RU2298202C1 - Способ измерения напряженности магнитного поля - Google Patents

Способ измерения напряженности магнитного поля Download PDF

Info

Publication number
RU2298202C1
RU2298202C1 RU2005132041/28A RU2005132041A RU2298202C1 RU 2298202 C1 RU2298202 C1 RU 2298202C1 RU 2005132041/28 A RU2005132041/28 A RU 2005132041/28A RU 2005132041 A RU2005132041 A RU 2005132041A RU 2298202 C1 RU2298202 C1 RU 2298202C1
Authority
RU
Russia
Prior art keywords
magnetic field
magnetic
resonator
microwave
powder
Prior art date
Application number
RU2005132041/28A
Other languages
English (en)
Inventor
вый Валерий Георгиевич Кур (RU)
Валерий Георгиевич Курявый
Original Assignee
Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН) filed Critical Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН)
Priority to RU2005132041/28A priority Critical patent/RU2298202C1/ru
Application granted granted Critical
Publication of RU2298202C1 publication Critical patent/RU2298202C1/ru

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

Изобретение относится к магнитным измерениям и может быть использовано для измерения напряженности постоянного и переменных магнитных полей, а также для разработки магнитных сенсоров различного назначения. Способ измерения напряженности магнитного поля включает регистрацию изменения мощности СВЧ-излучения, проходящего через помещенный в это магнитное поле СВЧ-резонатор с находящимся внутри него магниточувствительным элементом, при этом в качестве магниточувствительного элемента используют магнитное вещество в дисперсном состоянии, в частности порошок ферримагнетика, который располагают в СВЧ-резонаторе с возможностью свободного перемещения составляющих его частиц, а регистрацию величины напряженности осуществляют непосредственно с помощью предварительно прокалиброванного электроизмерительного прибора. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области физики, в частности к магнитным измерениям, и может быть использовано для измерения напряженности постоянных и переменных магнитных полей, а также при разработке магнитных сенсоров различного назначения.
Известен способ измерения составляющих напряженности магнитного поля с использованием эффекта магнитного импеданса, описанный в заявке Японии №2002082151, опубл. 22.03.02. Способ реализуется с помощью датчика, включающего магниточувствительный элемент в виде тонкой пленки, выполненной из мягкого магнитного материала, толщина которой в направлении, перпендикулярном определяемому магнитному полю, составляет примерно 1 мкм, при этом изменение импеданса отражает изменение намагниченности этого элемента. Недостатком известного способа является то, что он обеспечивает достаточно высокую чувствительность измерений только при использовании тонкопленочного магниточувствительного элемента специальной формы, получаемого с помощью сложных и дорогостоящих технологий (например, плазменно-вакуумного или импульсного напыления).
Наиболее близким к заявляемому является способ измерения напряженности магнитного поля путем регистрации изменения СВЧ-мощности, проходящей через микрополосковый СВЧ-резонатор, помещенный в магнитное поле, напряженность которого подлежит измерению, как описано в пат. РФ №2150712, опубл. 10.06.2000. При этом в качестве магниточувствительного элемента используют магнитную пленку, помещенную в СВЧ-резонатор. В магнитной пленке при наложении внешнего магнитного поля возникает ферромагнитный резонанс, сопровождающийся уменьшением добротности на двух резонансных частотах, которое определяется величиной соответствующей составляющей магнитного поля и вызывает поглощение СВЧ-мощности магнитной пленкой. Для определения составляющих напряженности магнитного поля регистрируют интенсивность прохождения СВЧ-мощности на двух резонансных частотах в виде коэффициентов и проводят расчет с помощью системы линейных уравнений, связывающих эти коэффициенты, параметры датчика и составляющие напряженности магнитного поля.
Недостатком известного способа является его сложность, обусловленная необходимостью предварительного определения резонансных частот, требующей использования специального устройства, и проведения расчетов, включающих большое количество параметров.
Задачей заявляемого технического решения является упрощение способа измерения напряженности магнитного поля при одновременном обеспечении высокой чувствительности.
Поставленная задача решается способом измерения напряженности магнитного поля, включающим регистрацию изменения мощности СВЧ-излучения, проходящего через помещенный в это магнитное поле СВЧ-резонатор с находящимся внутри него магниточувствительным элементом, при этом в качестве магниточувствительного элемента используют магнитное вещество в дисперсном состоянии, которое располагают в СВЧ-резонаторе с возможностью свободного перемещения составляющих его частиц, а регистрацию величины напряженности осуществляют непосредственно с помощью предварительно прокалиброванного электроизмерительного прибора.
В качестве магнитного вещества может быть использован любой ферримагнетик в дисперсном состоянии, например порошок промышленного феррита, оксида железа Fe2O3, минерала магнетита.
Способ осуществляют следующим образом.
Тонкодисперсный порошок магнитного вещества, являющегося магниточувствительным элементом, помещают в немагнитный контейнер, например в стеклянную емкость, которую устанавливают в СВЧ-резонаторе. Количество порошка и размеры емкости должны обеспечивать возможность свободного перемещения и переориентации частиц порошка. Практически количество используемого порошка может быть незначительным, в частном случае вплоть до одной частицы размерами ~ 0.1 мм.
