RU2298859C2 - Солнечный кипятильник - Google Patents

Солнечный кипятильник Download PDF

Info

Publication number
RU2298859C2
RU2298859C2 RU2003109373/28A RU2003109373A RU2298859C2 RU 2298859 C2 RU2298859 C2 RU 2298859C2 RU 2003109373/28 A RU2003109373/28 A RU 2003109373/28A RU 2003109373 A RU2003109373 A RU 2003109373A RU 2298859 C2 RU2298859 C2 RU 2298859C2
Authority
RU
Russia
Prior art keywords
contacts
sun
power
relay
solar
Prior art date
Application number
RU2003109373/28A
Other languages
English (en)
Other versions
RU2003109373A (ru
Inventor
Олег Иванович Прокопов (RU)
Олег Иванович Прокопов
Урал Рашитович Ярмухаметов (RU)
Урал Рашитович Ярмухаметов
Original Assignee
Башкирский государственный аграрный университет (БГАУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Башкирский государственный аграрный университет (БГАУ) filed Critical Башкирский государственный аграрный университет (БГАУ)
Priority to RU2003109373/28A priority Critical patent/RU2298859C2/ru
Publication of RU2003109373A publication Critical patent/RU2003109373A/ru
Application granted granted Critical
Publication of RU2298859C2 publication Critical patent/RU2298859C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

Изобретение относится к солнечным кипятильникам для получения горячей воды и пара для бытовых и технологических нужд. Технический результат изобретения: обеспечение высокой эффективности работы кипятильника с автоматическим слежением за азимутом солнца. Сущность: солнечный кипятильник представляет собой параболоцилиндрический концентратор солнечного излучения, по фокальной оси которого установлен трубопровод для нагрева воды, при этом концентратор установлен с возможностью вращения вокруг трубы с ограничителями правого и левого поворотов и снабжен реверсивным электроприводом азимутального слежения за солнцем, управляемый схемой электроавтоматики от солнечных фотобатарей. С восхода до заката солнца происходит азимутальное слежение концентратора и обеспечивается постоянный нагрев воды в трубопроводе, находящемся в фокальной оси концентратора. 1 з.п. ф-лы, 3 ил.

