней установлен погружной насос. Протяженность дополнительной скважины составляет 1118 м, протяженность второй скважины составляет 983 м, а протяженность ТЭС составляет 183 м.
Породы, в которых пробурены скважины, устойчивые - граниты и гнейсы. При бурении скважин каких-либо геологических осложнений не встречено. Испытаниями скважины установлены их герметичность и отсутствие тепловых потерь.
Для сравнения: согласно проекту длина стального трубопровода от скважинного теплоисточника, теплоизолированного, смонтированного по штольне 5 и пересеченной местности, до тепловодопотребителя №1 составляет 2436 м.
Средняя техническая скорость бурения скважин 25, 27, 34 составила 54 м в сутки. Продолжительность сооружения скважин - 43 суток, что и составило время сооружения и устройства каналов сообщения скважинного теплоисточника с тепловодопотребителем №1.
Сообщение с тепловодопотребителем №3. Дополнительная (она же является и второй) скважина 36 пробурена диаметром 76 мм. У устья и на выходе на дневную поверхность скважина оборудована задвижками 37, 38 и 39 соответственно. В процессе бурения скважины перебурен интервал геологических осложнений, представленных зоной поглощения (нарушенные породы, в которых наблюдаются утечки жидкости из скважины). Мощность этого интервала составляет 22 м, границы его установлены и осложнение ликвидировано путем перекрытия его трубами, установленными «впотай» в указанном интервале.
Другие интервалы скважины устойчивы. Испытаниями установлены их герметичность, тепловая эффективность, регламентированная нормативно-технической документацией. Протяженность скважины 36 составила 874 м.
Для сравнения: длина стального трубопровода от скважинного теплоисточника, теплоизолированного, смонтированного по штольне 5 и пересеченной местности, до тепловодопотребителя №3 составляет 2912 м.
Средняя техническая скорость бурения скважины 36 составляет 53 м в сутки, а время ее сооружения составило 17 суток.
Сравнение конструкций трубопроводов и скважин, выполняющих их роль, от скважинного источника до тепловодопотребителя №№1,2,3 позволяет отметить следующее.
Упрощение конструкции тепловодопроводов в виде предложенных скважин объясняется:
1) меньшей протяженностью скважин в сравнении с трубопроводами, установленными в штольне 5 и далее в пересеченной местности скважинного теплоисточника до водопотребителя (протяженность скважин до тепловодопотребителя №1 составляет 2284 м, а трубопровода 2436 м, протяженность скважин до тепловодопотребителя №2 составляет 2332 м, а трубопровода - 2523 м, протяженность скважины до тепловодопотребителя №3 составляет 874 м, а трубопровода - 2912 м);
2) меньшей затратностью на монтаж и обустройство теплоизоляции, последующее эксплуатационное обслуживание, так как после сооружения скважины он не требуется вообще;
3) сроком эксплуатации до износа кратно больший;
4) исключена возможность разукомплектации магистральных трубопроводов (разворовывания, характерного настоящему времени), так как оно в принципе невозможно.
Приведенные преимущества позволяют отметить большую простоту предлагаемого скважинного теплоисточника в сравнении с организацией теплоснабжения с использованием трубопроводных теплосетей.
Скважинный теплоисточник работает следующим образом.
Поворотными трубами обсадной колонны скважины 1, а также вентилями 8 и 9 косвенно, по показаниям манометра и расходомера, установленного перед вентилем 8, устанавливают динамический уровень Нд, достаточный для работы вихревого теплогенератора 7, Q=150 м3/ч; Нд=58 м (Рд=0,58 МПа). При этом вода из поверхностного источника 2 и подземного источника 3 поступает в тепловодоснабжающую скважину 7 и далее по скважине двигается к ее забою, проходя через вентиль 8, поступает в вихревой теплогенератор 7, а далее через вентиль 9 поступает в емкость-коллектор 10. Проходя через вихревой теплогенератор, она нагревается (патент РФ на изобретение №2045715 «Теплогенератор и устройство для нагрева жидкостей». Авт. Потапов Ю.С. F25B 29/00, опубл. 10.10.95, бюл. №28, [6], Потапов Ю.С., Фоминский Л.П., Потапов С.Ю. Энергия вращения. Российская академия естественных наук. Молдавский центр, «Неосферные технологии», г.Кишинев, 2001 г., [7]) до требуемой температуры 98°С и горячая вода поступает через задвижку 9 в емкость-коллектор. Следует отметить, что в многоводные периоды года летне-весенний паводок или летне-осенние дожди, подключаются несколько (батарея) вихревых теплогенераторов, в данном случае 3 вихревых теплогенератора «Юсмар-5М» (условно не показаны) параллельно показанному на чертеже.
Гидравлическая мощность потока Nr1, поступающего в вихревой теплогенератор, в период с нормальным режимом поверхностного источника воды составляет (установлен один вихревой теплогенератор «Юсмар-5М» с параметрами Р=0,58 МПа, Q1=150 м3/ч):
