RU2309559C2 - Электростатический ускоритель ионов - Google Patents

Электростатический ускоритель ионов Download PDF

Info

Publication number
RU2309559C2
RU2309559C2 RU2005137423/06A RU2005137423A RU2309559C2 RU 2309559 C2 RU2309559 C2 RU 2309559C2 RU 2005137423/06 A RU2005137423/06 A RU 2005137423/06A RU 2005137423 A RU2005137423 A RU 2005137423A RU 2309559 C2 RU2309559 C2 RU 2309559C2
Authority
RU
Russia
Prior art keywords
column
base
conductor
accelerator
knm
Prior art date
Application number
RU2005137423/06A
Other languages
English (en)
Other versions
RU2005137423A (ru
Inventor
Дмитрий Дмитриевич Иосселиани (RU)
Дмитрий Дмитриевич Иосселиани
Original Assignee
Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации Институт теоретической и экспериментальной физики им. А.И. Алиханова"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации Институт теоретической и экспериментальной физики им. А.И. Алиханова" filed Critical Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации Институт теоретической и экспериментальной физики им. А.И. Алиханова"
Priority to RU2005137423/06A priority Critical patent/RU2309559C2/ru
Publication of RU2005137423A publication Critical patent/RU2005137423A/ru
Application granted granted Critical
Publication of RU2309559C2 publication Critical patent/RU2309559C2/ru

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Abstract

Изобретение относится к электрофизическим установкам, а именно к ускорителям заряженных частиц. В предлагаемом ускорителе заряд кондуктора обеспечивается электронным резонансным высокочастотным линейным ускорителем /ЭРВЧУ/, размещенным в полости кондуктора. Ускоренный в ЭРВЧУ пучок электронов тормозится в вакуумированной трубке торможения ТТЭП, соединяющей выход ЭРВЧУ с основанием колонны, находящимся под потенциалом земли. Кинетическая энергия электронного пучка, полученная им в ЭРВЧУ, расходуется на ускорение ионного пучка в электростатическом поле, создаваемом электронным пучком при его торможении в ТТЭП. Энергия, необходимая для на ускорения электронного пучка в ЭРВЧУ, обеспечивается электродвигателем, размещенным в основании колонны и передающим вращательный момент валу электрогенератора, укрепленному в кондукторе посредством вала из диэлектрика /ВД/. На ВД равномерно по длине размещены охватывающие его металлические кольца, на каждое из которых от высоковольтного делителя подается электропотенциал, значения которого увеличиваются по мере удаления кольца от основания колонны и приближения к кондуктору. Потенциал подается посредством скользящего по кольцу контакта, укрепленного на металлической полке и электрически с нею связанного. На полках колонны размещено оборудование для импульсного электропитания соленоидов, размещенных на ТТЭП для фокусировки электронного пучка. Техническим результатом заявленного изобретения является повышение интенсивности ионного тока. 2 ил.