Description

Изобретение относится к солнечным кипятильникам для получения горячей воды и пара для бытовых и технологических нужд.
Прототипом изобретения является параболоцилиндрический концентратор лучистой солнечной энергии, по фокальной оси которого установлен трубопровод [1]. Концентратор устанавливается отражающей поверхностью на южную сторону и под некоторым углом навстречу зенитальным лучам солнца.
Недостатком прототипа является низкая эффективность, т.к. положение солнца меняется на 180°, а поворот концентратора по азимуту осуществляется вместе с трубопроводом, что трудоемко для промышленных установок с большими объемами воды и невозможно при комплекте кипятильников в одной тепловой установке. Слежение за азимутом солнца визуальное.
Настоящее изобретение позволяет получить новый технический эффект - повышение эффективности работы кипятильника и автоматическое слежение за азимутом солнца.
Настоящий технический эффект достигается тем, что параболоцилиндрический концентратор лучистой солнечной энергии имеет возможность вращения вокруг трубопровода и снабжен реверсивным приводом его азимутального поворота за солнцем. который управляется контактами силовых реле из цепи питания установленной солнечной фотобатареи с аккумулятором, а обмотки силовых реле включены в эту же цепь питания через контакты поляризованного реле с нейтральным положением якоря, обмотка которого включена встречно между двумя фотоэлементами правого и левого поворотов, а также установлен фотоэлемент заднего наблюдения включенного на обмотку своего поляризованного реле в цепи питания собственного силового реле через нормально замкнутые контакты самоблокировки, при этом последовательно с контактами силового реле реверсивного привода левого поворота включены контакты силового реле заднего наблюдения; он выполнен в виде ряда параболоцилиндрических концентраторов с общим приводом азимутального поворота и коллектором трубопроводов и расположенных в ряд с юга на север на расстояниях затемнения максимального зенитального положения солнца.
На фиг.1 показан общий вид солнечного кипятильника в продольном сечении.
На фиг.2 - вид на фиг.1 слева.
На фиг.3 показана электрическая схема солнечного кипятильника.
Солнечный кипятильник состоит из основания 1, на котором на опоре 2 шарнирно установлена рама 3 с закрепленными на ней угольниками 4, поддерживающими в наклонном положении параболоцилиндрические концентраторы 5 солнечной лучистой энергии, в верхних и нижних концах которых закреплены втулки 6 с подшипниками 7. Последние жестко связаны с угольниками 4. На нижних концах втулок 6 закреплены конические шестерни 8, находящиеся в зацеплении с коническими шестернями 9 горизонтального вала 10, который через редуктор 11 снабжен реверсивным приводом 12. Вдоль фокальной оси параболоцилиндрического концентратора 5 через втулки 6, подшипники 7 и шестерни 8 проходят трубопроводы 13 с верхним 14 и нижним 15 коллекторами. В верхней части переднего концентратора 5 установлена солнечная фотобатарея 19 (Фэ) с командными левым и правым фотоэлементами 20 (Фл и Фп) и задним 21 (Фз). В нижней части любого концентратора 5 слева и справа закреплены упоры 22, а на раме 3, против них, по сторонам - концевые выключатели - левый ВКл и правый ВКп. Свободный конец рамы 3 снабжен домкратом или шарнирно-рычажным механизмом, включающим в себя шарнирные рычаги 16 с винтовым валом 17 и колесом 18 вала 17.
Солнечный кипятильник стационарно устанавливается приемным окном (окнами) на юг с углом установки 0,5 максимального зенитального положения солнца, т.к. даже на экваторе падение солнечных лучей по оси концентратора составит только ±22,5°, что не имеет существенного значения, будет только на эту величину осевое перемещение фокального луча вдоль трубопровода 13. К тому же можно учесть, что при положении солнца над горизонтом до 15° вообще не имеет теплового излучения по коэффициенту отражения до 90%. Поэтому осевой угол установки концентратора 5 к горизонту нужно увеличить на 15°, т.е. 0,5 зенитального +15°. Тогда даже на экваторе отклонения составят только ±15°, тем более эта величина снижается в более широких поясах.
Электрическая схема солнечного кипятильника включает в себя солнечную фотобатарею Фэ с аккумулятором "АК", также параллельно включен вольтметр V. Командные фотоэлементы левого Фл и правого поворота Фп соединены встречно с обмоткой поляризованного малоточного реле РП1 с нейтральным якорем, с левым и правым контактами замыкания, в цепях которых установлены обмотки РСл и РСп. Между контактами реле РСл1 и РСп подключен реверсивный двигатель М постоянного тока. Каждая фаза питания имеет нормально замкнутые контакты концевых выключателей ВКл и ВКп. В электрическую схему кипятильника также входит сигнальный фотоэлемент Фз заднего наблюдения, включенного на обмотку собственного поляризованного реле РП2, контакты замыкания которого включены в цепь питания обмотки своего реле РСз, с параллельно разомкнутыми собственными контактами РСз1, а также последовательно с ними включены нормально замкнутые контакты РСл2 реле РСл. При этом в цепи питания реверсивного двигателя М последовательно с нормально замкнутыми контактами РСл2 включены нормально замкнутые контакты РСз2 с параллельным их переключением.
