RU2311719C1 - Система управления полумостовым транзисторным инвертором - Google Patents

Система управления полумостовым транзисторным инвертором Download PDF

Info

Publication number
RU2311719C1
RU2311719C1 RU2006124111/09A RU2006124111A RU2311719C1 RU 2311719 C1 RU2311719 C1 RU 2311719C1 RU 2006124111/09 A RU2006124111/09 A RU 2006124111/09A RU 2006124111 A RU2006124111 A RU 2006124111A RU 2311719 C1 RU2311719 C1 RU 2311719C1
Authority
RU
Russia
Prior art keywords
inverter
control system
transistors
bridge
input
Prior art date
Application number
RU2006124111/09A
Other languages
English (en)
Inventor
Лев Теодорович Магазинник (RU)
Лев Теодорович Магазинник
Original Assignee
Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" filed Critical Государственное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет"
Priority to RU2006124111/09A priority Critical patent/RU2311719C1/ru
Application granted granted Critical
Publication of RU2311719C1 publication Critical patent/RU2311719C1/ru

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

Предлагается в типовую систему управления полумостовым транзисторным инвертором ввести дополнительно логическую схему в составе двух логических элементов «И» и двух датчиков напряжения на конденсаторах инвертора, причем выходы упомянутых датчиков напряжения и выходы упомянутой системы управления инвертором подключены соответственно к входам двухвходовых логических элементов «И», а выходы упомянутых логических элементов «И» связаны с соответствующими управляющими входами транзисторов полумостового транзисторного инвертора, что позволило получить технический результат - уменьшить потери в транзисторах упомянутого инвертора. 3 ил.

