RU2308184C1 - Способ энергосберегающей оптимизации производства корма - Google Patents

Способ энергосберегающей оптимизации производства корма Download PDF

Info

Publication number
RU2308184C1
RU2308184C1 RU2006104378/12A RU2006104378A RU2308184C1 RU 2308184 C1 RU2308184 C1 RU 2308184C1 RU 2006104378/12 A RU2006104378/12 A RU 2006104378/12A RU 2006104378 A RU2006104378 A RU 2006104378A RU 2308184 C1 RU2308184 C1 RU 2308184C1
Authority
RU
Russia
Prior art keywords
exergy
value
plant
factors
factor
Prior art date
Application number
RU2006104378/12A
Other languages
English (en)
Inventor
Анатолий Алексеевич Артюшин (RU)
Анатолий Алексеевич Артюшин
Александр Иванович Паршин (RU)
Александр Иванович Паршин
Иван Иосифович Свентицкий (RU)
Иван Иосифович Свентицкий
Александр Петрович Гришин (RU)
Александр Петрович Гришин
Ольга Владимировна Голубева (RU)
Ольга Владимировна Голубева
Original Assignee
Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) filed Critical Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ)
Priority to RU2006104378/12A priority Critical patent/RU2308184C1/ru
Application granted granted Critical
Publication of RU2308184C1 publication Critical patent/RU2308184C1/ru

Links

Landscapes

  • Cultivation Of Plants (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

Изобретение относится к области сельского хозяйства. Способ заключается в том, что измеряют значения существующих климатических факторов: оптическую облученность, температуру, влажность воздуха, влажность почвы в условиях данного земельного угодья. В климатических камерах с устройствами контроля и регулирования климатических факторов устанавливают зависимости скорости фотосинтеза альтернативных видов, сортов, гибридов растений от учитываемых климатических факторов. Определяют значение коэффициента оптимальности каждого учитываемого фактора за каждый учитываемый промежуток времени как отношение скорости фотосинтеза растения при существующем значении фактора к скорости фотосинтеза при оптимальном значении этого фактора. Сопоставляют значения коэффициентов оптимальности всех учитываемых факторов. Определяют минимальное относительное значение, которое в соответствии с законом ограничивающих факторов будет ограничивать потенциальную полноту использования эксергии на продукционный процесс. По минимальному значению коэффициента оптимальности ограничивающего фактора устанавливают значение величины потенциально используемой эксергии за каждый промежуток времени, исходя из полного значения эксергии, поступившей за данный промежуток времени. По суммарному значению потенциально используемой эксергии за все учитываемые промежутки времени устанавливают агроэкологический потенциал и плодородие земельного угодья для каждого альтернативного вида, сорта, гибрида растений. По полученным суммарным значениям эксергии агроклиматического потенциала для всех альтернативных видов, сортов, гибридов растений устанавливают тот, для которого величина эксергии имеет наибольшее значение при равных или меньших энергетических затратах. Способ позволяет на основе учета свойств растений, как преобразователей энергии, повысить эффективность использования основных средств растениеводства (земельных угодий, генетического потенциала растений, агротехнологий) и уменьшить себестоимость и энергоемкость производства кормов. 1 табл.

