RU2326270C1 - Центробежный насос - Google Patents

Центробежный насос Download PDF

Info

Publication number
RU2326270C1
RU2326270C1 RU2007117550/06A RU2007117550A RU2326270C1 RU 2326270 C1 RU2326270 C1 RU 2326270C1 RU 2007117550/06 A RU2007117550/06 A RU 2007117550/06A RU 2007117550 A RU2007117550 A RU 2007117550A RU 2326270 C1 RU2326270 C1 RU 2326270C1
Authority
RU
Russia
Prior art keywords
working
shaft
radial
bearings
stages
Prior art date
Application number
RU2007117550/06A
Other languages
English (en)
Inventor
Владимир Дмитриевич Анохин (RU)
Владимир Дмитриевич Анохин
Original Assignee
Владимир Дмитриевич Анохин
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Дмитриевич Анохин filed Critical Владимир Дмитриевич Анохин
Priority to RU2007117550/06A priority Critical patent/RU2326270C1/ru
Application granted granted Critical
Publication of RU2326270C1 publication Critical patent/RU2326270C1/ru

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к центробежным насосам, преимущественно для перекачки нефтепродуктов. Рабочие колеса ступеней насоса установлены на рабочем валу (РВ), расположенном на опорах в корпусе. Выходной канал насоса сообщен с выполненной в корпусе за рабочими ступенями напорной полостью. Муфта связывает приводной вал с РВ и состоит из двух полумуфт (ПМ) с постоянными магнитами и разделительной перегородкой. Перегородка выполнена в виде стакана, охватывающего установленную на конце РВ одну из ПМ и охватываемого установленной на приводном валу другой ПМ. Опоры вала выполнены в виде двух радиальных подшипников скольжения (ПС), один из которых расположен со стороны выхода из ступеней ниже магнитной муфты, а другой на конце РВ со стороны входа в ступени и установленного рядом с последним упорным ПС. Напорная полость связана через рабочий зазор в ПС рабочего вала со стороны муфты, радиальный зазор, образованный между разделительной перегородкой и ПМ, установленной на РВ, осевой канал, выполненный в РВ, и рабочий зазор ПС на конце РВ со стороны входа в ступени с входным каналом. Величина рабочих зазоров ПС составляет от 0,0005 до 0,005 от наружного диаметра внутренней втулки радиального ПС. В РВ выполнены радиальные отверстия, посредством которых осевой канал РВ сообщен с входом одного из рабочих колес. В результате достигается повышение надежности работы центробежного насоса. 1 ил.