Nr1=Р·Q1=580·103 Па·4,17·10-2 м3/c=24186 Вт=24,2 кВт
Гидравлическая мощность потока Nr2, поступающего в батарею из 3-х вихревых теплогенераторов в многоводный период года составляет (установлены 3 параллельно работающие вихревые теплогенераторы «Юсмар-5М» с параметрами P=0.58 МПа, Q=150 м3/ч×3):
Nr2=P·Q=580·103 Па·4.17·10-2 м3/с×3=72,6 кВт
Горячая вода из емкости-коллектора 10 посредством задвижек 13, 26, 29 и 37 подается в дополнительные скважины 22, 25, 36 и при текущей востребованности, например, в зимние периоды года с открытием задвижек 24, 26' и 39' - непосредственно второму, первому и третьему тепловодопотребителям, соответственно контроль режимов гидравлического потока (работы вихревых теплогенераторов, количество выработанной и потребленной энергии) осуществляется с использованием показаний соответствующих контрольно-измерительных приборов, установленных на входах и выходах вихревого теплогенератора, на аккумуляторах тепла и теплопотребителей.
В многоводные периоды года, например в весенний паводковый или период летне-осенних дождей, когда подключается большее (соответствующей пропускной способности тепловодоснабжающей скважины и значению расхода воды в ней) количество вихревых теплогенераторов, востребованность тепловой энергии, как правило, минимальна. В такие периоды задвижки 23, 26 и 39 закрывают, а задвижки 19, 29 и 38 открывают, при этом горячая вода из емкости-коллектора 10 направляется по вторым скважинам 14, 27 и 36 в аккумуляторы или на поверхностный - в виде распадка, подземный и поверхностный - в виде части водохранилища соответственно. Выработанное в летнее (как правило, не востребовано в это время тепло) время тепловая энергия аккумулируется в аккумуляторах тепла до периода востребования (отопительного сезона), когда используется по назначению. Практикой установлено, что в аккумуляторах тепла, в том числе подземных, природных, температура теплоносителя хорошо сохраняется и за период теплоаккумулирования, например 2 месяца, уменьшается на 2-3°С (Kabus F., Bartels Y. Подземное аккумулирование тепла и холода. Журнал «Теплоэнергетика», №6, 2004 г., стр.74, [4]).
Нетрудно видеть, что на предлагаемом скважинном теплоисточнике более полно используется технический гидроэнергопотенциал, формируемый в том числе поверхностным источником в многоводные периоды года. Он используется в полной мере.
Предлагаемый скважинный теплоисточник выполнен подземным (расположенным в штольне, под мощной толщей земных недр). Это придает ей такие качества, как скрытность и неуязвимость.
Кроме того, предлагаемый скважинный теплоисточник расширяет номенклатуру НВИЭ, его применение в районах децентрализованного энергоснабжения позволяет уменьшить затраты на осуществление северного завоза топлива и затраты на него, а его комбинированное использование в таких регионах с другими видами НВИЭ - повысить надежность энергообеспечения, повысить степень автономности регионов децентрализованного энергообеспечения (снизить зависимость от внешних поставок топлива и от возможных колебаний конъюнктуры рынка), улучшить условия проживания населения и является важной частью энергетической политики нашего государства (Бреусов В.П. Использование энергии возобновляемых источников в комбинированных автономных энергосистемах. Автореферат диссерт. на соискание ученой степени доктора технических наук. Санкт-Петербург, С-П ГТУ, 2002 г., Б153290 [8]).
ИСТОЧНИКИ ЛИТЕРАТУРЫ
1. Баскаков А.П. и др. Теплотехника. Учебн. для ВУЗов. Под ред. А.П.Баскакова. - 2-е изд. перераб. - М.: Энергоатомиздат, 1991 г., ч. III, стр.118-206.
2. Тепловодоснабжающая скважина. Заявка на изобретение РФ №2005100306/03(000326), дата подачи 11.01.2005 г. Решение о выдаче патента на изобретение от 23.05.2006 г.
3. ГОСТ Р 51328-98. Нетрадиционная энергетика. Гидроэнергетика малая. Термины и определения. Госстандарт России, М., ИПК Издательство стандартов, 1999 г., стр.2.
4. Kabus F., Bartels Y. Подземное аккумулирование тепла и холода. Журнал «Теплоэнергетика», №6, 2004 г., стр.70-76.
5. Башкатов Д.Н. и др. Справочник по бурению скважин на воду. Под редакцией Д.Н.Башкатова, М., Недра, 1979 г., стр.488-540.
6. Патент РФ на изобретение №2045715 «Теплогенератор и устройство для нагрева жидкостей». Авт. Потапов Ю.С. F25B 29/00, опубл. 10.10.95, бюл. №28.
7. Потапов Ю.С., Фоминский Л.П., Потапов С.Ю. Энергия вращения. Российская академия естественных наук. Молдавский центр «Неосферные технологии», г.Кишинев, 2001 г.
8. Бреусов В.П. Использование энергии возобновляемых источников в комбинированных автономных энергосистемах. Автореферат диссерт. на соискание ученой степени доктора технических наук. Санкт-Петербург, С-П ГТУ, 2002 г., Б153290.