Description

Изобретение относится к области сельского хозяйства к технологиям растениеводства и может быть использовано в отраслях промышленного и фермерского растениеводства.
Известны способы и устройства оценки действия оптического излучения на растения, включающие измерение той части поглощаемой растениями энергии излучения, которая используется растением в процессе фотосинтеза и соответствует спектральной чувствительности статистически среднего растения данного вида.
Примером осуществления этих способов и устройств являются технические решения: по а.с. СССР 124669. Способ оценки действия оптического излучения на растения / И.И.Свентицкий // БИ 1959. №23; по а.с. СССР 254247. Способ оценки теплового действия оптического излучения на растения / П.И.Сторожев, П.Я.Купянский, П.Г.Афонькин, И.И.Свентицкий // БИ 1969. №31; по статье: Бобев К., Янев Т., Стратиева Н., Константинова-Кабасанова Е. Метод и аппаратура для многоканальных фоторадиометрических измерений в целях определения эффективных величин излучения в зависимости спектральной восприимчивости объекта. В сб. науч. тр.: Биофотометрия и ее приложения. Пущино: АН СССР. НЦ биологических исследований. 1986. С.120-127.
В указанных и в аналогичных работах не пользовались энтропийным анализом или эксергическим подходом. К техногенной энергетике процесса выращивания растений эти оценки отношения не имели. Применялись для этих целей фотометрические методы. В начале 80-х годов 20-го века в энергетике энтропийный анализ был заменен эксергическим. Возникла необходимость измерять мощность эксергии, или величину эксергитической облученности в связи с потребностью совместного эксергитического анализа, как преобразований техногенной энергии, так и биоконверсии природной энергии растениям. В настоящее время в условиях рыночной экономики, непосредственно связанной с необходимостью всемерного снижения непроизводительных как энергетических, так и материальных издержек производства возникла потребность определения именно свободной, полезной для фотосинтеза энергии, т.е. собственно эксергии с учетом ограничения ее использования растениями вследствие отклонения экологических факторов от оптимальных значений. Эксергию до сих пор только рассчитывали и для целей автоматического контроля и управления не использовали, т.к. она традиционно считается величиной теоретической. Однако для выращивания растений важна не мощность оптического излучения (облученности), а та часть поглощенной энергии, которая потенциально может быть полезно использована ими на фотосинтез и формирование урожая.
Недостатками указанных способов и устройств их осуществления является отсутствие учета соответствия потребностей растений в эксергии реальному поступлению ее в динамике в определенных (заданных) экологических условиях данного земельного угодья.
Причиной является отсутствие как операции определения потребности в эксергии данного вида (сорта, гибрида) растений, так и отсутствие способов и устройств оценки земельного угодья по этому важнейшему показателю в растениеводстве, а также в технологических процессах охраны природы, в энергетике в биосферных исследованиях.
Численное определение величины, подобной эксергии, как свободной энергии оптического излучения в отношении фотосинтеза растений дается в литературных источниках, например: Свентицкий И.И. Экологическая биоэнергетика растений и сельскохозяйственное производство. Пущино: АН СССР. НЦ биологических исследований. Ин-т агрохимии и почвоведения. 1982, 222 с. (см. стр.93):
Figure 00000001
где е - эксергия, или свободная энергия в отношении процесса фотосинтеза, Дж/м2; φ(λ,t) - функция спектральной интенсивности оптического излучения, Дж/м2; K(λ) - функция относительной спектральной эффективности фотосинтеза, отн. ед.; λ - длина волны оптического излучения, 10-9 м (нанометр, нм); t - время, ч.
Наиболее близким по технической сущности к предлагаемому изобретению является способ энергосберегающей оптимизации управления микроклиматом теплиц, включающий способ оценки действия оптического излучения на растения и влияние на эффективность использования растениями эксергии температуры воздуха и других факторов окружающей среды обитания растений. Он включает расчет значения температуры воздуха, сравнение измеренной величины с ее заданным значением и автоматическое регулирование температуры воздуха в помещении теплицы (Свентицкий И.И. Экологическая биоэнергетика растений и сельскохозяйственное производство. Пущино: АН СССР. НЦ биологических исследований. Ин-т агрохимии и почвоведения. 1982, 222 с., стр.168-173). Устройство содержит датчик фотосинтезной облученности, усилитель постоянного тока, автоматический электронный потенциометр с копирным механизмом и с толкателем, магнитный усилитель и поляризованное реле постоянного тока.
Недостатками известных технических решений по оптимизации кормопроизводства является использование сложных многофакторных моделей, в которых количество параметров и переменных достигает 250 и более (см., например, Гараев Я.Г. Научное обоснование и совершенствование технологических процессов в АПК на основе оптимизационных моделей. Автореферат докт. дис., М., 2005). В подобных способах не учитывают потребность данного вида (сорта, гибрида) растений в эксергии и других экологических факторах, не принимаются во внимание соответствие этим потребностям притока эксэргии в динамике в условиях данного земельного угодья.