Description

Предлагаемое изобретение относится к области электротехники, а именно к системам управления инверторами.
Транзисторные инверторы как однотактные, так и двухтактные нашли широкое применение в составе различных вторичных источников питания [1, 2, 3].
Системы управления транзисторными инверторами разработаны на уровне типовых микроконтроллеров [4].
Особой разновидностью двухтактных инверторов является так называемый полумостовой инвертор [4, 5], представляющий собой два последовательно соединенных транзистора и два последовательно соединенных конденсатора, общие точки которых представляют собой диагональ переменного тока, в которую включена нагрузка, а свободные концы объединены соответственно и подключены к источнику постоянного напряжения. Как и в мостовых инверторах, транзисторы шунтированы обратными диодами. Система управления полумостовым транзисторным инвертором, как уже упомянуто, типовая и приведена в [4] на стр.376, рис.33.12. Эта система применяется для управления любыми двухтактными инверторами и может отличаться лишь числом выходных каналов (для мостового - четыре канала, для полумостового - два канала).
Данная система управления полумостовым транзисторным инвертором является наиболее близким устройством того же назначения к заявленному изобретению по совокупности признаков и принимается за прототип.
Система [4] представляет собой «классическую» систему широтно-импульсной модуляции (ШИМ) и, в совокупности с полумостовым транзисторным инвертором и автоматическим регулятором, приведена в упрощенном виде на фиг.1:
1 - полумостовой транзисторный инвертор;
2 - типовая система широтно-импульсной модуляции [4] (стр.376, рис.33.12);
3 - автоматический регулятор.
К причинам, препятствующим достижению указанного ниже технического результата при использовании как известных аналогов, так и прототипа, относится то, что в известном устройстве система управления генерирует на управляющие входы транзисторов инвертора импульсы, скважность которых определяет продолжительность включенного состояния транзисторов.
Однако в полумостовом инверторе необходимая продолжительность включенного состояния транзисторов уменьшается с ростом нагрузки. То есть необходимая продолжительность включенного состояния транзистора может быть значительно меньше, чем длительность отпирающих импульсов с выхода системы управления. Это приводит к неоправданным потерям в транзисторах.
Технический результат - уменьшение потерь в транзисторах полумостового инвертора.
Указанный технический результат при осуществлении изобретения достигается тем, что в систему управления полумостовым транзисторным инвертором по принципу широтно-импульсной модуляции, выходные каналы которой связаны с управляющими входами транзисторов полумостового инвертора, а вход подключен к выходу автоматического регулятора, дополнительно введены два логических двухвходовых элемента «И» и два датчика напряжения на конденсаторах полумостового транзисторного инвертора, причем выходы упомянутых датчиков напряжения и выходы упомянутой системы управления полумостовым транзисторным инвертором подключены соответственно к входам двухвходных логических элементов «И», а выходы упомянутых двухвходовых логических элементов «И» связаны с соответствующими управляющими входами транзисторов полумостового транзисторного инвертора. Это позволило автоматически согласовать длительность отпирающих импульсов на управляющих входах транзисторов полумостового транзисторного инвертора с необходимой длительностью включения упомянутых транзисторов и, таким образом, уменьшить потери в транзисторах.
Сущность изобретения поясняется фиг.2, на которой представлена упрощенная схема устройства, и фиг.3, где даны диаграммы напряжений на конденсаторах и внешняя характеристика полумостового транзисторного инвертора.
Предлагаемая система управления полумостовым транзисторным инвертором (фиг.2) содержит полумостовой транзисторный инвертор 1, систему управления 2 и автоматический регулятор 3. В состав инвертора входят два конденсатора 4 и 5, соединенные между собой последовательно, два транзистора 6 и 7, также соединенные последовательно, и два обратных диода 8 и 9, шунтирующие в обратном направлении упомянутые транзисторы 6 и 7. Общие точки конденсаторов 4 и 5 и транзисторов 6 и 7 образуют диагональ переменного тока, в которую включена нагрузка 10.
Свободные концы конденсаторов 4, 5 и транзисторов 6, 7 объединены и соответственно подключены к источнику постоянного напряжения.
Таким образом, блок 1 представляет собой полумостовой транзисторный инвертор, идентичный известным аналогам и прототипу.
Как упомянуто выше, блок 2 содержит типовую систему управления транзисторным полумостовым инвертором, построенную по принципу широтно-импульсной модуляции и имеющую два выхода (по числу транзисторов инвертора). Подробная схема блока 2 приведена в [4] на стр.376, рис.33.12. К входу блока 2 подключен автоматический регулятор 3, также являющийся типовым узлом, обычно представляющим аналоговый компаратор. Дополнительными элементами схемы фиг.2 являются два датчика напряжения 11 и 12 и два логических двухвходовых элемента «И» 13 и 14. Датчик напряжения 11 включен входом параллельно конденсатору 4, а датчик напряжения 12 включен входом параллельно конденсатору 11.
Выход датчика 11 подключен к одному из входов логического двухвходового элемента «И» 13, а выход датчика напряжения 12 подключен к одному из входов логического двухвходового элемента 14. Свободные входы логических двухвходных элементов «И» 13 и 14 соединены с соответствующими выходами системы управления 2, а выходы логических двухвходных элементов «И» 13 и 14 подключены к соответствующим управляющим входам транзисторов 6 и 7. Для простоты промежуточные цепи гальванической развязки и формирования сигналов с датчиков 11, 12 на фиг.2 не показаны.
Устройство (фиг.2) функционирует следующим образом. При включении напряжения U конденсаторы 4, 5 заряжаются каждый до 0,5 U. Пусть из системы управления 2 поступил импульс напряжения U1y (диаграмма 1 на фиг.3) на вход логического двухвходного элемента «И» 13. На другом входе логического двухвходного элемента 13 также есть сигнал с датчика напряжения 11, поэтому с выхода логического двухвходного элемента «И» 13 поступит на вход транзистора 6 логическая единица и транзистор 6 включится.
Если ток нагрузки мал, то конденсатор 4 за время действия τ (фиг.3) отпирающего импульса U1y не успеет разрядиться, поэтому транзистор 6 будет отперт в течение времени τ.
После исчезновения отпирающего импульса из системы управления 2 в течение времени Δt1 (диаграмма 2 на фиг.3) импульс со второго входа системы управления 2 не поступает. Время Δt1 необходимо для восстановления запирающих свойств транзистора, а установка величины Δt1 предусмотрена в типовой системе управления 2. По истечении времени Δt1 поступает отпирающий импульс U2y из системы управления 2 на вход логического двухвходного элемента «И» 14. На втором входе логического двухвходного элемента «И» 14 сигнал с датчика напряжения 12 есть (диаграмма 4 на фиг.3) и на вход транзистора 7 поступает отпирающий импульс. В дальнейшем цикл повторяется.
Таким образом, при малых токах нагрузки время отпертого состояния транзисторов 6, 7 определяется только «шириной» τ (диаграмма 1, фиг.3) отпирающего импульса из системы управления 2.
Если ток нагрузки превысит некоторую критическую величину Iкр (см. внешнюю характеристику устройства на диаграмме 7, фиг.3), конденсаторы 4 и 5 будут успевать разряжаться полностью за полупериод работы инвертора.
Устройство в этом режиме обеспечивает постоянную мощность в нагрузке (Ud·Id=const). В схеме прототипа (фиг.1) транзисторы при любом токе нагрузки отперты в течение времени τ, поэтому после разряда соответствующего конденсатора, например 4, накопленная в индуктивности нагрузки 10 электромагнитная энергия разряжается по цепи: нагрузка 10 - транзистор 6, конденсатор 4. При этом затягивается время схода тока до нуля и создаются ненужные дополнительные потери в транзисторе, да и во всем контуре разряда конденсатора.
В предлагаемом устройстве (фиг.2) как только напряжение на конденсаторе, например, 4 достигает нуля, исчезнет «единица» на выходе логического двухвходного элемента «И» 13, транзистор 6 запрется, а накопленная в нагрузке 10 электромагнитная энергия будет разряжаться по контуру: нагрузка 10 - диод 9 - конденсатор 5 - нагрузка 10. Кроме того, ток разряда пойдет и через выходную емкость источника питания.
Потери в транзисторе 6 на этом интервале (Δt2 на диаграмме 6, фиг.3) исключаются, а запасенная в нагрузке электромагнитная энергия частично переходит в конденсатор 5, частично возвращается в источник питания. Очевидно, что эффективность предложенного устройства тем выше, чем больше ток нагрузки.
Например, при использовании инвертора для питания через понижающий трансформатор электрической дуги в сварочном аппарате работа устройства протекает либо при холостом ходе, либо при токах больше Iкр (фиг.3, диаграмма 7). В этом режиме Δt2>>Δt1 (фиг.3, диаграммы 2, 6) и предложенное устройство существенно уменьшает непроизводительные потери в транзисторах инвертора.
Технический результат достигнут весьма простыми средствами.
Источники информации
1. «Transpoket» - Австрия, каталог, 1995-1996.
2. «Al - Технотрон» - Россия, проспект фирмы, 1995.
3. «Invertec V-130-S-Linkoln» - США, каталог, 1998-1999.
4. В.А.Прянишников. «Электроника», С.-Петербург, 1988, 400 с.
5. Источники вторичного электропитания. Под ред. Ю.И.Конева. М.: Радио и связь, 1983.