Claims (3)

1. Скважинный теплоисточник, содержащий тепловодоснабжающую скважину, соединенную с источником воды, зону стока и тепловодопотребителя, тепловодоснабжающая скважина пробурена таким образом, что ее забоем пересечена штольня, при этом тепловодоснабжающая скважина служит водоводом, за источник воды приняты поверхностный водоем, в зоне которого пробурена тепловодоснабжающая скважина, или подземная водоносная зона или зоны, или поверхностный водоем с подземной зоной или зонами, а за зону стока принято пересечение тепловодоснабжающей скважины с нижерасположенной штольней, соединенный со скважиной вихревой тепловодоснабжающий теплогенератор, установленный под ее динамический уровень, напор воды достаточен для выработки тепловой энергии, а тепловодопотребитель посредством тепловодопровода подключен в зоне стока тепловодоснабжающей скважины к выходу вихревого теплогенератора, отличающийся тем, что вихревой теплогенератор расположен в штольне и соединен со скважиной в ее пересечении со штольней, снабжен насосной установкой с обвязкой, тепловодопроводом является дополнительная скважина, пробуренная из штольни до пересечения ее с дневной поверхностью в зоне тепловодопотребителя, к которой подключен трубопровод тепловодопотребителя, устье дополнительной скважины соединено с обвязкой насосной установки.
2. Скважинный теплоисточник по п.1, отличающийся тем, что он снабжен альтернативным дополнительной скважине теплопроводом, которым является вторая скважина, пробуренная из штольни до подземного или поверхностного аккумулятора тепла в горячей воде, устье второй скважины соединено с обвязкой насосной установки, подземными аккумуляторами тепла являются подземный водоносный горизонт с замещаемой в нем аккумуляторным теплом в горячей воде, либо пустотные образования или водогерметичные подземные выработки, поверхностные аккумуляторы тепла расположены на дневной поверхности земли, а несущими и герметизирующими элементами в них являются природные, чашеобразной или легко доводимой до чашеобразной формы, например, водоемы, складки поверхности, распадки, аккумуляторы тепла, соединенные с тепловодопотребителем тепловодопроводом потребителя, при этом тепловодопроводом потребителя до подземного аккумулятора тепла является пробуренная и освоенная эксплуатационная теплоснабжающая скважина, устье которой расположено в зоне тепловодопотребителя.
3. Скважинный теплоисточник по п.1 или 2, отличающийся тем, что из штольни пробурен куст дополнительных наклонных или направленных скважин до территориально рассредоточенных тепловодопотребителей и вторых скважин до подземных или поверхностных аккумуляторов тепла, сообщенных с тепловодопотребителями.
RU2006132584/03A 2006-09-11 2006-09-11 Скважинный теплоисточник RU2329435C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006132584/03A RU2329435C2 (ru) 2006-09-11 2006-09-11 Скважинный теплоисточник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006132584/03A RU2329435C2 (ru) 2006-09-11 2006-09-11 Скважинный теплоисточник