Задачей изобретения является на основе учета свойств растений, как преобразователей энергии, повысить эффективность использования основных средств растениеводства (земельных угодий, генетического потенциала растений, агротехнологий и технических средств их осуществления) и уменьшить себестоимость и энергоемкость производства кормов.
Важнейшая числовая характеристика эффективности использования энергии солнечного излучения в процессе фотосинтеза растений - эксергия, т.е. полезная энергия, пригодная для усвоения растением в процессе фотосинтеза и формирования продуктивности (урожая). Опытным путем устанавливают физиологически и экономически рациональные значения эксергии для каждого вида выращиваемых в определенных экологических условиях земельного угодия растений. Устанавливают оптимальное сочетание экологических условий существующих земельных угодий; на соответствие эколого-физиологическим характеристикам альтернативных видов, сортов (гибридов) растений; а также возможным агротехнологиям и техническим средствам их осуществления. На основе этого выбора можно реализовать основной резерв снижения энергоемкости производства продукции растениеводства - повышением КПД преобразования растениями энергии солнечного излучения.
Исходную информацию по погодно-климатическим условиям за непрерывный ряд лет можно взять на ближайшей к земельным угодьям метеостанции. По этим данным определяют среднее многолетнее (за 8-10 лет) значение климатических факторов в динамике за вегетационный период. Эколого-физиологические характеристики растений, как преобразователей энергии, можно получить в климатических камерах с контролируемыми и регулируемыми параметрами, а также статистическими расчетами по многолетним метеоданным метеостанций, наиболее близко расположенных к месту надежного районирования, используемых (оцениваемых) альтернативных культур. В результате использования изобретения обеспечивается возможность расчетного (прогнозного) определения продуктивности различных кормовых культур в заданных экологических условиях земельного угодия при избранных технологиях и средствах их осуществления. По предварительным расчетам реализация предлагаемого способа позволит уменьшить энергоемкость продукции растениеводства на 30-35%, повысить урожай кормовых культур на 25-30%.
Вышеуказанный технический результат достигается тем, что в предлагаемом способе энергосберегающей оптимизации производства корма, включающем определение эксергии оптического излучения в отношении фотосинтеза растения, измеряют значения существующих климатических факторов: оптическую облученность, температуру, влажность воздуха, почвы, затем определяют значение коэффициента оптимальности каждого учитываемого фактора как отношение скорости коэффициента фотосинтеза растения при действующем значении фактора к этой же величине при оптимальном значении этого фактора, причем эти зависимости - эколого-физиологические характеристики растений - устанавливают в климатических камерах с устройствами контроля и регулирования климатических факторов для всех видов растений от всех учитываемых экологических факторов; затем сопоставляют значения оптимальности всех учитываемых факторов и определяют минимальное относительное значение, которое в соответствии с законом ограничивающих факторов будет ограничивать потенциальную полноту использования эксергии на продукционный процесс; при этом по минимальному значению оптимальности ограничивающего фактора устанавливают значение величины потенциально используемой эксергии за каждый промежуток времени, исходя из полного значения эксергии, поступившей за данный промежуток времени; затем по суммарному значению потенциально используемой эксергии за все учитываемые промежутки времени устанавливают агроэкологический потенциал и плодородие земельного угодья для каждого альтернативного вида, сорта, гибрида растений; и по полученным суммарным значениям эксергии агроклиматического потенциала для всех альтернативных видов, сортов, гибридов растений и учитываемых земельных угодий, а также технологий и средств их осуществления устанавливают то сочетание этих альтернативных элементов, для которого величина эксергии плодородия имеет наибольшее значение при равных или меньших затратах энергетических и материальных.