Description

Изобретение относится к устройству центробежных насосов, используемых для перекачки текучих сред преимущественно в нефтеперерабатывающей промышленности при перекачке нефтепродуктов.
Известен электронасос центробежного типа для перекачки агрессивных жидкостей, снабженный закрытым короткозамкнутым асинхронным двигателем для привода крыльчатки, расположенным внутри трубы, погружаемой в жидкость, и охлаждаемым перекачиваемой жидкостью, омывающей снаружи указанную трубу, при этом связь между крыльчаткой и валом двигателя осуществлена при помощи магнитной муфты, ведущая и ведомая части которой расположены по разным сторонам тонкой металлической (или армированной металлом) стенки, герметично отделяющей полость корпуса двигателя от наружной среды (см. авторское свидетельство №81471, кл. F04D 13/08, 01.01.1949).
Данный насос имеет сравнительно низкий КПД и высокую металлоемкость, что связано с необходимостью герметизации всего электродвигателя, охлаждаемого перекачиваемой насосом жидкой средой.
Наиболее близким к изобретению по технической сущности и достигаемому результату является центробежный насос, содержащий корпус, одну или несколько рабочих ступеней, рабочие колеса которых установлены на рабочем валу, расположенном на опорах в корпусе, входной канал и выходной канал, сообщенный с выполненной в корпусе за рабочими ступенями напорной полостью, приводной вал и магнитную муфту, связывающую приводной вал с рабочим валом и состоящую из двух полумуфт с постоянными магнитами и разделительной перегородкой, выполненной в виде стакана, охватывающего установленную на конце рабочего вала одну из полумуфт и охватываемого установленной на приводном валу другой полумуфтой, а опоры вала выполнены в виде двух радиальных подшипников скольжения, один из которых расположен со стороны выхода из рабочих ступеней ниже магнитной муфты, а другой на конце рабочего вала со стороны входа в рабочие ступени насоса и установленного рядом с последним упорным подшипником скольжения (см. патент на полезную модель RU №26612, кл. F04D 29/10, 10.12.2002).
Данный погружной насос дает возможность подавать часть перекачиваемой жидкой среды из области нагнетания в область входного канала. Однако данный насос не использует возможность использовать нагнетаемую жидкую среду для охлаждения подшипников и магнитной муфты насоса, что приводит к снижению надежности работы насоса в результате неэффективного отвода тепла, выделяющегося за счет токов Фуко в магнитной муфте, и трения в подшипниках скольжения.
Задачей, на решение которой направлено изобретение, является интенсификация отвода тепла от магнитной муфты и подшипников скольжения.
Техническим результатом, достигаемым при реализации изобретения, является повышение надежности работы центробежного насоса.
Техническая задача решается, а технический результат достигается за счет того, что центробежный насос содержит корпус, одну или несколько рабочих ступеней, рабочие колеса которых установлены на рабочем валу, расположенном на опорах в корпусе, входной канал и выходной канал, сообщенный с выполненной в корпусе за рабочими ступенями напорной полостью, приводной вал и магнитную муфту, связывающую приводной вал с рабочим валом и состоящую из двух полумуфт с постоянными магнитами и разделительной перегородкой, выполненной в виде стакана, охватывающего установленную на конце рабочего вала одну из полумуфт и охватываемого установленной на приводном валу другой полумуфтой, а опоры вала выполнены в виде, по крайней мере, двух радиальных подшипников скольжения, один из которых расположен со стороны выхода из рабочих ступеней ниже магнитной муфты, а другой на конце рабочего вала со стороны входа в рабочие ступени насоса и установленного рядом с последним упорным подшипником скольжения, напорная полость гидравлически связана через последовательно соединенные рабочий зазор в подшипнике скольжения рабочего вала, расположенном со стороны магнитной муфты, радиальный зазор, образованный между разделительной перегородкой магнитной муфты и полумуфтой, установленной на рабочем валу, осевой канал, выполненный в рабочем валу, и рабочий зазор подшипников скольжения, расположенных на конце рабочего вала со стороны входа в рабочие ступени, с входным каналом, при этом величина рабочих зазоров подшипников скольжения составляет от 0,0005 до 0,005 от наружного диаметра внутренней втулки радиального подшипника скольжения, а в рабочем валу выполнены радиальные отверстия, посредством которых осевой канал рабочего вала сообщен с проточной частью, по крайней мере, одного из рабочих колес со стороны входа в него.
В ходе проведенных исследований было установлено, что представляется возможность решить проблему отвода тепла от подшипников скольжения и магнитной муфты путем организации гидравлической связи между напорной полостью и входным каналом. В результате перекачиваемая среда, протекая через подшипники скольжения и обтекая магнитную муфту, будет эффективно охлаждать их, причем чем выше создаваемый насосом напор, тем больше перепад давления между напорной полостью и входным каналом, а, следовательно, будет увеличиваться подача жидкой среды из напорной полости во входной канал и интенсивность отбора тепла от подшипников скольжения и магнитной муфты. Часть жидкой среды отводится через выполненные в рабочем валу радиальные отверстия, посредством которых осевой канал рабочего вала сообщен с проточной частью, по крайней мере, одного из рабочих колес со стороны входа в него, что позволяет более интенсивно охлаждать магнитную муфту - наиболее нагреваемую часть насоса. Кроме того, представляется возможность регулировать подачу жидкой среды из напорной полости и подавать ее одновременно через подшипники скольжения и радиальные отверстия в валу или только через подшипники скольжения, перекрывая подачу жидкой среды через радиальные отверстия.
Выполнение подшипников скольжения с величиной рабочих зазоров, составляющей от 0,0005 до 0,005 от наружного диаметра внутренней втулки радиального подшипника скольжения, позволяет использовать их одновременно как сепараторы, которые предотвращают попадание в контур циркуляции жидкой охлаждающей среды, образованный выше описанной гидравлической связью, крупных механических примесей. Выполнение зазоров менее 0,0005 приводит к увеличению гидравлических потерь и, как следствие, к снижению интенсивности охлаждения выше допустимых пределов, что по существу делает систему охлаждения бесполезной. Увеличение зазора более 0,005 не позволяет эффективно отделять механические примеси и приводит к ухудшению работы подшипника скольжения, что недопустимо.
Точность изготовления подшипников скольжения и использование для изготовления втулок подшипников скольжения износостойких материалов позволяет поддерживать постоянный заранее рассчитанный расход охлаждающей жидкой среды через гидравлическую связь между напорной полостью и входным каналом.
На чертеже представлен продольный разрез центробежного насоса.
Центробежный насос содержит корпус 1, одну или несколько рабочих ступеней 2, рабочие колеса 3 которых установлены на рабочем валу 4, расположенном на опорах 5, 6, 7 в корпусе 1, входной канал 8 и выходной канал 9, сообщенный с выполненной в корпусе 1 за рабочими ступенями напорной полостью 10, приводной вал 11 и магнитную муфту 12, связывающую приводной вал 11 с рабочим валом 4. Магнитная муфта 12 состоит из двух полумуфт 13 и 14 с постоянными магнитами 15 и 16 и разделительной перегородкой 17, выполненной в виде стакана, охватывающего установленную на конце рабочего вала 4 одну из полумуфт 13 и охватываемого установленной на приводном валу 11 другой полумуфтой 14, а опоры 5, 6 и 7 рабочего вала 4 выполнены в виде двух радиальных подшипников 5 и 6 скольжения, один из которых 5 расположен со стороны выхода из рабочих ступеней 2 ниже магнитной муфты 12, а другой 6 на конце рабочего вала 4 со стороны входа в рабочие ступени 2 насоса и установленного рядом с последним упорным подшипником 7 скольжения. Напорная полость 10 гидравлически связана через последовательно соединенные рабочий зазор в подшипнике 5 скольжения рабочего вала 4, расположенном со стороны магнитной муфты 12, радиальный зазор, образованный между разделительной перегородкой 17 магнитной муфты 12 и полумуфтой 13, установленной на рабочем валу 4, осевой канал 18, выполненный в рабочем валу 4, и рабочий зазор подшипников скольжения 6 и 7, расположенных на конце рабочего вала 4 со стороны входа в рабочие ступени 2, с входным каналом 8. Величина рабочих зазоров подшипников 5 и 6 скольжения составляет от 0,0005 до 0,005 от наружного диаметра внутренней втулки соответственно радиального подшипника 5 или 6 скольжения. В рабочем валу 4 выполнены радиальные отверстия 19, посредством которых осевой канал 18 рабочего вала 4 сообщен с проточной частью, по крайней мере, одного из рабочих колес 3 со стороны входа в него.
Центробежный насос работает следующим образом.
Внешний момент от приводного вала 4 за счет магнитного сцепления через немагнитный стакан 17 полумуфт 14 и 13 приводит во вращение рабочие колеса 3 ступеней 2 насоса, обеспечивая его работу и подачу перекачиваемой жидкой среды из входного канала 8 в напорную полость 10 и далее в выходной канал 9. В результате при работе насоса между напорной полостью 10 и входным каналом 8 создается перепад давлений, который обуславливает переток части перекачиваемой жидкой среды по гидравлической связи через последовательно гидравлически соединенные рабочий зазор в подшипнике 5 скольжения рабочего вала 4, расположенном со стороны магнитной муфты 12, радиальный зазор, образованный между разделительной перегородкой 17 магнитной муфты 12 и полумуфтой 13, установленной на рабочем валу 4, осевой канал 18, выполненный в рабочем валу 4, и рабочий зазор подшипников скольжения 6 и 7, расположенных на конце рабочего вала 4 со стороны входа в рабочие ступени 2, с входным каналом 8. В рабочем валу 4 выполнены радиальные отверстия 19, посредством которых из осевого канала 18 рабочего вала 4 часть жидкой среды поступает на вход, по крайней мере, одного из рабочих колес 3. Аналогичные радиальные отверстия в валу 4 могут быть выполнены в месте установки упорного подшипника 7 скольжения для увеличения подачи жидкой среды через последний и интенсификации его охлаждения, если это необходимо.
Настоящее изобретение может быть использовано в нефтеперерабатывающей, нефтяной, нефтегазовой и других отраслях промышленности при перекачке различных, в том числе и агрессивных, жидких сред.

Claims (1)

  1. Центробежный насос, содержащий корпус, одну или несколько рабочих ступеней, рабочие колеса которых установлены на рабочем валу, расположенном на опорах в корпусе, входной канал и выходной канал, сообщенный с выполненной в корпусе за рабочими ступенями напорной полостью, приводной вал и магнитную муфту, связывающую приводной вал с рабочим валом и состоящую из двух полумуфт с постоянными магнитами и разделительной перегородкой, выполненной в виде стакана, охватывающего установленную на конце рабочего вала одну из полумуфт и охватываемого установленной на приводном валу другой полумуфтой, а опоры вала выполнены в виде, по крайней мере, двух радиальных подшипников скольжения, один из которых расположен со стороны выхода из рабочих ступеней ниже магнитной муфты, а другой на конце рабочего вала со стороны входа в рабочие ступени насоса и установленного рядом с последним упорным подшипником скольжения, отличающийся тем, что напорная полость гидравлически связана через последовательно соединенные рабочий зазор в подшипнике скольжения рабочего вала, расположенном со стороны магнитной муфты, радиальный зазор, образованный между разделительной перегородкой магнитной муфты и полумуфтой, установленной на рабочем валу, осевой канал, выполненный в рабочем валу, и рабочий зазор подшипников скольжения, расположенных на конце рабочего вала со стороны входа в рабочие ступени, с входным каналом, при этом величина рабочих зазоров подшипников скольжения составляет от 0,0005 до 0,005 от наружного диаметра внутренней втулки радиального подшипника скольжения, причем в рабочем валу выполнены радиальные отверстия, посредством которых осевой канал рабочего вала сообщен с проточной частью, по крайней мере, одного из рабочих колес со стороны входа в него.
RU2007117550/06A 2007-05-11 2007-05-11 Центробежный насос RU2326270C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007117550/06A RU2326270C1 (ru) 2007-05-11 2007-05-11 Центробежный насос

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007117550/06A RU2326270C1 (ru) 2007-05-11 2007-05-11 Центробежный насос

Publications (1)

Publication Number Publication Date
RU2326270C1 true RU2326270C1 (ru) 2008-06-10

Family

ID=39581403

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007117550/06A RU2326270C1 (ru) 2007-05-11 2007-05-11 Центробежный насос

Country Status (1)

Country Link
RU (1) RU2326270C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754103C1 (ru) * 2021-02-04 2021-08-26 Общество с ограниченной ответственностью "Виллина" Высокотемпературный насос
RU208125U1 (ru) * 2021-06-04 2021-12-03 Александр Семенович Дубовик Вертикальный электроцентробежный агрегат
RU2777508C1 (ru) * 2021-10-04 2022-08-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Насос центробежный высоконапорный

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2754103C1 (ru) * 2021-02-04 2021-08-26 Общество с ограниченной ответственностью "Виллина" Высокотемпературный насос
RU208125U1 (ru) * 2021-06-04 2021-12-03 Александр Семенович Дубовик Вертикальный электроцентробежный агрегат
RU2777508C1 (ru) * 2021-10-04 2022-08-05 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный нефтяной технический университет" Насос центробежный высоконапорный
RU218598U1 (ru) * 2022-09-29 2023-06-01 Александр Семенович Дубовик Вертикальный электронасосный агрегат

Similar Documents

Publication Publication Date Title
EP2539994B1 (en) Cooling system for a multistage electric motor
AU2008239947B2 (en) Fluid pump system
US7338262B2 (en) Downhole compressor
CA2578295A1 (en) Rotodynamic fluid machine
CN106996397A (zh) 磁力泵的内冷却循环系统结构
CN105351206A (zh) 节段式多级离心泵
CN106246559B (zh) 一种双泵体双吸式屏蔽泵
RU2326270C1 (ru) Центробежный насос
EP3992463A1 (en) Multistage centrifugal pump with two parallel flows of pumped medium
RU2326269C1 (ru) Насос центробежный
CN205401146U (zh) 节段式多级离心泵
RU2379554C1 (ru) Центробежный насос
RU2754103C1 (ru) Высокотемпературный насос
RU2093710C1 (ru) Насос погружной центробежный модульный
US11629720B2 (en) Thrust box and skid for a horizontally mounted submersible pump
RU182667U1 (ru) Погружной центробежный насос
RU208125U1 (ru) Вертикальный электроцентробежный агрегат
RU2395722C1 (ru) Герметичный центробежный насос
RU2687673C1 (ru) Горизонтальная насосная установка
RU2365790C2 (ru) Шнековый насос
RU65585U1 (ru) Центробежный насос
RU67198U1 (ru) Насос центробежный
RU2599580C1 (ru) Теплообменник погружного маслозаполненного двигателя
RU47060U1 (ru) Центробежный многоступенчатый насос
RU107555U1 (ru) Комбинированный многоступенчатый центробежный насос

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Effective date: 20090911

QZ4A Changes in the licence of a patent

Effective date: 20090911

QB4A Licence on use of patent

Effective date: 20100205

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20090911

Effective date: 20130212

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20090911

Effective date: 20140313

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20090911

Effective date: 20190417

QC41 Official registration of the termination of the licence agreement or other agreements on the disposal of an exclusive right

Free format text: LICENCE FORMERLY AGREED ON 20090911

Effective date: 20190418

PC41 Official registration of the transfer of exclusive right

Effective date: 20190419

QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20190718

Effective date: 20190718