В резонатор подают СВЧ-излучение с частотой, на которую настроен резонатор. Резонатор помещают в измеряемое магнитное поле либо подносят к резонатору на определенное расстояние источник магнитного поля, напряженность которого подлежит измерению.
Измеряют изменение мощности СВЧ-излучения, проходящего через резонатор с помещенным в него магнитным веществом, либо значение мощности СВЧ-излучения, отраженного от резонатора, которые регистрируют с помощью предварительно прокалиброванного в соответствующих единицах вольтметра либо с помощью самописца.
В магнитном поле наблюдается отклонение стрелки вольтметра либо изменение положения нулевой линии самописца, при этом величина этого изменения или отклонения зависит от напряженности измеряемого магнитного поля, а его направление - от полярности этого поля.
Заявляемый способ реализуется с помощью устройства, изображенного в виде блок-схемы на чертеже, где 1 - генератор СВЧ-мощности, 2 - СВЧ-резонатор, 3 - детектор, 4 - усилитель, 5 - самописец либо вольтметр, 6 - ВЧ-модулятор, 7 - контейнер с рабочим веществом.
Когда СВЧ-резонатор с магнитным веществом помещают в точки магнитного поля, характеризующиеся одинаковой напряженностью, измерительная схема регистрирует соответствующее одинаковое поглощение СВЧ-мощности. Например, когда резонатор поочередно помещают на одном и том же расстоянии от двух постоянных магнитов одинаковой мощности, одинаковым образом сориентированных по отношению к резонатору, то измерительная схема всегда регистрирует строго одинаковые показания.
При этом предварительная калибровка электроизмерительного прибора, например вольтметра, входящего в состав измерительной схемы, с помощью стандартного измерителя магнитного поля позволяет непосредственно измерять напряженность магнитного поля в соответствующих единицах.
Чувствительность предлагаемого способа, которая была оценена путем сравнения с измерениями, произведенными с помощью известных стандартных измерителей магнитного поля, составляет 0,01 Гаусс.
При жесткой связи составляющих частиц магнитного вещества (ферримагнетика) и отсутствии возможности их свободного перемещения и переориентации в резонаторе чувствительность измерения снижается примерно в 30 раз.
Объясняется это тем, что в случае жестко закрепленного магнитного вещества изменение поглощения СВЧ-излучения в резонаторе при помещении его в магнитное поле обусловлено изменением магнитной проницаемости этого вещества, вызываемым явлением магнитного резонанса, что приводит в итоге к уменьшению добротности СВЧ-резонатора. Уменьшение добротности может быть объяснено прецессией магнитного момента в условиях магнитного резонанса и увеличением омических потерь в резонаторе.
В предлагаемом способе при использовании дисперсного магнитного вещества с частицами, обнаруживающими свободную переориентацию под воздействием сил измеряемого магнитного поля, указанная переориентация приводит к изменению пространственной конфигурации силовых линий электрических и магнитных полей в резонаторе, а также к некоторому изменению свободного от магнитного вещества объема резонатора, что обусловливает дополнительное изменение добротности резонатора и поглощаемой в нем мощности СВЧ-излучения.
При этом в случае использования магнитного вещества с мелкими частицами, которые являются более подвижными и легче переориентируются, это изменение поглощаемой в резонаторе мощности СВЧ-излучения является более существенным.
Этот дополнительный вклад в поглощаемую мощность, обусловленный переориентацией частиц магнитного вещества в резонаторе, суммируется с изменениями мощности, связанными с изменениями магнитной проницаемости этого вещества, и суммарно с ними регистрируется стандартной измерительной схемой, что обеспечивает высокую чувствительность способа.
Таким образом, заявляемое изобретение обеспечивает упрощение способа измерения напряженности магнитного поля за счет непосредственной регистрации величины напряженности с помощью стандартной измерительной схемы при одновременном обеспечении высокой чувствительности, что является техническим результатом изобретения. Кроме того, в способе использован простой и доступный магниточувствительный элемент, не требующий специальных технологий для его изготовления.
Пример конкретного осуществления способа
Примером конкретного осуществления заявляемого способа является измерение магнитного поля намагниченной стальной иглы на различных расстояниях от ее острия. В зависимости от расстояния диапазон измерений составлял 0,01-300 Гаусс.
В качестве магниточувствительного элемента был использован мелкодисперсный порошок феррита марки 2000 нм, насыпанный в стеклянную емкость (пробирку) в таком количестве, чтобы порошок свободно покрывал дно пробирки. Емкость с порошком помещали в резонатор ЭПР спектрометр с двойным Т-мостом, автоподстройкой частоты и модуляцией магнитного поля в объеме резонатора частотой ~1 кГц.
Поглощение мощности СВЧ-излучения в резонаторе ЭПР спектрометра с помещенным в него дисперсным магнитным веществом, частицы которого могут свободно периориентироваться в магнитном поле, регистрировалось с помощью регистрирующей схемы ЭПР спектрометра.
Эта схема включает вольтметр, предварительно проградуированный в Гауссах, и является стандартной и хорошо проработанной.
Чувствительность способа была оценена путем сравнения с измерениями, проведенными с помощью промышленного измерителя магнитного поля Ш1-8, и составила около 0,01 Гаусс.