Предлагаемый способ энергосберегающей оптимизации производства корма предусматривает определение потенциально используемой растениями энергии излучения в процессе фотосинтеза (эксергии), в заданных экологических условиях земельного угодия путем учета действия оптического излучения на растения и подбора вида (сорта, гибрида) кормовых растений на их соответствие земельному угодью по приходу эксергии в динамике и другим экологическим условиям, а также на соответствие альтернативным агротехнологиям и техническим средствам их осуществления. Исходной величиной для осуществления этого способа является эксергия поступающего на поверхность земли солнечного излучения. Она определяется умножением поступающей на поверхность земли суммарной энергии солнечного излучения (по данным метеостанций) на 0,2. Полученное значение умножают на коэффициент оптимальности существующего значения экологических факторов (температура, влажность воздуха, почвы). Эксергию умножают на коэффициент оптимальности фактора, находящегося в данный момент в относительном минимуме, значения коэффициента оптимальности учитываемых факторов устанавливают по отношению его действующего значения к оптимальному по эколого-физиологической характеристике данного вида (сорта, гибрида), которую устанавливают экспериментально в климатической камере для каждого альтернативного вида (сорта, гибрида) растений.
Способ осуществляют следующим образом: определяют величину эксергии оптического излучения умножением поступающей на поверхность земли суммарной энергии солнечного излучения (по данным метеостанций) на 0,2.
Предложенный способ отличается тем, что:
1) Измеряют значения существующих климатических факторов (температур, влажностей воздуха, почвы и т.д.).
2) В климатических камерах (с устройствами контроля и регулирования климатических факторов) устанавливают эколого-физиологические характеристики растений зависимости скорости фотосинтеза альтернативных сортов и видов растений от учитываемых экологических факторов (оптической облученности, температуры, влажностей воздуха, почвы и т.д.).
3) Определяют значение коэффициента оптимальности каждого учитываемого фактора как отношение скорости фотосинтеза растения при действующем значении фактора к этой же величине при оптимальном значении этих факторов.
4) Значения оптимальности определяются для всех учитываемых факторов и для всех учитываемых интервалов времени.
5) Сопоставлением значений оптимальности всех учитываемых факторов определяют минимальное относительное значение, которое в соответствии с законом ограничивающих факторов и будет ограничивать потенциальную полноту использования эксергии на продукционный процесс.
6) По минимальному значению оптимальности ограничивающего фактора устанавливают значение величины потенциально используемой эксергии за каждый промежуток времени, исходя из полного значения эксергии, поступившей за данный промежуток времени.
7) По суммарному значению потенциально используемой эксергии за все учитываемые промежутки времени учитывают агроэкологический потенциал и плодородие земельного угодья в эксергетических единицах.
8) По полученным суммарным значениям эксергии агроклиматического потенциала для альтернативных видов (сортов, гибридов) растений устанавливают тот, для которого эта величина имеет наибольшее значение при равных или меньших затратах энергетических и материальных.
Сущность предлагаемого изобретения поясняется примером.
Показатели эксергетической эффективности культур в кормовом пятипольном севообороте в Московской области на серых лесных почвах, определенные по предлагаемому способу, приведены в таблице.
Наибольший коэффициент использования эксергии плодородия земли обеспечивает кукуруза (6,6%). Близкое значение этого показателя получено для клевера первого года пользования (6,5%). Самое низкое значение КПД у ячменя (2,3%). Самый высокий показатель использования эксергии техногенной энергии обеспечил клевер первого года пользования (12,23%). Высокое значение этого показателя и у клевера второго года пользования (10,93%), а самое низкое у ячменя (2,60). Различие значения этого показателя у культур, использованных в севообороте, более, чем в 2,5 раза. Зерновые культуры, как видно из таблицы, малопригодны для использования в кормовом севообороте.
Таблица
Культура Средний урожай, сухое вещество Эксергия урожая, мДж/м2 Эксергия техногенной энергии, МДж/га КПД эксергии плодородия земли, % Показатель использования техногенной эксергии, отн. ед.
Кукуруза на силос 85,4 10,70 17284 6,6 6,19
Клевер первого года использования 84 10,58 8646 6,5 12,23
Клевер второго года использования 37,6 4,74 4335 2,9 10,93
Озимая пшеница 32,8 4,59 15730 2,8 2,92
Ячмень 27,0 3,78 14520 2,3 2,60
Применение предлагаемого способа при обосновании производства кормов и получении другой продукции растениеводства в современных условиях доступности и широких возможностей компьютерной техники открывает перспективы выхода на новый уровень эффективного использования основных средств аграрного производства: земельных угодий и генетического потенциала видов, сортов, а также альтернативных зональных; сортовых агротехнологий; альтернативных сортовых и зональных агротехнологий, а также средств их осуществления. Использование данного способа наиболее целесообразно при создании высокоэффективных (оптимальных) агротехнологий. При этом в полной мере используется физиологический (генетический) потенциал растений, существенно повышается технико-экономическая эффективность растениеводства.
Данное предложение стало возможным в связи с использованием новейших достижений фундаментальной науки в области самоорганизации живых объектов, используемых в технологиях сельскохозяйственного производства.

