RU2315007C1 - Способ очистки воды от вредных примесей и установка очистки для осуществления способа - Google Patents

Способ очистки воды от вредных примесей и установка очистки для осуществления способа Download PDF

Info

Publication number
RU2315007C1
RU2315007C1 RU2006110501/15A RU2006110501A RU2315007C1 RU 2315007 C1 RU2315007 C1 RU 2315007C1 RU 2006110501/15 A RU2006110501/15 A RU 2006110501/15A RU 2006110501 A RU2006110501 A RU 2006110501A RU 2315007 C1 RU2315007 C1 RU 2315007C1
Authority
RU
Russia
Prior art keywords
water
air
liquid
jet apparatus
aeration
Prior art date
Application number
RU2006110501/15A
Other languages
English (en)
Other versions
RU2006110501A (ru
Inventor
Владимир Анатольевич Калаев
Владимир Михайлович Козлов
Original Assignee
Владимир Анатольевич Калаев
Владимир Михайлович Козлов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Владимир Анатольевич Калаев, Владимир Михайлович Козлов filed Critical Владимир Анатольевич Калаев
Priority to RU2006110501/15A priority Critical patent/RU2315007C1/ru
Publication of RU2006110501A publication Critical patent/RU2006110501A/ru
Application granted granted Critical
Publication of RU2315007C1 publication Critical patent/RU2315007C1/ru

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

Способ очистки воды включает аэрацию воды путем подачи в струйный аппарат для аэрации и смешения с воздухом, при этом аэрацию проводят в два этапа: на первом - аэрацию проводят путем смешения очищаемой воды с воздухом или обработанным в озонаторной установке воздухом, содержащим от 5 до 40% озона, после чего полученную смесь пропускают через завихритель потока, интенсифицирующий процесс растворения воздуха или воздушно-озоновой смеси в воде, затем проводят второй этап обработки воды воздухом или воздушно-озоновой смесью с получением воды с рН от 9 до 9,5. Полученную аэрированную воду подают в электрокоагулятор, где проводят ее электрохимическую обработку с коагуляцией примесей и получением на выходе воды с рН от 9,5 до 10. После этого проводят осветление и озонирование воды с ее одновременной обработкой парами азотной кислоты с восстановлением рН воды до 6,5 - 7,5, после чего проводят очистку воды в системе прудов. Установка очистки воды содержит струйный аппарат для аэрации воды, подключенный выходом к завихрителю потока, подключенному ко второму струйному аппарату для аэрации воды, последний выходом подключен к электрокоагулятору. Электрокоагулятор подключен к системе осветления воды, которая выходом подключена к струйному аппарату для озонирования воды, снабженному со стороны входа в него воздуха озонатором и выходом подключенному к системе прудов. Технический результат - снижение себестоимости очистки воды и повышение надежности работы установки очистки воды. 2 н. и 3 з.п. ф-лы, 1 ил.