Claims (1)

  1. Система управления полумостовым транзисторным инвертором по принципу широтно-импульсной модуляции, выходные каналы которой связаны с управляющими входами транзисторов полумостового инвертора, а вход подключен к выходу автоматического регулятора, отличающаяся тем, что в упомянутую систему управления дополнительно введены два логических двухвходовых элемента И и два датчика напряжения на конденсаторах полумостового транзисторного инвертора, причем выходы упомянутых датчиков напряжения и выходы упомянутой системы управления подключены соответственно к входам двухвходовых логических элементов И, а выходы упомянутых двухвходовых логических элементов И связаны с соответствующими управляющими входами транзисторов полумостового транзисторного инвертора.
RU2006124111/09A 2006-07-05 2006-07-05 Система управления полумостовым транзисторным инвертором RU2311719C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006124111/09A RU2311719C1 (ru) 2006-07-05 2006-07-05 Система управления полумостовым транзисторным инвертором

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006124111/09A RU2311719C1 (ru) 2006-07-05 2006-07-05 Система управления полумостовым транзисторным инвертором

Publications (1)

Publication Number Publication Date
RU2311719C1 true RU2311719C1 (ru) 2007-11-27

Family

ID=38960407

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006124111/09A RU2311719C1 (ru) 2006-07-05 2006-07-05 Система управления полумостовым транзисторным инвертором

Country Status (1)

Country Link
RU (1) RU2311719C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2529871C1 (ru) * 2013-06-18 2014-10-10 Общество с ограниченной ответственностью "Центр энергетических технологий" Адаптивный регулятор сварочного тока

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2529871C1 (ru) * 2013-06-18 2014-10-10 Общество с ограниченной ответственностью "Центр энергетических технологий" Адаптивный регулятор сварочного тока

Similar Documents

Publication Publication Date Title
US10211719B2 (en) Power converter
US8242754B2 (en) Resonant power converter with half bridge and full bridge operations and method for control thereof
US9041372B2 (en) Wide output voltage range switching power converter
US7888918B2 (en) Control circuit for multi-phase converter
US9866146B2 (en) Enhanced flyback converter
US20090237133A1 (en) Switching control circuit for multi-channels and multi-phases power converter operated at continuous current mode
US7535733B2 (en) Method of controlling DC-to-DC converter whereby switching control sequence applied to switching elements suppresses voltage surges at timings of switch-off of switching elements
CA3044742C (en) Synchronous rectification of llc converters based on homopolarity
US10356861B2 (en) Constant output current LED driver
US6664774B2 (en) Offset peak current mode control circuit for multiple-phase power converter
US20170346398A1 (en) Power converters
US8830701B2 (en) DC-DC converter
US20140133206A1 (en) Full-bridge power converter
Elserougi et al. A bidirectional non-isolated hybrid modular DC–DC converter with zero-voltage switching
da Costa et al. High-gain Boost-Boost-Flyback converter for renewable energy sources applications
RU2311719C1 (ru) Система управления полумостовым транзисторным инвертором
Gu et al. Research on control type soft switching converters
JP2005245160A (ja) 電力変換装置
US20180062503A1 (en) Pfc with stacked half-bridges on dc side of rectifier
US20210218341A1 (en) Multilevel step-up inverter based on distributed passive components
Deshpande et al. Study and analysis of three phase Z source inverter using MATLAB
RamaRajeswari et al. Design of Full Bridge Buck Converter with a Fly back Snubber for High Power Applications
RU2325024C1 (ru) Тиристорно-конденсаторный преобразователь
Arnaudov et al. Resonant Inverter Stage in Modular Converter for Electric Vehicle Charging
George et al. A Single-Step Bidirectional Switch Commutation Strategy for PWM Controlled AC/DC Resonant Converters

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080706