Claims (1)

  1. Способ энергосберегающей оптимизации производства корма, включающий определение эксергии оптического излучения в отношении фотосинтеза растения, отличающийся тем, что измеряют значения существующих климатических факторов: оптическую облученность, температуру, влажность воздуха, влажность почвы в условиях данного земельного угодья, в климатических камерах с устройствами контроля и регулирования климатических факторов устанавливают зависимости скорости фотосинтеза альтернативных видов, сортов, гибридов растений от учитываемых климатических факторов, затем определяют значение коэффициента оптимальности каждого учитываемого фактора за каждый учитываемый промежуток времени как отношение скорости фотосинтеза растения при существующем значении фактора к скорости фотосинтеза при оптимальном значении этого фактора, затем сопоставляют значения коэффициентов оптимальности всех учитываемых факторов и определяют минимальное относительное значение, которое в соответствии с законом ограничивающих факторов будет ограничивать потенциальную полноту использования эксергии на продукционный процесс, при этом по минимальному значению коэффициента оптимальности ограничивающего фактора устанавливают значение величины потенциально используемой эксергии за каждый промежуток времени, исходя из полного значения эксергии, поступившей за данный промежуток времени, затем по суммарному значению потенциально используемой эксергии за все учитываемые промежутки времени устанавливают агроэкологический потенциал и плодородие земельного угодья для каждого альтернативного вида, сорта, гибрида растений и по полученным суммарным значениям эксергии агроклиматического потенциала для всех альтернативных видов, сортов, гибридов растений устанавливают тот, для которого величина эксергии имеет наибольшее значение при равных или меньших энергетических затратах.
RU2006104378/12A 2006-02-15 2006-02-15 Способ энергосберегающей оптимизации производства корма RU2308184C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006104378/12A RU2308184C1 (ru) 2006-02-15 2006-02-15 Способ энергосберегающей оптимизации производства корма

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006104378/12A RU2308184C1 (ru) 2006-02-15 2006-02-15 Способ энергосберегающей оптимизации производства корма

Publications (1)

Publication Number Publication Date
RU2308184C1 true RU2308184C1 (ru) 2007-10-20

Family

ID=38925147

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006104378/12A RU2308184C1 (ru) 2006-02-15 2006-02-15 Способ энергосберегающей оптимизации производства корма

Country Status (1)

Country Link
RU (1) RU2308184C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486747C2 (ru) * 2011-06-02 2013-07-10 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ и устройство определения уровня эффективности агротехнологий
RU2580361C1 (ru) * 2015-04-13 2016-04-10 Государственное Бюджетное Научное Учреждение "Институт Агроинженерных И Экологических Проблем Сельскохозяйственного Производства" (Иаэп) Устройство для определения энергоемкости фотосинтеза