Claims (2)

1. Способ измерения напряженности магнитного поля, включающий регистрацию изменения мощности СВЧ-излучения, проходящего через помещенный в это магнитное поле СВЧ-резонатор с находящимся внутри него магниточувствительным элементом, отличающийся тем, что в качестве магниточувствительного элемента используют магнитное вещество в дисперсном состоянии, которое располагают в СВЧ-резонаторе с возможностью свободного перемещения составляющих его частиц, а регистрацию величины напряженности осуществляют непосредственно с помощью предварительно прокалиброванного электроизмерительного прибора.
2. Способ по п.1, отличающийся тем, что в качестве магнитного вещества используют порошок ферримагнетика.
RU2005132041/28A 2005-10-17 2005-10-17 Способ измерения напряженности магнитного поля RU2298202C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005132041/28A RU2298202C1 (ru) 2005-10-17 2005-10-17 Способ измерения напряженности магнитного поля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005132041/28A RU2298202C1 (ru) 2005-10-17 2005-10-17 Способ измерения напряженности магнитного поля

Publications (1)

Publication Number Publication Date
RU2298202C1 true RU2298202C1 (ru) 2007-04-27

Family

ID=38107016

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005132041/28A RU2298202C1 (ru) 2005-10-17 2005-10-17 Способ измерения напряженности магнитного поля

Country Status (1)

Country Link
RU (1) RU2298202C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2684446C1 (ru) * 2018-02-22 2019-04-09 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ определения напряженности магнитного поля

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2684446C1 (ru) * 2018-02-22 2019-04-09 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Способ определения напряженности магнитного поля

Similar Documents

Publication Publication Date Title
Tumanski Induction coil sensors—A review
Donley et al. Demonstration of high-performance compact magnetic shields for chip-scale atomic devices
Ripka Sensors based on bulk soft magnetic materials: Advances and challenges
KR100834846B1 (ko) 자기전기 감수율 측정 시스템
US11221380B2 (en) Method and apparatus for analyzing a sample volume comprising magnetic particles
Ripka et al. Chapter three magnetic sensors: Principles and applications
US6586930B1 (en) Material thickness measurement using magnetic information
RU2709703C1 (ru) Способ измерения параметров магнитного поля
CN109655771B (zh) 交流磁化率测量装置及其测量方法
Abdallh et al. A Rogowski–Chattock coil for local magnetic field measurements: Sources of error
He et al. Magnetic tunnel junction based gradiometer for detection of cracks in cement
Ye et al. A quantitative model for the sensitivity of untuned voltage output fluxgate sensors
RU2298202C1 (ru) Способ измерения напряженности магнитного поля
Krishnan et al. Harmonic detection of multipole moments and absolute calibration in a simple, low-cost vibrating sample magnetometer
CN113932939B (zh) 基于扫场法的铁磁共振测温方法
Ripka et al. AMR proximity sensor with inherent demodulation
US3387377A (en) Magnetometer utilizing a magnetic core rotated within a stationary coil perpendicular to the coil axis
RU2361195C1 (ru) Способ измерения намагниченности магнитной жидкости
CN113820033A (zh) 一种基于铁磁共振频率的温度测量方法
Kundu et al. An Automated Home Made Low Cost Vibrating Sample Magnetometer
RU2739730C1 (ru) Способ измерения намагниченности вещества методом ядерного магнитного резонанса
RU2625147C1 (ru) Способ измерения намагниченности магнитной жидкости
RU173646U1 (ru) Магнитный структуроскоп
RU2452940C1 (ru) Магнитный способ измерения термодинамической температуры
CN205860981U (zh) 一种基于磁桥原理的铁磁材料厚度检测装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20081018