Description

Изобретение относится к электрофизическим установкам, а именно к ускорителям заряженных частиц, и может быть использовано в ряде приложений, в частности, как генератор нейтронов.
Известен ускоритель на основе трансформатора с изолированным сердечником, снабженного выпрямителем (А.Н.Лебедев, А.В.Шальнов. Основы физики и техники ускорителей, т.1, с.122). Ускоритель обеспечивает большие средние мощности (10 - 20 кВт), однако напряжение, которое удается получить на таком ускорителе, не превышает одного мегавольта.
Известен (А.Н.Лебедев, А.В.Шальнов. Основы физики и техники ускорителей, т.1, с.124 рис.2.13) электростатический ускоритель ионов, содержащий выполненную из электроизоляционного материала полую колонну, на которой укреплен полый металлический кондуктор, размещенное в кондукторе зарядное устройство, электродвигатель зарядного устройства /ЭДЗУ/, размещенный в основании колонны, ускорительную трубку, размещенную в колонне, один конец которой укреплен в основании колонны, а высоковольтный конец снабжен ионным источником.
В этом устройстве, принятом за прототип, удается получать существенно более высокие ускоряющие потенциалы, чем в вышеописанном ускорителе с трансформатором. Однако ускоряемые токи составляют единицы миллиампер. Величина токов ограничивается электрической прочностью зарядной ленты.
Задача изобретения состоит в том, чтобы увеличить интенсивность ускоряемых токов.
Технический результат достигается тем, что ускорительная трубка снабжена К идентичными каналами транспортировки пучка и К идентичными источниками ионов, зарядное устройство содержит электронный резонансный высокочастотный ускоритель /ЭНВЧУ/, источник его электропитания, в состав которого входит электрогенератор /ГЭРВЧУ/, колонна выполнена из Н секций, между которыми размещены Н-2 металлические полки /ПК/, колонна снабжена высоковольтным делителем напряжения /ВД/, соединяющим основание колонны с кондуктором, снабженным Н-2 электрическими контактами, размещенными по длине ВД, каждый из которых связан электрически с соответствующей ПК, валом /В/, передающим механический момент от ЭДЗУ к ГЭРВЧУ, выполненным из диэлектрического материала, снабженным Н-2 равномерно размещенными по длине металлическими кольцами, каждое из которых электрически связано с соответствующей ПК посредством укрепленного на ПК упругого, скользящего по кольцу контакта, выполненной из диэлектрического материала, например вакуумной керамики, вакуумированной трубкой торможения электронного пучка ЭРВЧУ /ТТЭП/, один конец которой соединен с выходом РВЧУ, а второй, снабженный мишенью, укреплен в основании колонны (с обеспечением единого электропотенциала мишени и основания) на внешней и на внутренней стороне ТТЭП выполнены по Н-2 кольца из немагнитного металла /КНМ/, попарно /наружное кольцо с внутренним/ электрически связанные как между собой, так и с соответствующей ПК, и на поверхности каждого из КНМ, размещенных внутри ТТЭП, укреплен своим основанием с обеспечением электрического контакта выполненный из немагнитного металла в виде усеченного конуса кожух, вершина которого размещена в объеме кожуха соседнего КНМ, а на поверхности каждого из КНМ, размещенного снаружи ТТЭП, укреплен электроизолированный от него однорядный соленоид, электрически связанный с источником его импульсного электропитания /ИИП/, в состав которого входит электрогенератор /ГИИП/, и ИИП, и ГИИП размещены на соответствующей ПК с обеспечением электрического контакта между их корпусами и ПК, вал ГИИП механически связан с В, толщина Д материала, из которого выполнены кожухи и КНМ, удовлетворяет неравенству:
Figure 00000002
,
где М - магнитная проницаемость материала, Р - удельное сопротивление материала /0,01 Ом·м/, Т - длительность импульса ИИП /с/,
а количество каналов транспортировки ионов К в ускорительной трубке определяется неравенством:
Figure 00000003
, где Iе - амплитуда импульса тока ЭРВЧУ, Iи - амплитуда импульса тока ионов, который обеспечивают фокусирующие элементы одного из К каналов транспортировки.
Изобретение иллюстрируется чертежами. На фигуре 1 схематично изображен ускоритель в сборе, а на фигуре 2 - сечение колонны ускорителя плоскостью, перпендикулярной ее оси.
Ускоритель содержит полый металлический кондуктор 1, укрепленный на колонне, состоящей из Н диэлектрических секций 2, между которыми размещены металлические полки /ПК/ 3. Высоковольтный делитель напряжения /ВД/ 4 соединяет основание колонны, имеющее электропотенциал земли, с поверхностью высоковольтного кондуктора. ВД снабжен электрическими контактами, числом Н-2, которые равномерно распределены по его длине. Каждый из контактов электрически связан с соответствующей ПК. /Чем выше от земли размещена ПК, тем выше размещен соответствующий контакт на ВД./