Description

Изобретение относится к способам очистки природных и сточных вод и может быть использовано в системах водоснабжения городов, населенных пунктов, предприятий различных отраслей промышленности.
Известен способ, включающий озонирование, коагуляцию, осветление, фильтрование и обеззараживание с целью повышения степени очистки от растворенных соединений, перед озонированием воды последнюю подвергают обработке естественным биоценозом и микрофильтрации со скоростью движения 0,2-0,6 м/с. Вода с указанной скоростью пропускается через естественный биоценоз, где из нее высаждаются клетки фито- и зоопланктона. Развиваясь и накапливаясь, они поглощают из воды растворенные органические вещества-загрязнители. По мере накопления насыщенные частицы созревшего биоценоза выносятся водой на микрофильтр, где механически задерживаются и отделяются от воды. Далее воду обрабатывают озоном, выпавшие осадки коагулируют, подвергают осветлению, фильтруют и обезвреживают хлором (см., авторское свидетельство SU №1162754, кл. С 02 F 9/00, 23.06.1985).
Для реализации данного способа установка для очистки природных вод, известная из прототипа, содержит последовательно установленные: контактную камеру, отстойник, песчаный фильтр, устройство для обеззараживания; а также она снабжена установленным перед контактной камерой микрофильтром с приемным каналом, в котором размещается секция обработки воды естественным биоценозом.
Недостатком известного способа и установки является низкая эффективность очистки воды от растворенных соединений и примесей, при этом хлопья биоценоза разрушаются при транспортировке на микрофильтр, частицы биоценоза меньше минимального размера пор микрофильтра, проходя в воду, они вызывают вторичное ее загрязнение, при этом для размещения данной установки необходимы достаточно большие площади, а следовательно, и весьма большие крытые и отапливаемые помещения, так как при отрицательных температурах биоценоз гибнет. Применение микрофильтрации не дает ожидаемого эффекта ввиду быстрой и плотной забивки примесями пор фильтров. Насыщенная органикой вода требует для окисления примесей огромных расходов озона и воздушно-озоновой смеси. Экономически же и технологически выгодно обрабатывать озоном очищенную от органики воду. Перемешивание же воздушно-озоновой смеси с водой методами барботирования малоэффективно. А скорые безнапорные фильтры относительно слабо улавливают тонкодисперсные взвеси, даже если они хлопьевидной формы. И, наконец, хлорирование воды не приносит никакой пользы.
Хлорирование воды в России - наиболее распространенный метод обеззараживания воды с 1910 года. Учитывая непредсказуемые колебания содержания примесей, вредных веществ, органики и бионики в водах, невозможна точная дозировка хлора и хлорсодержащих веществ при обработке водных систем. В большинстве случаев при взаимодействии хлора с органическими веществами и бионикой образуются вторичные весьма токсичные химические соединения. Наличие остаточного хлора и его токсичных производных при постоянном приеме в пищу вызывают необратимые, все усиливающиеся отрицательные последствия в организмах человека, животных и растений. От общего ослабления и снижения иммунных способностей до распада тканей, образования экзем и влияния на генетику - вот неполный спектр результатов влияния хлора и его производных на живые организмы. Использование в технике подобной очистки воды приносит только отрицательные результаты: от коррозии и растворения металлов до нарушения технологических процессов и снижения качества выпускаемой продукции. При хлорировании воды хлор производит выборочное отравление жизненных центров бактерий, причем довольно медленное из-за необходимости длительного времени диффузии к цитоплазме. С повышением интенсивности хлорирования постепенно увеличивается число отмирающих микроорганизмов. Уничтожение большинства вирусов двуокисью хлора возможно при дозе хлора не ниже 1 мг/л. Возбудители полиомиелита уничтожаются при содержании хлора более 1 мг/л за время обработки не менее 3 ч. Хотя хлор и двуокись хлора обеспечивают достаточное действие, но не позволяют производить вирулицидную обработку, так как инактивация вирусов соединениями хлора требует весьма высокой концентрации хлора и значительной продолжительности контакта с ним - порядка 48-72 ч.
После обработки хлором вода имеет зеленовато-желтую окраску и порой неприятный привкус и запах из-за вторично образовавшихся фенолов.
Наиболее близким аналогом к изобретению по технической сущности и достигаемому результату является способ очистки природных и сточных вод, включающий этап механической очистки путем фильтрования и озонирования, при этом фильтрование проводят, по крайней мере, на двух просеивающих поверхностях с последующей фильтрацией в вакуум-фильтре, перед озонированием очищаемую воду подвергают, по крайней мере, двум операциям электрохимической очистки с удалением примесей и одновременной электрической обработкой воды, при этом перед первой операцией электрохимической очистки проводят, по крайней мере, одну механическую дезинтеграцию-активацию воды с одновременной аэрацией воздухом и выделением примесей, а перед второй операцией электрохимической очистки проводят, по крайней мере, одну операцию электромеханической и гидродинамической активации, после операции электромеханической очистки воду обрабатывают электрическим полем с разделением ее на два потока: кислый и щелочной, с раздельной фильтрацией этих потоков и их последующим объединением, после которого проводят озонирование с последующей контрольной фильтрацией (см. патент RU №2094394, кл. C 02 F 9/00, 27.10.1997)
