RU2297573C1 - Способ подготовки к транспортированию смеси углеводородов - Google Patents

Способ подготовки к транспортированию смеси углеводородов Download PDF

Info

Publication number
RU2297573C1
RU2297573C1 RU2005128413/06A RU2005128413A RU2297573C1 RU 2297573 C1 RU2297573 C1 RU 2297573C1 RU 2005128413/06 A RU2005128413/06 A RU 2005128413/06A RU 2005128413 A RU2005128413 A RU 2005128413A RU 2297573 C1 RU2297573 C1 RU 2297573C1
Authority
RU
Russia
Prior art keywords
pipeline
fraction
gas
mixture
pressure
Prior art date
Application number
RU2005128413/06A
Other languages
English (en)
Inventor
Сергей Иванович Иванов (RU)
Сергей Иванович Иванов
Сергей Анатольевич Михайленко (RU)
Сергей Анатольевич Михайленко
Василий Иванович Столыпин (RU)
Василий Иванович Столыпин
Сергей Леонидович Борзенков (RU)
Сергей Леонидович Борзенков
Алексей Александрович Брюхов (RU)
Алексей Александрович Брюхов
Александр Дмитриевич Шахов (RU)
Александр Дмитриевич Шахов
Original Assignee
Общество с ограниченной ответственностью "Оренбурггазпром" (ООО "Оренбурггазпром")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Оренбурггазпром" (ООО "Оренбурггазпром") filed Critical Общество с ограниченной ответственностью "Оренбурггазпром" (ООО "Оренбурггазпром")
Priority to RU2005128413/06A priority Critical patent/RU2297573C1/ru
Application granted granted Critical
Publication of RU2297573C1 publication Critical patent/RU2297573C1/ru

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)

Abstract

Изобретение относится к способам подготовки к транспортированию смеси углеводородов и может быть использовано на предприятиях газовой промышленности. В способе подготовки к транспортированию смеси углеводородов смесь предварительно разделяют на метановую фракцию C1 с последующей подачей ее в газопровод и фракцию углеводородов С2+, которую перед подачей в трубопровод стабилизируют путем перевода в жидкое состояние посредством предварительного охлаждения до температуры не выше 16°С и подают в продуктопровод, поддерживая давление в начале трубопровода не ниже 3,2 МПа. Получаемый при этом технический результат состоит в создании оптимальных условий - максимальной температуры и минимального начального давления подготовленной жидкой смеси углеводородов, при которых исключается образование двухфазной смеси в трубопроводе при ее дальнейшей транспортировке. 2 ил.