Солнечный кипятильник работает следующим образом. Холодная вода насосом (на чертеже не показан) или перепадом давления подается в питающий коллектор 15, распределяется по трубопроводам 13, которые расположены по фокальным осям концентраторов 5, где вода нагревается до расчетной температуры или пара, которые зависят от параметров концентраторов 5, расхода и времени (расчетные величины). Нагретая вода или пар по выходному коллектору 14 отводится по технологическому назначению.
Солнечная фотобатарея Фэ (19) ориентируется на световые лучи и постоянно вырабатывает расчетную электрическую энергию на зарядку аккумулятора АК.
С утра начинается зенитальное и азимутальное перемещение солнца. С увеличением азимутального угла с востока на запад происходит увеличение угла падения солнечных лучей на правый фотоэлемент Фп (20) и затемнение левого фотоэлемента Фл (20). Правый фотоэлемент Фп (20) вырабатывает ток, который подается на обмотку поляризованного реле РП1. Последнее срабатывает и замыкает свой якорь РП1 на правый контакт и ставит под ток обмотку реле РСп, которое размыкает свои нормально замкнутые контакты РСп и замыкает нормально разомкнутые контакты РСп, тем самым ставит под ток реверсивный привод М (12). Последний через редуктор 11, горизонтальный вал 10 и коническую передачу колес 9 и 8, втулки 6 на подшипниках 7 вокруг трубопроводов 13 вращает солнечные концентраторы 5 вправо и разворачивает их по азимутальному положению солнца. При азимутальном выравнивании оба фотоэлемента Фп (20) и Фл (20) под малым углом к солнечным лучам вырабатывают одинаковые малые токи, которые уравновешиваются на обмотке РП1. Последняя обесточивается и отпускает свой якорь РП1. Цепь питания обмотки реле РСп обесточивается, реле отпускает свои контакты РСп и обесточивает привод М (12). Азимутальный поворот прекращается. При дальнейшем азимутальном изменении солнца операция повторяется до заката солнца. Таким образом обеспечивается в течение дня постоянная фокусировка фокального луча концентраторов 5 на трубопроводы 13. При отсутствии солнца кипятильник и слежение не работают, поэтому при появлении солнца оно может оказаться как справа, так и слева, например, на следующий день.
При появлении солнца справа кипятильник работает описанным образом. При появлении солнца слева под лучи попадает фотоэлемент левого поворота Фл (20), который вырабатывает постоянный электрический сигнал и проходит через обмотку поляризованного реле РП1 в обратном направлении, вследствие чего описанным образом ставится под ток обмотка реле РСл, реле перекидывает свои контакты РСл1 и замыкает цепь питания через нормально замкнутые контакты ВКл и РСз2 реверсивного двигателя М (12) в обратном направлении. Последний описанным образом разворачивает концентраторы 5 влево.
После заката солнца концентраторы 5 смотрят на запад. С восходом солнца под его лучи попадает фотоэлемент заднего наблюдения Фз (20), который вырабатывает свой постоянный ток, проходящий через обмотку поляризованного реле РП2. Реле замыкает свой якорь и ставит под ток обмотку реле РСз, притягивает свой контакт РСз1 и самоблокируется через нормально замкнутые контакты РСл2. В то же время своими контактами РСз2 замыкает цепь питания реверсивного двигателя М(12) последовательно через нормально замкнутые контакты РСл1. Двигатель М (12) описанным образом разворачивает концентраторы 5 влево до тех пор, пока под лучи попадет фотоэлемент Фл (20), т.е. уже с поворотом на восток. Под током Фл (20) обмотка реле РП1 срабатывает и его якорь ставит под ток обмотку реле РСл, реле своими контактами РСл2 разрывает цепь питания РСз, отпускает свои контакты РСз1 и снимает самоблокировку, а контактами РСз2 - питание двигателя М (12), однако РСл замыкает свои нормально разомкнутые контакты и замыкает цепь питания двигателя М (12), который продолжает разворот концентраторов 5 в азимутальное положение солнца.
После азимутального поворота одновременно начинают работать фотоэлементы Фл (20) и Фп (20), которые описанным образом обеспечивают ориентировку концентраторов 5.
Угол наклона концентраторов 5 в зависимости от времени года регулируется поворотом колеса 18 с винтовым валом 17 и шарнирно-рычажным механизмом 16.
В цепи питания привода М (12) включены концевые выключатели ВКл и ВКп, исключающие аварийные ситуации в работе электрической схемы.
Таким образом, обеспечиваются высокая эффективность работы кипятильника с круглосуточным слежением за азимутом солнца.
Кипятильник работает в Башкирском государственном аграрном университете.
Источники информации
1. Апараси Р.Р., Гарф Б.А. Использование солнечной энергии. М., изд. АН СССР, 1958, с.28, 29 (прототип).