Из этого же патента известна установка для очистки природных и сточных вод, содержащая фильтр и контактную камеру для озонирования, при этом фильтр выполнен в виде связанных между собой транспортными средствами просеивающих поверхностей, установка снабжена вакуум-фильтром предварительного этапа очистки, по крайней мере, двумя аппаратами электрохимической очистки, установленными перед первым аппаратом электрохимической очистки, по крайней мере, одним механическим дезинтегратором-активатором, эжектором и механическим аэротенком, установленными перед вторым аппаратом электромеханической очистки, по крайней мере, одним электромеханическим дезинтегратором и гидродинамическим активатором, аппаратом обработки воды электрическим полем, вакуум-фильтром для кислого потока, вакуум-фильтром для щелочного потока, по крайней мере, одним озонатором и вакуум-фильтром контрольной фильтрации.
В данном изобретении решается задача очистки вод с обеспечением вывода примесей безреагентным нехимическим путем, под которым понимается очистка воды без применения твердых и жидких химических реагентов. Однако данный способ очистки и установка для его реализации имеет сравнительно сложную технологическую схему очистки, что удорожает процесс очистки и сужает возможности реализации данного способа очистки воды.
Задачей, на решение которой направлено настоящее изобретение, является обеспечение глубокой очистки воды с использованием сравнительно простого оборудования с возможностью оптимизации технологической схемы очистки в зависимости от степени загрязнения исходной воды.
Техническим результатом от реализации данного способа очистки является снижение себестоимости очистки и повышение надежности работы установки очистки за счет создания простой гибкой технологии очистки воды.
Поставленная задача решается, а технический результат в части способа, как объекта изобретения, достигается за счет того, что способ очистки природных и сточных вод заключается в том, что воду аэрируют путем подачи в жидкостно-газовый струйный аппарат для аэрации воды и смешения с воздухом и озонируют путем подачи воды в жидкостно-газовый струйный аппарат для озонирования воды и смешения воды с воздушно-озоновой смесью, при этом аэрацию воды проводят в два этапа, при этом на первом этапе аэрацию проводят путем смешения очищаемой воды с воздухом или обработанным в озонаторной установке воздухом, содержащим от 5 до 40% озона, в жидкостно-газовом струйном аппарате, после чего полученную в жидкостно-газовом струйном аппарате газоводяную смесь пропускают через завихритель потока, в котором путем турбулизации потока интенсифицируют процесс растворения воздуха или воздушно-озоновой смеси в воде, после чего проводят второй этап обработки воды воздухом или воздушно-озоновой смесью во втором жидкостно-газовом струйном аппарате для аэрации воды с получением воды, имеющей рН, равный от 9 до 9,5, затем полученную аэрированную воду с нерастворившимся в ней воздухом или воздушно-озоновой смесью в виде двухфазного потока подают в электрокоагулятор, где проводят электрохимическую обработку воды с содержащимися в смеси с ней воздухом или озоном и воздухом с получением на выходе из электрокоагулятора воды, имеющей рН, равный от 9,5 до 10, и коагуляцией примесей воды, после этого проводят осветление воды в гидродинамическом фильтре и/или гравитационном отстойнике с отделением от воды скоагулированных примесей, затем проводят аэрацию воды воздушно-озоновой смесью и одновременной обработкой воды парами азотной кислоты с восстановлением рН воды до значения, равного от 6,5 до 7,5, после чего проводят окончательную очистку воды путем осаждения остаточных труднорастворимых примесей в системе прудов, после чего очищенную воду подают потребителю.
Вторым жидкостно-газовьм струйным аппаратом для аэрации воды рН воды, равный от 9 до 9,5, может быть получен путем многократно принудительной циркуляции воды в замкнутой емкости.
Жидкостно-газовым струйным аппаратом для озонирования воды рН воды, равный от 6,5 до 7,5, может быть получен путем многократно принудительной циркуляции воды в замкнутой емкости и регулирования подачи на всасывающую сторону жидкостно-газового струйного аппарата для озонирования воды озона, воздуха и паров азотной кислоты.
Поставленная задача решается, а технический результат в части устройства, как объекта изобретения, достигается за счет того, что установка очистки природных и сточных вод, содержащая жидкостно-газовый струйный аппарат для аэрации воды, жидкостно-газовый струйный аппарат для озонирования воды и озонатор воздуха, отличается тем, что дополнительно содержит завихритель потока, второй жидкостно-газовый струйный аппарат для аэрации воды, электрокоагулятор, гидродинамический фильтр и/или гравитационный отстойник и систему прудов, при этом жидкостно-газовый струйный аппарат для аэрации воды выходом подключен к завихрителю потока, который, в свою очередь, подключен к второму жидкостно-газовому струйному аппарату для аэрации воды, последний выходом подключен к электрокоагулятору, который выходом подключен к системе осветления воды, включающей гидродинамический фильтр и/или гравитационный отстойник, а система осветления воды выходом подключена к жидкостно-газовому струйному аппарату для озонирования воды, снабженному со стороны входа в него воздуха озонатором и выходом подключенному к системе прудов.
Второй жидкостно-газовый струйный аппарат для аэрации воды может быть установлен в замкнутой емкости, при этом второй жидкостно-газовый струйный аппарат расположен в емкости над зеркалом очищаемой воды, поступившей в замкнутую емкость из завихрителя потока, а всасывающей стороной второй жидкостно-газовый струйный аппарат сообщен с газовым пространством над зеркалом воды.
В ходе проведенного исследования было установлено, что регулировка по рН очищаемой воды по операциям очистки воды и использование для аэрирования и озонирования очищаемой воды жидкостно-газовых струйных аппаратов позволяет создать установки и реализовать технологическую схему очистки воды, которая позволяет вести постоянный контроль за ходом очистки воды, по ходу очистки менять режим работы того или иного оборудования в технологической схеме и обеспечить практически полную автоматизацию работы оборудования. Применение озона не может вызвать каких-либо отрицательных последствий с точки зрения образования химически вредных веществ в ходе окисления вредных примесей. В случае если количество озона превышает его необходимое количество для обработки очищаемой воды, избыточный озон как химически нестойкое вещество превращается в кислород. Использование жидкостно-газовых струйных аппаратов в сочетании с использованием завихрителя потока воды позволяет создать мелкодисперсную структуру воздуха или смеси воздуха с озоном в потоке воды с развитой площадью контакта воды и газа, в данном случае воздуха и озона, причем в сочетании с перепадами давления в проточной части струйного аппарата достигается возможность интенсификации окислительно-восстановительных реакций, усиливаются процессы коагуляции примесей, что позволяет интенсифицировать процесс очистки воды от примесей.
Размещение электрокоагулятора непосредственно после обработки очищаемой воды в струйных аппаратах позволяет еще больше сместить рН и довести его до 10. Это позволяет усилить процесс перевода растворенных в воде примесей в нерастворимые, выпадения примесей в осадок или отделения их от воды в процессе ее осветления и доочистки.
Аппаратурное оформление установки со струйными аппаратами позволяет легко регулировать количества воздуха и озона, который поступает в очищаемую воду в зависимости от качественных показателей обрабатываемой воды. Плавным изменением величины электрического тока в электрокоагуляторе достигается возможность в широких пределах регулировать физико-химическое воздействие электрической энергии на примеси очищаемой воды, а также регулировать процесс изменения рН очищаемой воды. Достигнутое на предыдущем этапе очистки равномерное распределение мелкодисперсных пузырьков в объеме очищаемой воды гарантирует эффективную электрохимическую очистку и воздействие электрической энергии на всю массу очищаемой воды.
Использование озона в сочетании с глубокой аэрацией воды позволяет провести процесс обеззараживания воды с уничтожением болезнетворных примесей (различного рода микроорганизмов, бактерий и вирусов).
Как правило, практически все виды бактерий погибают при содержании озона 2-8 мг/л, поддерживаемого в течение 1-3 мин. Доза озона 8-15 мг/л за три минуты разрушает все виды простейших организмов.
Таким образом, данный способ очистки воды и установка для его реализации позволяют обеспечить требуемые санитарные показатели очистки воды с использованием компактной установки, которая не требует больших площадей, работает во всех климатических условиях, простота в регулировке режима работы в зависимости от степени загрязненности очищаемой воды, обеспечивает полную дезинфекцию воды, уничтожает болезнетворные микробы, бактерии, не требует применения химических веществ и реагентов кроме озона, паров азотной кислоты и воздуха.
На чертеже представлена принципиальная схема установки для очистки природных и сточных вод.
Установка очистки природных и сточных вод содержит жидкостно-газовый струйный аппарат 1 для аэрации воды, жидкостно-газовый струйный аппарат 2 для озонирования воды и озонатор воздуха 3. Установка дополнительно содержит завихритель 4 потока, второй жидкостно-газовый струйный аппарат 5 для аэрирования воды, электрокоагулятор 6, гидродинамический фильтр 7 и/или гравитационный отстойник 8 и систему прудов 9. Жидкостно-газовый струйный аппарат 1 для аэрации воды выходом подключен к завихрителю 4 потока, который в свою очередь подключен второму жидкостно-газовому струйному аппарату 5 для аэрации воды, последний выходом подключен к электрокоагулятору 6, который выходом подключен к системе осветления воды, включающей гидродинамический фильтр 7 и/или гравитационный отстойник 8. Система осветления воды выходом подключена к жидкостно-газовому струйному аппарату 2, снабженному со стороны входа в него воздуха озонатором 3 и выходом подключенному к системе прудов 9.
Второй жидкостно-газовый струйный аппарат 5 для аэрации воды установлен в замкнутой емкости 10, при этом второй жидкостно-газовый струйный аппарат 5 расположен в емкости 10 над зеркалом очищаемой воды, поступившей в замкнутую емкость 10 из завихрителя 4 потока, а всасывающей стороной второй жидкостно-газовый струйный аппарат 5 сообщен с газовым пространством над зеркалом воды.
Предлагаемая установка работает следующим образом.
Воду аэрируют и озонируют путем подачи в жидкостно-газовые струйные аппараты 1, 5 и 2 для аэрации воды и смешения с воздухом. В качестве жидкостно-газовых струйных аппаратов 1, 5, 2 используется водогазовый эжектор, в который в качестве жидкой рабочей среды насосом подают очищаемую воду. Эжектируемой средой является воздух или воздушно-озоновая смесь, которую получают в результате озонолиза атмосферного воздуха в озонаторных установках 11 и 3. Величину концентрации озона, растворяемого в очищаемой воде, назначают по величине ее химического потребления кислорода (ХПК) исходя из условия:
Figure 00000002
где
Figure 00000003
- концентрация озона, растворенного в очищаемой воде;
ХПК - химическое потребление кислорода очищаемой воды, определяемое экспериментально для конкретной пробы очищаемой воды путем окисления бихроматом.
Аэрацию воды проводят в два этапа, при этом на первом этапе аэрацию проводят путем смешения очищаемой воды с воздухом или обработанным в озонаторной установке 11 воздухом, содержащим от 5 до 40% озона, в жидкостно-газовом струйном аппарате 1. В ходе исследований было выявлено, что добавка озона менее 5% практически не оказывает влияния на смещение рН в щелочную сторону по сравнению с аэрацией кислородом воздуха. Добавка более 40% не дает ощутимых результатов, однако при этом возрастает расход электроэнергии, который не окупается достигнутым результатом. Соотношение объемных расходов озоновоздушной смеси и очищаемой воды в проточной части жидкостно-газовых струйных аппаратов 1 и 5 предпочтительно поддерживать не менее чем 4:1. Режим течения смеси в камере смешения жидкостно-газовых струйных аппаратов 1 и 5 - эмульсионный со скоростью течения смеси не менее 23,5 м/с.
В жидкостно-газовом струйном аппарате 1 вышеуказанные компоненты смешивают, разгоняют, а затем тормозят. Смешение и разгон осуществляют при давлении ниже атмосферного, вследствие чего при использовании воздушно-озоновой смеси для аэрации воды в струйном аппарате 1 идет частичная деаэрация воды с одновременным приоритетным растворением в ней озона из состава воздушно-озоновой смеси в силу его физико-химических свойств. Предпочтительно торможение осуществлять в результате удара высокоскоростного потока газоводяной смеси о стенку или зеркало воды, что позволяет интенсифицировать процесс взаимодействия воды с кислородом и озоном. Для этого струйный аппарат 1 выполняют с жидкостной емкостью 12 на выходе из струйного аппарата 1. В результате растворяют в очищаемой воде до 50-70% озона, содержащегося в воздушно-озоновой смеси на входе в эжектор.
Затем полученную в жидкостно-газовом струйном аппарате 1 газоводяную смесь пропускают через завихритель потока 4, в котором путем турбулизации потока интенсифицируют процесс растворения воздуха или воздушно-озоновой смеси в воде. Аэрацию проводят в газоводяном потоке пузырьковой структуры с числом Рейнольдса Re≥1500 (число Re определяется по заутеровскому диаметру газового пузыря) в условиях избыточного давления и числом Струхаля Sh≥10.
Figure 00000004
где V - скорость движения газовоздушной смеси;
τ - время пребывания элементарного объема смеси в завихрителе потока 4 при турбулентном режиме течения;
l - длина пути, который проходит элементарный объем газоводяной смеси в завихрителе 4.
В результате в воде дорастворяют еще от 15 до 35% озона, содержащегося в исходной воздушной среде. Далее проводят второй этап обработки воды воздухом или воздушно-озоновой смесью во втором жидкостно-газовом струйном аппарате 5 (возможно использование нескольких параллельно подключенных жидкостно-газовых струйных аппаратов 5) для аэрации воды с получением воды, имеющей рН, равный от 9 до 9,5. Наиболее предпочтительно, когда вторым жидкостно-газовым струйным аппаратом 5 для аэрации воды получают рН воды, равный от 9 до 9,5, путем многократно принудительной циркуляции воды в замкнутой емкости 10, что позволяет регулировать режим работы установки в зависимости от степени загрязнения воды без использования какого-либо дополнительного оборудования, при этом аэрацию осуществляют в замкнутом объеме емкости 10 путем дорастворения озона в процессе смешения в струйном аппарате 5 очищаемой воды и воздушно-озоновой смеси, выделившейся над зеркалом воды в емкости 10 в результате естественной сепарации газовой фазы из водяного объема. В процессе многократной циркуляции воды через жидкостно-газовый струйный аппарат 5 или аппараты 5 в качестве жидкой рабочей среды в струйный аппарат 5 поступает очищаемая вода в количестве не более 50% от общего расхода воды, подлежащей очистке. Воду и воздушно-озоновую смесь смешивают в проточной части струйного аппарата 5 с образованием эмульсионного режима течения потока, который разгоняют до скорости не менее 23,5 м/с, а затем тормозят в результате лобового удара о стенку либо о встречную струю (в случае использования нескольких струйных аппаратов 5). При этом дорастворяют в очищаемой воде остатки озона с одновременным ее насыщением кислородом воздуха. Соотношение объемных расходов воздушной среды и воды в проточной части струйного аппарата 5 поддерживают не менее чем 4:1.
После этого часть воздушной смеси, нерастворившейся в очищаемой воде, может быть сброшена в атмосферу (при превышении указанных выше соотношений), а полученную аэрированную воду с нерастворившимся в ней воздухом или воздушно-озоновой смесью в виде двухфазного потока подают в электрокоагулятор 6, где проводят электрохимическую обработку воды с содержащимися в смеси с ней воздухом или озоном и воздухом с получением на выходе из электрокоагулятора 6 воды, имеющей рН, равный от 9,5 до 10, и коагуляцией примесей воды. В качестве электрокоагулятора 6 для очистки больших потоков сильноминерализованной воды может быть использован многокамерный проточного типа электрокоагулятор 6 с соосньми неподвижными блоками пластинчатых электродов.
После этого проводят осветление воды в гидродинамическом фильтре 7 и/или гравитационном отстойнике 8 с отделением от воды скоагулированных примесей. При отделении в гидродинамическом фильтре 7 от 90 до 60% взвешенных частиц, поступающих из электрокоагулятора 6, можно обойтись без гравитационного отстойника (для 90% отделения) или использовать гравитационный отстойник 8 в виде прудов меньших размеров (для 60% отделения) по сравнению с принятыми в настоящее время размерами прудов гравитационной сепарации.
Затем проводят аэрацию воды воздушно-озоновой смесью и одновременной обработкой воды парами азотной кислоты с восстановлением рН воды до значения, равного от 6,5 до 7,5. Пары азотной кислоты получают из атмосферного воздуха в результате воздействия на последний коронного разряда озонатора 3. При этом в результате коронного разряда электрического тока во влажном воздухе образуются окислы азота, которые при взаимодействии с парами воды превращаются в пары азотной кислоты. Если влажность воздуха недостаточна для формирования паров азотной кислоты, в воздухе дополнительно распыляется вода. При этом полученные пары азотной кислоты смешиваются в жидкостно-газовом струйном аппарате 2 с потоком очищаемой воды. В ходе работы проводят контроль рН для регулирования количества подаваемых паров азотной кислоты. В качестве жидкой рабочей среды в струйном аппарате 2 используют очищаемую воду. Соответственно, эжектируемая среда - воздух и озон с парами азотной кислоты, выходящий из озонатора 3. Соотношение объемных расходов воздушной и водяной сред поддерживают не менее чем 4:1. В результате взаимодействия кислой и щелочной сред получают воду с рН, близким к нейтральному - 7.
Реально жидкостно-газовым струйным аппаратом 2 для озонирования воды получают рН воды, равный от 6,5 до 7,5, причем предпочтительно проводить этот процесс путем многократно принудительной циркуляции воды в замкнутой емкости 13 с регулированием подачи на всасывающую сторону жидкостно-газового струйного аппарата 2 для озонирования воды озона, воздуха и паров азотной кислоты.
Затем очищаемую воду с рН, близким к нейтральной среде, подают на окончательную доочистку в пруды 9 естественной аэрации с работающей микрофлорой, где путем осаждения остаточных труднорастворимых примесей в системе прудов 9 происходит деминерализация воды в результате биохимических процессов, после чего очищенную воду подают потребителю.
В результате реализации описанного способа очистки удалось:
- уменьшить расход электроэнергии на электрокоагуляцию;
- снизить концентрацию растворяемого в процессе анодного растворения коагулянта, например алюминия или железа;
- изменить окислительный потенциал с переходом в более устойчивое состояние соединений, обусловливающих суммарный показатель химического потребления кислорода;
- усилить окисляющую способность кислорода путем интенсификации процесса его взаимодействия с водой в проточной части жидкостно-газовых струйных аппаратов и многократной циркуляции воды в процессе взаимодействия;
- улучшить качество осветления больших потоков воды.
Описанные способ очистки и установка для его реализации могут быть использованы для очистки больших потоков воды от вредных примесей, в частности могут быть использованы в системах жилищно-коммунального хозяйства и очистки воды для промышленных предприятий с очисткой воды от органических, фосфорсодержащих, азотсодержащих, фенолсодержащих и поверхностно-активных веществ, нефтепродуктов, металлов, например железа, марганца, карбонатов, и других вредных веществ.