Publications (2)

Publication Number Publication Date
RU2006132584A RU2006132584A (ru) 2008-03-20
RU2329435C2 true RU2329435C2 (ru) 2008-07-20

Family

ID=39279442

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006132584/03A RU2329435C2 (ru) 2006-09-11 2006-09-11 Скважинный теплоисточник

Country Status (1)

Country Link
RU (1) RU2329435C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2586425C1 (ru) * 2012-11-01 2016-06-10 Сканска Свериге Аб Аккумулятор тепловой энергии, содержащий камеру расширения

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2586425C1 (ru) * 2012-11-01 2016-06-10 Сканска Свериге Аб Аккумулятор тепловой энергии, содержащий камеру расширения

Also Published As

Publication number Publication date
RU2006132584A (ru) 2008-03-20

Similar Documents

Publication Publication Date Title
Stober et al. Geothermal energy
CN103090571B (zh) 一种循环开采地热资源的方法
Arnórsson et al. Utilization of geothermal resources
Gehlin et al. Country update for Sweden
Aftab et al. Quantifying onshore salt deposits and their potential for hydrogen energy storage in Australia
Stevanovic Utilization and regulation of springs
Bujakowski et al. Potential for geothermal development in Southern Poland
Seibt et al. Practical experience in the reinjection of cooled thermal waters back into sandstone reservoirs
Jarvis Feasibility study of porous media compressed air energy storage in South Carolina, United States of America
Nakomcic-Smaragdakis et al. Analysis and possible geothermal energy utilization in a municipality of Panonian Basin of Serbia
Brassington A proposed conceptual model for the genesis of the Derbyshire thermal springs
Menéndez et al. Low-enthalpy geothermal energy potential of mine water from closured underground coal mines in northern Spain
RU2329435C2 (ru) Скважинный теплоисточник
Kerr Geothermal Tragedy of the Commons: Once a shining example for geothermal energy developers, The Geysers of northern California—the world's largest geothermal field—is rapidly running out ofsteam
Febrianto et al. The geothermal heating system at Taupo Hospital, New Zealand
CN102278116A (zh) 冬季寒冷地区制作地下冷冻墙装置及制作冷冻墙的方法
RU2371638C1 (ru) Скважинная система теплоснабжения с подземным теплогидроаккумулированием
Traineau et al. Main results of a long-term monitoring of the Bouillante geothermal reservoir during its exploitation
RU2377436C1 (ru) Скважинная гидроаккумулирующая электростанция
Zui Geothermal resources of Belarus and their utilization
RU2665097C1 (ru) Замораживающая система грунтовой плотины в зоне вечной мерзлоты и плотина с ее применением
RU2376495C1 (ru) Гидрогеоэнергостанция (варианты)
RU2291255C2 (ru) Тепловодоснабжающая скважина
Kozłowski Geothermic Power Plants of high capacity-how far
Śliwa et al. Accessing Earth’s heat using Geothermal Radial Drilling for borehole heat exchangers

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090912