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СВЕНТИЦКИЙ И.И. Экологическая биоэнергетика растений и сельскохозяйственное производство. Пущино: АН СССР, НЦ биологических исследований. Ин-т агрохимии и почвоведения, 1982, с.168-173. Руководство по агрометеорологическим прогнозам, т.1. - Л.: Гидрометеоиздат, 1984, 16-17, 30, 74-75, 167. Наставление гидрометеорологическим станциям и постам, вып.11. Агрометеорологические наблюдения на станциях и постах. - Л.: Гидрометеоиздат, 1985, с.25, 3-35. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2486747C2 (ru) * 2011-06-02 2013-07-10 Российская академия сельскохозяйственных наук Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства Российской академии сельскохозяйственных наук (ГНУ ВИЭСХ Россельхозакадемии) Способ и устройство определения уровня эффективности агротехнологий
RU2580361C1 (ru) * 2015-04-13 2016-04-10 Государственное Бюджетное Научное Учреждение "Институт Агроинженерных И Экологических Проблем Сельскохозяйственного Производства" (Иаэп) Устройство для определения энергоемкости фотосинтеза

Similar Documents

Publication Publication Date Title
Rathke et al. Energy balance of winter oilseed rape (Brassica napus L.) cropping as related to nitrogen supply and preceding crop
Shi et al. A review on statistical models for identifying climate contributions to crop yields
Chen et al. Quantitative response of greenhouse tomato yield and quality to water deficit at different growth stages
Luo et al. Simulation of greenhouse management in the subtropics, Part I: Model validation and scenario study for the winter season
Mullan et al. Quantifying genetic effects of ground cover on soil water evaporation using digital imaging
Dong et al. Grain yield and water use efficiency of two types of winter wheat cultivars under different water regimes
Mendelsohn et al. The impact of climate on farm inputs in developing countries agriculture
Lu et al. Response of yield, yield components and water-nitrogen use efficiency of winter wheat to different drip fertigation regimes in Northwest China
Lázaro et al. Relationship between yield, growth and spike weight in wheat under phosphorus deficiency and shading
Giacomelli et al. Greenhouse production systems for people
Kadar et al. The effect of genotype, climatic conditions and nitrogen fertilization on yield and grain protein content of spring wheat (Triticum aestivum L.)
RU2308184C1 (ru) Способ энергосберегающей оптимизации производства корма
SK75897A3 (en) Method for the fertilization of soil for cultivated plants
CN114418235A (zh) 一种农作物生长状况确定方法及系统
Popescu et al. Climate change and its impact on wheat, maize and sunflower yield in Romania in the period 2017-2021.
Borbély et al. Relations between the yield of sunflower and the characteristics of the cropyear
Leach Some effects of air temperature and humidity on crop and leaf photosynthesis, transpiration and resistance to gas transfer
RU2350068C2 (ru) Способ и устройство автоматического управления продукционным процессом растений с учетом самоорганизации
Djevic et al. Greenhouse energy consumption and energy efficiency
Alam et al. Experimental investigation of solar bubble dryer for rough rice drying in Bangladesh
Abbouda et al. Effect of using double layers of polyethylene cover with air gap on control environment inside greenhouses
Durmanov et al. Application of electrical technologies to increase the productivity of cucumber in protected ground structures
Mali et al. Growth, Quality and Yield of Barley (Hordeum vulgare L.) as Influenced by Varieties and Precision nutrient Management Practices
Dhaliwal et al. Effect of sowing time, planting methods and irrigation scheduling on yield response, water and radiation-use efficiencies of wheat (Triticum aestivum) in Punjab, India
Kummer et al. The effect of solar radiation on the growth and development of hydroponically grown lettuce in two areas with different climates

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080216