Размещенный в полости кондуктора электронный резонансный высокочастотный ускоритель /ЭРВЧУ/ 5 имеет в своем составе источник электропитания 6, снабжаемый электроэнергией от электрогенератора /ГЭРВЧУ/ 7, вал которого принимает механический момент от вала 8, в свою очередь воспринимающего механический момент от электродвигателя зарядного устройства /ЭДЗУ/ 9, укрепленного в основании колонны. Вал 8 выполнен из диэлектрического материала и снабжен Н-2 охватывающими его металлическими кольцами 10, равномерно распределенными по его длине. Каждое из колец электрически связано с соответствующей ПК посредством скользящего по кольцу, укрепленного на соответствующем ПК упругого металлического контакта 11, чем достигается выравнивание электропотенциала по высоте между валом и ПК. Трубка торможения электронного пучка ЭРВЧУ /ТТЭП/ 12 соединяет выход ЭРВЧУ и основание колонны. ТТЭП выполнена из диэлектрического материала, например вакуумной керамики, она снабжена насосами и оборудованием для поддержания вакуума, которые на чертежах не показаны. Как на внешней, так и на внутренней стороне ТТЭП выполнены по Н-2 кольца из немагнитного материала /КНМ/. КНМ размещены напротив друг друга /каждому внутреннему КНМ 13, соответствует внешнее 14,/ и электрически попарно соединены между собой - внешнее кольцо с внутренним, а также с соответствующей им по высоте ПК. На каждом внутреннем КНМ укреплен своим основанием с обеспечением электрического контакта выполненный из немагнитного металла в виде усеченного конуса кожух 15, вершина которого размещена в объеме соседнего кожуха, укрепленного на соседней КНМ. На поверхности каждого КНМ, размещенного снаружи ТТЭП, укреплен электроизолированный от нее соленоид 16, обмотка которого выполнена однорядной, Источник импульсного электропитания соленоида /ИИП/ 17 получает электроинергию от электрогенератора /ГИИП/ 18. ИИП и ГИИП размещены на соответствующей ПК и их корпуса связаны с нею электрически. Вал ГИИП механически связан с валом В. Толщине Д материала, из которого выполнены кожухи и КНМ, удовлетворяет неравентсву:
Figure 00000004
,
где М - магнитная проницаемость материала, Р - удельное сопротивление /0,01 Ом·м/, Т - длительность импульса ИИП /с/, позволяет обеспечить проникновение магнитного импульсного поля внутрь ТТЭП и обеспечить фокусировку электронного пучка при его торможении, минимизировав его потери при минимуме затрат энергии на фокусировку. Ускорительная трубка 19 снабжена К каналами транспортировки 20, и К определяется неравенством:
Figure 00000005
, где Iи - амплитуда импульса электронного тока в ЭРВЧУ, Iи - амплитуда импульсного тока ионов в одном из К каналов, которую обеспечивают фокусирующие элементы канала. Это позволяет поддерживать баланс между положительными и отрицательными зарядами, покидающими кондуктор, обеспечивая стабильность высоковольтного потенциала. Дополнительно эта стабильность поддерживается специальными коронирующими остриями, не показанными на чертежам, традиционными для ускорителя типа Ван де Граафа. Ускоритель размещен в кожухе, не показанном на фигурах, заполненным электропрочным газом, тем же, что и внутри кондуктора и колонны.
Ускоритель работает следующим образом. ЭДЗУ 9 вращает вал В 8, передающий механический момент ГЭРВЧУ 7. Электроэнергия, вырабатываемая 7, преобразуется в источнике питания ЭРВЧУ 6 и поступает в ЭРВЧУ 5, где расходуется на ускорение электронного пучка. Ускоренный электронный пучок покидает кондуктор, на котором образуется положительный заряд, относительно мишени, укрепленной в трубке торможения ТТЭП. Вал 8 в передает вращение также валу ГИИП-18. Электроэнергия, вырабатываемая ГИИП, преобразуется в ИИП 17 и расходуется на питание соленоидов 16, обеспечивающих фокусировку электронного пучка в ТТЭП.
Электростатический заряд кондуктора нарастает до величины, равной половине произведения квадрата скорости электрона на выходе из ЭРВЧУ на массу электрона. Ионы ускоряются под воздействием разности потенциалов между кондуктором и основанием колонны, имеющим тотже потенциал, что и мишень ЭРВЧУ. Из К идентичных источников ионов частицы ускоряются в К каналах 20 ускорительной трубки 19. При этом баланс амплитуд между электронными и ионным пучком поддерживается током с коронирующих острий кондуктора.
В качестве примера конкретной реализации предложенного ускорителя, рассмотрим возможность применения его в борозахватной нейтронной терапии. Для указанной цели необходим пучок протонов с энергией примерно два мегавольта и средним током около десяти миллиампер для взаимодействия с литиевой мищенью. Мощность стандартных магнетронов систем ВЧ-питания серийно выпускаемых промышленных протонных линейных резонансных ускорителей примерно 10 киловатт, КПД около 6%, поэтому для получения необходимой мощности ВЧ-питания потребуется три магнетрона. Мощность и КПД предлагаемого ускорителя можно увеличить в случае применения для ВЧ-питания ЭРВЧУ гирокона, предложенного Г.И.Будкером.