Claims (2)

1. Солнечный кипятильник, включающий в себя параболоцилиндрический концентратор лучистой солнечной энергии, по фокальной оси которого установлен трубопровод, отличающийся тем, что параболоцилиндрический концентратор лучистой солнечной энергии установлен с возможностью вращения вокруг трубопровода и снабжен реверсивным приводом его азимутального поворота за солнцем, который управляется контактами силовых реле из цепи питания установленной солнечной фотобатареи с аккумулятором, а обмотки силовых реле включены в эту же цепь питания через контакты поляризованного реле с нейтральным положением якоря, обмотка которого включена встречно между двумя фотоэлементами правого и левого поворотов, а также установлен фотоэлемент заднего наблюдения включенного на обмотку своего поляризованного реле в цепи питания собственного силового реле через нормально замкнутые контакты самоблокировки, при этом последовательно с контактами силового реле реверсивного привода левого поворота включены контакты силового реле заднего наблюдения.
2. Солнечный кипятильник по п.1, отличающийся тем, что он выполнен в виде ряда параболоцилиндрических концентраторов с общим приводом азимутального поворота и коллектором трубопроводов и расположенных в ряд с юга на север на расстояниях затемнения максимального зенитального положения солнца.
RU2003109373/28A 2003-04-03 2003-04-03 Солнечный кипятильник RU2298859C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003109373/28A RU2298859C2 (ru) 2003-04-03 2003-04-03 Солнечный кипятильник

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003109373/28A RU2298859C2 (ru) 2003-04-03 2003-04-03 Солнечный кипятильник

Publications (2)

Publication Number Publication Date
RU2003109373A RU2003109373A (ru) 2005-02-27
RU2298859C2 true RU2298859C2 (ru) 2007-05-10

Family

ID=35285668

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003109373/28A RU2298859C2 (ru) 2003-04-03 2003-04-03 Солнечный кипятильник

Country Status (1)

Country Link
RU (1) RU2298859C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177667A1 (en) * 2011-06-19 2012-12-27 John Cooper System and method for a networked solar panel railroad infrastructure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177667A1 (en) * 2011-06-19 2012-12-27 John Cooper System and method for a networked solar panel railroad infrastructure

Also Published As

Publication number Publication date
RU2003109373A (ru) 2005-02-27

Similar Documents

Publication Publication Date Title
Hafez et al. Solar tracking systems: Technologies and trackers drive types–A review
Nsengiyumva et al. Recent advancements and challenges in Solar Tracking Systems (STS): A review
US4098264A (en) Solar liquid heating apparatus
US4628142A (en) Solar tracking mechanisms
US4276872A (en) Solar system employing ground level heliostats and solar collectors
CN101720411B (zh) 太阳能采集机
MX2012012260A (es) Un sistema recolector de energia solar.
US20020007830A1 (en) Radiation heat collector
US4977744A (en) Apparatus and method for extracting focused solar radiant energy
US4376372A (en) Solar energy conversion apparatus
US20180003412A1 (en) Low concentration solar collector system
US4398391A (en) Solar energy conversion apparatus provided with an automatic cut-in heat-supplying standby apparatus
WO2012024384A2 (en) Revolutionary system for sustaining and storing green solar energy
US20120186575A1 (en) Solar Collector
RU2298860C2 (ru) Солнечная электростанция
US4823772A (en) Apparatus and method for extracting focused solar radiant energy
RU2298859C2 (ru) Солнечный кипятильник
CN102080882A (zh) 一种太阳能锅炉光热模块
RU2281442C2 (ru) Солнечный кипятильник
RU2251058C2 (ru) Гелиокотел
CN104501428A (zh) 一种槽式太阳能集热器
Paul Design and performance analysis of automated two axis solar tracking system for steam generation
KR20210066461A (ko) 온도센서를 이용하여 태양광을 추적할 수 있는 ptc형 태양열 시스템
RU2179690C2 (ru) Солнечная энергетическая установка
CN210292367U (zh) 一种光控分体式非承压太阳能热水装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees