RU2329094C1 - Мембрана на каркасе для нанофильтров и нанореакторов и способ ее изготовления - Google Patents

Мембрана на каркасе для нанофильтров и нанореакторов и способ ее изготовления Download PDF

Info

Publication number
RU2329094C1
RU2329094C1 RU2006145167/28A RU2006145167A RU2329094C1 RU 2329094 C1 RU2329094 C1 RU 2329094C1 RU 2006145167/28 A RU2006145167/28 A RU 2006145167/28A RU 2006145167 A RU2006145167 A RU 2006145167A RU 2329094 C1 RU2329094 C1 RU 2329094C1
Authority
RU
Russia
Prior art keywords
substrate
metal
layer
membrane
nanofilters
Prior art date
Application number
RU2006145167/28A
Other languages
English (en)
Inventor
Вадим Олегович Вальднер (RU)
Вадим Олегович Вальднер
Елена Дмитриевна Мишина (RU)
Елена Дмитриевна Мишина
Натали Эдуардовна Шерстюк (RU)
Наталия Эдуардовна Шерстюк
Кирилл Сергеевич Напольский (RU)
Кирилл Сергеевич Напольский
Original Assignee
Государственное образовательное учреждение высшего профессионального образования Московский государственный институт радиотехники, электроники и автоматики (Технический университет) (МИРЭА)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования Московский государственный институт радиотехники, электроники и автоматики (Технический университет) (МИРЭА) filed Critical Государственное образовательное учреждение высшего профессионального образования Московский государственный институт радиотехники, электроники и автоматики (Технический университет) (МИРЭА)
Priority to RU2006145167/28A priority Critical patent/RU2329094C1/ru
Application granted granted Critical
Publication of RU2329094C1 publication Critical patent/RU2329094C1/ru

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к области нанотехнологии. Сущность изобретения: способ изготовления мембраны на каркасе для нанофильтров и нанореакторов заключается в том, что на поверхность подложки или сетки наносят методом ионно-атомного напыления металла микропористую металлизированную пленку из по крайней мере одного слоя напыленного металла с копированием в напыленном слое микропористой структуры подложки, а затем методом диффузионной сварки к указанной металлизированной пленке прикрепляют металлическую пластину или фольгу, в которой методом анодного травления металла образуют нанопоры. Технический результат изобретения заключается в улучшении эксплуатационных характеристик, повышении эффективности пропускной функции, надежности и долговечности работы. 2 н.п. ф-лы, 4 ил.

Description

Изобретение относится к области нанотехнологии и может быть использовано при создании химических и биологических нанофильтров, химических нанореактров, носителей катализаторов, представляющих собой мембраны, смонтированные на каркасе, обеспечивающем механическую прочность мембраны как нанопористого функционального элемента.
Известно устройство, представляющее механически прочную систему пористая мембрана - пористая подложка (US №7108813, В29С 65/00, B01D 39/00, В44С 1/22, опубл. 19.09.2006).
Недостатком данной двухслойной мембраны является то, что при обеспечении прочности системы в целом, она имеет постоянную пропускную способность и не обеспечивает прохождение большого потока реагента.
Известны устройства, представляющие собой двухслойные пористые системы с различной пористостью (US №4666668, А61М 1/14. опубл. 19.05.1987, или US №5114803, H01M 8/10, опубл. 19.05.1992, или US №5308712, H01M 8/10, опубл. 03.05.1994).
Однако получение такой системы представляет собой сложный и трудоемкий процесс, не обеспечивающий высокого процента выхода готовых изделий со стабильными свойствами надежности и высокой пропускной функцией.
Известно устройство, представляющее систему, включающую в себя тонкую металлическую пленку, нанесенную, в частности, методом ионно-атомного напыления металла на пористую подложку (US №2006/068253, H01M 8/10, Н01М 2/14, опубл. 30.03.2006).
Недостатком данного решения является то, что соотношение толщина пленки-размер пор мембраны таково, что напыленная металлическая пленка-мембрана существенным образом уменьшает проводимость мембраны.
Данное решение принято в качестве прототипа для заявленного устройства.
Известен способ напыления материала на подложку, позволяющий значительно увеличить адгезию материалов (US №6238637, C25D 11/16, опубл. 31.10.2000 или способ, описанный в статье V.T.Zabolotnyi, V.O.Valdner and E.E.Starostin, Ion-Atom Deposition of Coatings, Journal of Advanced Materials, 1995 2 (4), p.285-289). Данный способ имеет тот же недостаток, что и известный способ из US №6139713.
Данное решение принято в качестве прототипа для заявленного способа.
Настоящее изобретение направлено на решение технической задачи по созданию системы мембрана-подложка, обеспечивающей максимальную пропускную способность реагента в газообразной или жидкой фазе и максимальную прочность к перепаду давлений на двух сторонах этой системы.
Получаемый при этом технический результат заключается в улучшении эксплуатационных характеристик, эффективности пропускной функции и надежности и долговечности работы.
Указанный технический результат для устройства достигается тем, что в двухслойной мембране для нанофильтров и нанореакторов, содержащей подложку, выполненную по всей поверхности с порами в виде сквозных отверстий, направленных вдоль толщины подложки, или выполненную в виде сетки, и активный слой с порами, сообщенными с порами подложки, подложка выполнена металлической или керамической с размером пор в диапазоне от 0,5 до 5,0 мкм и на одну ее сторону нанесен по крайней мере один слой металла с высокой адгезией с микропорами и толщиной от 50 до 100 нм, к которому диффузионной сваркой прикреплена металлическая пластина с выполненными по всей ее поверхности методом электрохимического анодирования порами с размером от 40 до 200 нм, при этом микропоры слоя металла с высокой адгезией расположены напротив микропор в подложке.
Указанный технический результат для способа достигается тем, что в способе изготовления двухслойной мембраны для нанофильтров и нанореакторов, заключающемся в том, что перед прикреплением металлической пластины к подложке на последнюю сначала наносят и закрепляют методом ионно-атомного напыления металла микропористую металлизированную пленку толщиной, например, не более 100 нм с копированием в напылением слое микропористой структуры подложки, а затем методом диффузионной сварки к указанной металлизированной пленке прикрепляют металлическую пластину толщиной не более 200 мкм, в которой методом анодного травления металла образуют нанопоры размером не более 200 нм.
Указанные признаки являются существенными и взаимосвязаны с образованием устойчивой совокупности существенных признаков, достаточной для получения требуемого технического результата.
Настоящее изобретение поясняется конкретным примером исполнения, который, однако, не является единственно возможным, но наглядно демонстрирует возможность достижения требуемого технического результата.
На фиг.1 показано изображение в разрезе микропористой подложки;
на фиг.2 - то же, что на фиг.1, с нанесенным промежуточным слоем металла;
на фиг.3 - то же, что на фиг.2, с закрепленной мембраной;
на фиг.4 - демонстрация процесса формирования в мембране нанопор.
Согласно изобретению рассматривается конструкция двухслойной мембраны для химических и биологических нанофильтров, химических нанореактров, носителей катализаторов, выполненной двухслойной со слоями существенно различной пористости, первый из которых является функциональным, а второй обеспечивает механическую прочность и является каркасом для функционального слоя (мембраны).
Двухслойная мембрана (фиг.4) представляет собой нанопористую пластину 1 с размером пор в диапазоне 40-200 нм (размер пор примерно одинаковый в пределах всей площади этой пластины), толщиной 10-200 мкм, которая прикреплена через металлический промежуточный пористый слой 2 толщиной 50-100 нм к подложке 3, выполненной микропористой (размер пор 0,5-5 мкм) металлической или керамической, являющейся элементом прочности первого слоя. Выбор параметров нанопор в пластине определен требованиями ее использования в качестве нанофильтра или нанореактора, выбор размеров микропор определен задачей обеспечения высокой пропускной способности фильтра и надежностью удержания пластины с нанопорами на подложке. Данные результаты по параметрам пор и толщинам подложки, пластины и промежуточного напыленного слоя получены экспериментально.
Так как пластина не имеет прямого соединения с подложкой, выполненной, например, из керамического материала, то отсутствуют условия формирования связей между подложкой и пластиной, которые и определяют механическую прочность мембраны на каркасе в целом. В заявленном решении применен метод промежуточного слоя, который, с одной стороны, имеет очень высокую адгезию с керамикой, а с другой стороны - с пластиной. Такой напыленный слой является связью, прочность которой выше прочности непосредственной связи металлической пластины с керамикой. В связи с этим соединение пластины (мембраны) с подложкой получается долговечным и может быть проконтролировано по результату исполнения. Если найдено решение получения высоко адгезивного соединения пластины (мембраны) с подложкой, то отпадает необходимость в монолитной (сплошной) подложке, появляется возможность выполнения ее микропористой или даже макропористой. В этом случае размер пор подложки определяется только механической прочностью функционального слоя т.е. его способностью выдерживать перепад давления. Наличие микропор - это каналы, не препятствующие прохождению большого потока реагента, эти каналы не являются гидравлическим сопротивлением и, в этом случае, можно говорить о пропускной способности мембраны, основываясь только на параметрах нанопор в самой пластине, которая зависит только от размеров нанопор.
Особенностью изготовления такой двухслойной мембраны является то, что на подложку наносится слой металла с высокой адгезией, затем диффузионной сваркой закрепляется металлическая заготовка мембраны (например, алюминиевая), после чего методом электрохимического анодирования из заготовки формируется мембрана с заданным размером пор и аспектным отношением.
Как и известные способы, заявленный способ строится на том, что к поверхности подложки 3 с микропорами 4 прикрепляют металлическую пластину 1, в которой необходимо выполнить нанопоры 5.
Однако перед прикреплением металлической пластины 1 или фольги к подложке (фиг.1) на поверхность последней сначала наносят методом ионно-атомного напыления металла микро- или макропористую металлическую пленку (слой металла или несколько слоев разных металлов) 2 общей толщиной, например, не более 100 нм. В процессе напыления этот слой (пленка) закрепляется на поверхности подложки с копированием в напыленном слое микро- или макропористой структуры подложки (фиг.2) или ячеек сетки, а затем методом диффузионной сварки к указанной металлической пленке 2 прикрепляют сплошную металлическую пластину 1 или сплошную (то есть не перфорированную) фольгу толщиной не более 200 мкм (фиг.3), в которой методом анодного травлении металла образуют нанопоры размером не более 200 нм (фиг.4).
Толщины напыленного слоя, заготовки мембраны, пористой подложки (каркаса) и диаметр пор мембраны определяются конкретной задачей и имеют соответствующие диапазоны значений для каждого конкретного примера их использования в зависимости от решаемой задачи. В рамках настоящей заявки диапазоны значений размеров приведены в качестве примеров для пояснения существа заявленного изобретрения.
Нанесение (для закрепления нанопористой структуры на микропористой структуре) на микропористую структуру, служащую подложкой, промежуточного тонкого (менее 100 нм) по крайне мере одного слоя металла методом ионно-атомного напыления металла обеспечивает высокую взаимную адгезию широкого круга материалов. Толщина напыляемого слоя (менее 100 нм) обеспечивает копирование в напыленном слое пористой структуры подложки. Если используемые материалы мембраны и подложки не могут быть надежно связаны между собой через один слой напыленного металла (предположим, что напыляемый металл имеет отличную адгезионную способность к керамике, но недостаточную свариваемость, например, с алюминием, из которого изготавливается пластина 1), то возможно выполнение напыленной пленки из нескольких слоев разных металлов, которые имеют между собой высокую адгезию, а последний слой выполняют из того металла, с которым алюминий может надежно соединяться сваркой. С вопросом применения метода ионно-атомного напыления для получения высокой точности нанорельефа можно ознакомиться на сайте «Учебно-методический центр» в Интернет в режиме он-лайн по адресу: http://www.eks.fel.mirea.ru/PhCMIndex/PhysCMScience/PhysCMEdSc/MishinaSite/Foto-structs.html (04.05.2006), раздел «Нанотехнологии для сверхскоростной телекоммуникации. Фото-структуры» и раздел «материалы и методы нанотехнологии».
А при использовании метода анодного травления металла в электролите 6 при пропускании тока 7 обеспечивается получение пористой структуры направленной ориентации с порами размером от нескольких десятков до нескольких сот нанометров (данный технический прием описан в US №6139713, C25D 11/16, опубл. 31.10.2000).
Настоящее изобретение промышленно применимо, может быть изготовлено в промышленных условиях, так как используются известные технологии: ионно-атомное напыление металлизированного слоя, анодное травление металла в электролите, диффузионная сварка, фольга, подложка из металла или керамики.

Claims (2)

1. Мембрана на каркасе для нанофильтров и нанореакторов, содержащая подложку, выполненную по всей поверхности с порами в виде сквозных отверстий, направленных вдоль толщины подложки, и активный слой с порами, сообщенными с порами подложки, толщина которой больше толщины активного слоя, отличающаяся тем, что подложка выполнена металлической или керамической с микро- или макропорами или в виде сетки и на одну ее сторону нанесен по крайней мере один слой металла с высокой адгезией с микропорами, к которому диффузионной сваркой прикреплена металлическая пластина или фольга с выполненными по всей ее поверхности методом электрохимического анодирования нанопорами.
2. Способ изготовления мембраны на каркасе для нанофильтров и нанореакторов, характеризующийся тем, что на поверхность одной стороны подложки с микро- или макропорами или к одной стороне сетки наносят методом ионно-атомного напыления металла микропористую металлизированную пленку в виде по крайней мере одного слоя металла с копированием в напыленном слое микро- или макропористой структуры подложки или ячеек сетки, а затем методом диффузионной сварки к указанной металлизированной пленке прикрепляют сплошную металлическую пластину или сплошную фольгу, в которой методом анодного травления металла образуют нанопоры.
RU2006145167/28A 2006-12-19 2006-12-19 Мембрана на каркасе для нанофильтров и нанореакторов и способ ее изготовления RU2329094C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006145167/28A RU2329094C1 (ru) 2006-12-19 2006-12-19 Мембрана на каркасе для нанофильтров и нанореакторов и способ ее изготовления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006145167/28A RU2329094C1 (ru) 2006-12-19 2006-12-19 Мембрана на каркасе для нанофильтров и нанореакторов и способ ее изготовления

Publications (1)

Publication Number Publication Date
RU2329094C1 true RU2329094C1 (ru) 2008-07-20

Family

ID=39809085

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006145167/28A RU2329094C1 (ru) 2006-12-19 2006-12-19 Мембрана на каркасе для нанофильтров и нанореакторов и способ ее изготовления

Country Status (1)

Country Link
RU (1) RU2329094C1 (ru)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455054C2 (ru) * 2009-10-23 2012-07-10 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Проточный модуль для мембранного катализа и газоразделения и способ его изготовления
RU2545887C2 (ru) * 2012-10-23 2015-04-10 Общество с Ограниченной Ответственностью "Фабрика новых материалов" Способ получения гибкой нанопористой композиционной мембраны с ячеистой структурой из анодного оксида металла или сплава
RU2666849C1 (ru) * 2014-12-23 2018-09-12 Эксонмобил Апстрим Рисерч Компани Структурированный слой адсорбента, способы его получения и его применение
US11148091B2 (en) 2016-12-21 2021-10-19 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US11318413B2 (en) 2016-09-01 2022-05-03 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
US11707729B2 (en) 2016-12-21 2023-07-25 ExxonMobil Technology and Engineering Company Self-supporting structures having active materials

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2455054C2 (ru) * 2009-10-23 2012-07-10 Федеральное государственное бюджетное учреждение науки Ордена Трудового Красного Знамени Институт нефтехимического синтеза им. А.В. Топчиева Российской академии наук (ИНХС РАН) Проточный модуль для мембранного катализа и газоразделения и способ его изготовления
RU2545887C2 (ru) * 2012-10-23 2015-04-10 Общество с Ограниченной Ответственностью "Фабрика новых материалов" Способ получения гибкой нанопористой композиционной мембраны с ячеистой структурой из анодного оксида металла или сплава
RU2666849C1 (ru) * 2014-12-23 2018-09-12 Эксонмобил Апстрим Рисерч Компани Структурированный слой адсорбента, способы его получения и его применение
US10512893B2 (en) 2014-12-23 2019-12-24 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
US11318413B2 (en) 2016-09-01 2022-05-03 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US11148091B2 (en) 2016-12-21 2021-10-19 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US11707729B2 (en) 2016-12-21 2023-07-25 ExxonMobil Technology and Engineering Company Self-supporting structures having active materials
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO

Similar Documents

Publication Publication Date Title
RU2329094C1 (ru) Мембрана на каркасе для нанофильтров и нанореакторов и способ ее изготовления
Zhou et al. Superwetting Janus membranes: focusing on unidirectional transport behaviors and multiple applications
Zhang et al. Engineering a nanocomposite interlayer for a novel ceramic-based forward osmosis membrane with enhanced performance
US7547393B2 (en) Membrane structure and method of making
Bui et al. Nanofiber supported thin-film composite membrane for pressure-retarded osmosis
JP4879883B2 (ja) 多段ナノホールアレイ金属膜の製造方法及び同膜構造によって支持されたガス/イオン種選択性膜の製造方法
US9751755B2 (en) Method of forming a micro-structure
KR101025033B1 (ko) 판상의 양극산화 나노다공질 산화물 세라믹 막을 포함하는 복합재료 막 및 이를 이용한 다기능 필터
JP2007326095A (ja) 流体系分離用無機複合膜
KR20120022164A (ko) 그라핀 나노 필터 망, 그라핀 나노 필터 및 그 제조방법
Wang et al. Modeling water transport in interlayered thin-film nanocomposite membranes: gutter effect vs funnel effect
Xiao et al. Enabling covalent organic framework nanofilms for molecular separation: perforated polymer-assisted transfer
JP2010214255A (ja) 分離膜
Yao et al. Filtration-based synthesis of micelle-derived composite membranes for high-flux ultrafiltration
KR101511374B1 (ko) Macro한 공극을 갖는 지지층이 있는 분리막
US20140183135A9 (en) Nanosieve composite membrane
KR20150064422A (ko) 고분자 막과 금속산화물 막으로 형성된 복합분리막 및 그 제조방법
WO2013043122A1 (en) A reinforced filter with a metallic filtering layer
Xia et al. Ionic control of functional zeolitic imidazolate framework-based membrane for tailoring selectivity toward target ions
Tong et al. Microfabrication of palladium-silver alloy membranes for hydrogen separation
Sh. Yalishev et al. Comparing water transport properties of Janus membranes fabricated from copper mesh and foam using a femtosecond laser
CN107106992B (zh) 用于过滤液体的混合型过滤结构
CN101985084A (zh) 一种陶瓷Ti-Al合金复合膜的制备方法
Liu et al. Integrated Janus membrane for smart “dual fluid diode’’with multifunctional applications
KR101314420B1 (ko) 마이크로-나노 채널을 이용한 3차원 에너지 변환 소자 및 그 제조 방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081220