Claims (5)

1. Способ очистки природных и сточных вод, заключающийся в том, что воду аэрируют путем подачи в жидкостно-газовый струйный аппарат для аэрации воды и смешения с воздухом и озонируют путем подачи воды в жидкостно-газовый струйный аппарат для озонирования воды и смешения воды с воздушно-озоновой смесью, отличающийся тем, что аэрацию воды проводят в два этапа, при этом на первом этапе аэрацию проводят путем смешения очищаемой воды с воздухом или обработанным в озонаторной установке воздухом, содержащим от 5 до 40% озона, в жидкостно-газовом струйном аппарате, после чего полученную в жидкостно-газовом струйном аппарате газоводяную смесь пропускают через завихритель потока, в котором путем турбулизации потока интенсифицируют процесс растворения воздуха или воздушно-озоновой смеси в воде, после чего проводят второй этап обработки воды воздухом или воздушно-озоновой смесью во втором жидкостно-газовом струйном аппарате для аэрации воды с получением воды, имеющей рН, равный от 9 до 9,5, затем полученную аэрированную воду с нерастворившимся в ней воздухом или воздушно-озоновой смесью в виде двухфазного потока подают в электрокоагулятор, где проводят электрохимическую обработку воды с содержащимися в смеси с ней воздухом или озоном и воздухом с получением на выходе из электрокоагулятора воды, имеющей рН, равный от 9,5 до 10, и коагуляцией примесей воды, после этого проводят осветление воды в гидродинамическом фильтре и/или гравитационном отстойнике с отделением от воды скоагулированных примесей, затем проводят аэрацию воды воздушно-озоновой смесью и одновременной обработкой воды парами азотной кислоты с восстановлением рН воды до значения, равного от 6,5 до 7,5, после чего проводят окончательную очистку воды путем осаждения остаточных труднорастворимых примесей в системе прудов, после чего очищенную воду подают потребителю.
2. Способ очистки по п.1, отличающийся тем, что вторым жидкостно-газовым струйным аппаратом для аэрации воды получают рН воды, равный от 9 до 9,5, путем многократно-принудительной циркуляции воды в замкнутой емкости.
3. Способ очистки по п.1, отличающийся тем, что жидкостно-газовым струйным аппаратом для озонирования воды получают рН воды, равный от 6,5 до 7,5, путем многократно-принудительной циркуляции воды в замкнутой емкости и регулирования подачи на всасывающую сторону жидкостно-газового струйного аппарата для озонирования воды озона, воздуха и паров азотной кислоты.
4. Установка очистки природных и сточных вод, содержащая жидкостно-газовый струйный аппарат для аэрации воды, жидкостно-газовый струйный аппарат для озонирования воды и озонатор воздуха, отличающаяся тем, что установка дополнительно содержит завихритель потока, второй жидкостно-газовый струйный аппарат для аэрации воды, электрокоагулятор, гидродинамический фильтр и/или гравитационный отстойник и систему прудов, при этом жидкостно-газовый струйный аппарат для аэрации воды выходом подключен к завихрителю потока, который, в свою очередь, подключен к второму жидкостно-газовому струйному аппарату для аэрации воды, последний выходом подключен к электрокоагулятору, который выходом подключен к системе осветления воды, включающей гидродинамический фильтр и/или гравитационный отстойник, а система осветления воды выходом подключена к жидкостно-газовому струйному аппарату для озонирования воды, снабженному со стороны входа в него воздуха озонатором и выходом подключенному к системе прудов.
5. Установка по п.4, отличающаяся тем, что второй жидкостно-газовый струйный аппарат для аэрации воды установлен в замкнутой емкости, при этом второй жидкостно-газовый струйный аппарат расположен в емкости над зеркалом очищаемой воды, поступившей в замкнутую емкость из завихрителя потока, а всасывающей стороной второй жидкостно-газовый струйный аппарат сообщен с газовым пространством над зеркалом воды.
RU2006110501/15A 2006-03-23 2006-03-23 Способ очистки воды от вредных примесей и установка очистки для осуществления способа RU2315007C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006110501/15A RU2315007C1 (ru) 2006-03-23 2006-03-23 Способ очистки воды от вредных примесей и установка очистки для осуществления способа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006110501/15A RU2315007C1 (ru) 2006-03-23 2006-03-23 Способ очистки воды от вредных примесей и установка очистки для осуществления способа

Publications (2)

Publication Number Publication Date
RU2006110501A RU2006110501A (ru) 2007-10-10
RU2315007C1 true RU2315007C1 (ru) 2008-01-20

Family

ID=38952585

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006110501/15A RU2315007C1 (ru) 2006-03-23 2006-03-23 Способ очистки воды от вредных примесей и установка очистки для осуществления способа

Country Status (1)

Country Link
RU (1) RU2315007C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649425C1 (ru) * 2016-12-30 2018-04-03 Андрей Андреевич Степкин Способ и установка для предотвращения образования запахов дурно пахнущих веществ в системах транспортировки и очистки сточных вод
RU2709090C1 (ru) * 2019-05-07 2019-12-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодский государственный университет" (ВоГУ) Способ удаления из природных вод ионов марганца и железа при подготовке питьевой воды

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2649425C1 (ru) * 2016-12-30 2018-04-03 Андрей Андреевич Степкин Способ и установка для предотвращения образования запахов дурно пахнущих веществ в системах транспортировки и очистки сточных вод
RU2709090C1 (ru) * 2019-05-07 2019-12-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Вологодский государственный университет" (ВоГУ) Способ удаления из природных вод ионов марганца и железа при подготовке питьевой воды

Also Published As

Publication number Publication date
RU2006110501A (ru) 2007-10-10

Similar Documents

Publication Publication Date Title
KR100848117B1 (ko) 복합 고도정수처리 장치
WO2017079672A1 (en) Electronic water pre-treatment equipment and methods
WO2013144664A9 (en) Process and device for electrochemical treatment of industrial wastewater and drinking water
CN108585283B (zh) 羟基自由基杀灭水华微藻与矿化有机污染物处理系统及其方法
JP2006263505A (ja) 水処理方法及び装置
US20040026335A1 (en) Multi-stage photo-catalytic oxidation fluid treatment system
CN105060577B (zh) 一种涂料废水处理工艺
CN105330004B (zh) 一种中水回用的处理工艺
JP4073072B2 (ja) 膜法による原水の脱塩方法および脱塩設備
AU2009200113A1 (en) Water purification
JP2010214263A (ja) オゾン溶解装置及びオゾン自動溶解システム
RU2315007C1 (ru) Способ очистки воды от вредных примесей и установка очистки для осуществления способа
RU2284966C2 (ru) Способ получения питьевой воды путем холодного опреснения высокоминерализованных водных растворов и устройство для его осуществления
RU2094394C1 (ru) Способ очистки природных и сточных вод и установка для его осуществления
CN108423883B (zh) 羟基自由基降解矿化喹诺酮类抗生素的方法和装置
RU87421U1 (ru) Устройство для очистки сточной воды
Jin et al. A dispersed-ozone flotation (DOF) separator for tertiary wastewater treatment
US6274053B1 (en) Ozonation process
KR100711259B1 (ko) 정화처리 장치
WO2019243357A1 (en) Method and system for the purification of contaminated water
CN105060586B (zh) 一种涂料废水处理装置
RU2755988C1 (ru) Способ очистки сточных вод
JPH0523682A (ja) オゾン水利用の水質改善装置
RU2170713C2 (ru) Установка для очистки и обеззараживания водных сред
CN210133963U (zh) 一种盐化工废水处理装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130324