Claims (1)

  1. Электростатический ускоритель ионов, содержащий выполненную из электроизоляционного материала полую колонну, на которой укреплен полый металлический кондуктор, размещенное в кондукторе зарядное устройство, электродвигатель зарядного устройства (ЭДЗУ), размещенный в основании колонны, ускорительную трубку, размещенную в колонне, один конец которой укреплен в основании колонны, а ее высоковольтный конец снабжен ионным источником,
    отличающийся тем, что ускорительная трубка снабжена К идентичными каналами транспортировки пучка и К идентичными источниками ионов, зарядное устройство содержит электронный резонансный высокочастотный ускоритель (ЭРВЧУ), источник его электропитания, в состав которого входит электрогенератор (ГЭРВЧУ),
    колонна выполнена из Н секций, между которыми размещены Н-2 металлические полки (ПК), колонна снабжена высоковольтным делителем напряжения (ВД), соединяющим основание колонны с кондуктором, снабженным Н-2 электрическими контактами, размещенными по длине ВД, каждый из которых связан электрически с соответствующей ПК,
    валом (В), передающим механический момент от ЭДЗУ к ГЭРВЧУ, выполненным из диэлектрического материала, снабженным Н-2 равномерно размещенными по длине металлическими кольцами, каждое из которых электрически связано с соответствующей ПК посредством укрепленного на ПК упругого скользящего по кольцу контакта,
    выполненной из диэлектрического материала, например вакуумной керамики, вакуумированной трубкой торможения электронного пучка ЭРВЧУ (ТТЭП), один конец которой соединен с выходом ЭРВЧУ, а второй, снабженный мишенью, укреплен в основании колонны с обеспечением единого электропотенциала мишени и основания, и на внешней, и на внутренней стороне ТТЭП выполнены по Н-2 кольца из немагнитного металла (КНМ) попарно (наружное кольцо с внутренним), электрически связанные как между собой, так и с соответствующей ПК, и на поверхности каждого из КНМ, размещенных внутри ТТЭП, укреплен своим основанием с обеспечением электрического контакта выполненный из немагнитного металла в виде усеченного конуса кожух, вершина которого размещена в объеме кожуха соседнего КНМ, а на поверхности каждого из КНМ, размещенного снаружи ТТЭП, укреплен электроизолированный от него однорядный соленоид, электрически связанный с источником его импульсного электропитания (ИИП), в состав которого входит электрогенератор (ГИИП), и ИИП и ГИИП размещены на соответствующей ПК с обеспечением электрического контакта между их корпусами и ПК, вал ГИИП механически связан с В,
    толщина Д материала, из которого выполнены кожухи и КНМ, удовлетворяет неравенству
    Figure 00000006
    где М - магнитная проницаемость материала, Р - удельное сопротивление материала (0,01·Ом·м), Т - длительность импульса ИИП (с),
    а количество К каналов транспортировки ионов в ускорительной трубке определяется неравенством
    Figure 00000007
    где Ie - амплитуда импульса тока ЭРВЧУ, Iи - амплитуда импульса тока ионов, который обеспечивают фокусирующие элемента одного из К каналов транспортировки.
RU2005137423/06A 2005-12-01 2005-12-01 Электростатический ускоритель ионов RU2309559C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005137423/06A RU2309559C2 (ru) 2005-12-01 2005-12-01 Электростатический ускоритель ионов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005137423/06A RU2309559C2 (ru) 2005-12-01 2005-12-01 Электростатический ускоритель ионов

Publications (2)

Publication Number Publication Date
RU2005137423A RU2005137423A (ru) 2007-06-20
RU2309559C2 true RU2309559C2 (ru) 2007-10-27

Family

ID=38313783

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005137423/06A RU2309559C2 (ru) 2005-12-01 2005-12-01 Электростатический ускоритель ионов

Country Status (1)

Country Link
RU (1) RU2309559C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608577C1 (ru) * 2012-06-04 2017-01-23 Сименс Акциенгезелльшафт Устройство и способ для сбора электрически заряженных частиц
RU2638461C1 (ru) * 2017-03-21 2017-12-13 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ИТЭФ) Облучательный ускорительный комплекс для нейтронно-лучевой терапии

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2608577C1 (ru) * 2012-06-04 2017-01-23 Сименс Акциенгезелльшафт Устройство и способ для сбора электрически заряженных частиц
RU2638461C1 (ru) * 2017-03-21 2017-12-13 Федеральное государственное бюджетное учреждение "Институт теоретической и экспериментальной физики имени А.И. Алиханова Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ИТЭФ) Облучательный ускорительный комплекс для нейтронно-лучевой терапии

Also Published As

Publication number Publication date
RU2005137423A (ru) 2007-06-20

Similar Documents

Publication Publication Date Title
US5124658A (en) Nested high voltage generator/particle accelerator
US8643249B2 (en) Electrostatic generator/motor configurations
JP2010512613A (ja) 医療のためのコンパクトな加速器
RU2531635C2 (ru) Каскадный ускоритель
EP2329692A1 (en) High-current dc proton accelerator
CA2627311A1 (en) Sequentially pulsed traveling wave accelerator
Oliphant et al. The acceleration of charged particles to very high energies
US6271614B1 (en) Pulsed plasma drive electromagnetic motor generator
RU2309559C2 (ru) Электростатический ускоритель ионов
Caporaso et al. High gradient induction accelerator
US2789221A (en) Method and apparatus for nuclear particle acceleration
US9614462B2 (en) Rippled disc electrostatic generator/motor configurations utilizing magnetic insulation
WO2012053921A2 (en) Electromagnetic propulsion system and applications
US2960610A (en) Compact neutron source
KR101378384B1 (ko) 사이클로트론
US20070110208A1 (en) Antimatter electrical generator
US2830222A (en) Apparatus for imparting high energy to charged particles
Lebrun Particle accelerators, instruments of discovery in physics
RU69370U1 (ru) Излучатель бетатрона
RU2265974C1 (ru) Безжелезный синхротрон
Alexandrov et al. JINR tau-charm factory design considerations
Richards Linear particle accelerator
RU2422924C2 (ru) Способ ускорения положительно заряженных частиц и ионов и полый индукционный ускоритель
Woodyard High-energy particle accelerators
SU867279A1 (ru) Генератор синхротронного излучени непрерывного действи

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081202