Description

Изобретение относится к способам подготовки к транспортированию смеси углеводородов и может быть использовано на предприятиях газовой промышленности.
Общеизвестно, что продукция газоконденсатных месторождений представляет собой сложную смесь углеводородов - метана и более тяжелых углеводородов. Кроме углеводородов в газах могут содержаться различные примеси: сероводород, меркаптаны, диоксид углерода, азот, гелий и т.п. Одно из важнейших условий успешной эксплуатации газотранспортных систем - это качественная подготовка газа. В процессе подготовки газ подвергается предварительной обработке на промысловых установках комплексной подготовки газа (УКПГ) с целью извлечения из него углеводородного конденсата и окончательно (до товарных кондиций) - на газоперерабатывающих предприятиях. В заводских условиях из газа и газового конденсата могут быть получены следующие ценные продукты: углеводородные фракции (метановая, этановая, пропановая, бутановая и др.), конденсат, ШФЛУ и т.д. Требования к качеству получаемых продуктов определяются исходя из условий обеспечения их надежной транспортировки, хранения и использования. Например, основное требование к качеству ШФЛУ - свести к минимуму содержание метана и этана в целях уменьшения упругости паров ШФЛУ. Это позволяет обеспечить ее транспортирование практически в однофазном (жидком) состоянии [Вяхирев Р.И., Гриценко А.И., Тер-Саркисов P.M. Разработка и эксплуатация газовых месторождений. - М.: OOO «Недра-Бизнесцентр», 2002. - стр.673-689].
Однако есть заинтересованность иных потребителей в получении такого ценного сырья, как смесь углеводородов С2+ с высоким содержанием этановой фракции (до 40 мас.%). Проблему транспортирования такой крайне нестабильной газонасыщенной жидкости целесообразно решать путем перекачки ее в однофазном состоянии - жидком.
Транспортировка данной смеси углеводородов в жидком виде связана с большими трудностями, так как при определенных температуре и давлении она может частично или полностью переходить в газообразное состояние; при этом газ заполняет часть живого сечения трубопровода, что приводит к резкому увеличению гидравлического сопротивления и снижению пропускной способности трубопровода.
Из известных источников патентной и научно-технической информации сведений о транспортировании аналогичных смесей углеводородов C2+ с высоким содержанием этановой фракции (до 40 мас.%) не обнаружено.
Наиболее близким к заявляемому по совокупности существенных признаков является способ подготовки к транспортированию смеси углеводородов в процессе освоения газоконденсатнонефтяного месторождения в регионе с неразвитой транспортной инфраструктурой, заключающийся в том, что смесь предварительно разделяют на жидкую фазу С5+ и газовую фазу C1-C4. Жидкую фазу стабилизируют путем разгазирования и закачивают в нефтепровод. Газовую фазу разделяют на метан C1 и фракцию С24. Метан закачивают в магистральный газопровод, а фракцию С24 стабилизируют путем дросселирования в вихревой трубе и также подают в магистральный газопровод для совместной транспортировки потребителю. При поступлении потребителю данную смесь при необходимости разделяют на фракции и компоненты [Патент РФ №2171953, МПК7 F17D 1/02, опубл. 10.08.2001].
Недостатком данного способа является то, что фракцию С24 транспортируют совместно с метановой фракцией C1 в виде двухфазного потока, что обуславливает ограниченность области применения способа.
Задачей заявляемого изобретения является обеспечение возможности транспортирования фракции углеводородов С2+ с высоким содержанием этановой фракции (до 40 мас.%) в однофазном (жидком) состоянии.
Поставленная задача решается заявляемым способом подготовки к транспортированию смеси углеводородов, при котором смесь предварительно разделяют на метановую фракцию C1 с последующей подачей его в газопровод и фракцию углеводородов С2+, которую перед подачей в трубопровод стабилизируют путем перевода в жидкое состояние посредством предварительного охлаждения до температуры не выше 16°С и подают в продуктопровод, поддерживая давление в начале трубопровода не ниже 3,2 МПа.
Получаемый при этом технический результат состоит в создании оптимальных условий - максимальной температуры и минимального начального давления подготовленной жидкой смеси углеводородов, при которых исключается образование двухфазной смеси в продуктопроводе при ее дальнейшей транспортировке.
На фиг.1 представлена схема установки низкотемпературного разделения углеводородного газа, иллюстрирующая предлагаемый способ.
Установка содержит теплообменник 1, пропановый холодильник 2, сепараторы 3-6, теплообменники доохлаждения и конденсации газа 7-10, отпарную колонну 11, деметанизатор 12, состоящий из двух секций - укрепляющей и отгонной, турбодетандерный агрегат 13, воздушный холодильник 14, пропановый испаритель 15.
Способ осуществляется следующим образом.
На установку поступает сырьевой газ, предварительно осушенный и очищенный от сернистых соединений и углекислоты на предыдущих установках. Поток углеводородного газа охлаждается, проходя последовательно теплообменник 1, пропановый холодильник 2, где происходит его предварительное охлаждение и частичная конденсация за счет холода обратного потока метановой фракции и пропана, затем попадает в сепаратор 3 для отделения жидкой фазы. Отделившиеся в сепараторе жидкие углеводороды подаются на питание в деметанизатор 12. Газовый поток из сепаратора 3 после охлаждения и частичной конденсации в теплообменнике 7 поступает в сепаратор 4, в котором поток газа обогащается гелием, а жидкость - этаном. Паровая фаза из этого сепаратора направляется на полную конденсацию в теплообменник 8, после чего поток переохлажденной жидкости поступает в отпарную колонну 11. Обогащенная этаном жидкость из сепаратора 4 попадает в сепаратор 5. Паровая фаза из него подается в отпарную колонну 11 в качестве стриппинг-газа, а жидкость разделяется на два потока и направляется в деметанизатор 12, при этом основной поток после нагрева в теплообменнике 9 подается на питание колонны, а другой - на орошение.
Из отпарной колонны 11 отпаренный газ направляется на дальнейшее обогащение гелием с целью получения гелиевого концентрата в соответствующих гелиевых колоннах (на чертеже не показаны).
С куба первой отпарной колонны 11 выводится метановая фракция высокого давления, часть которой через теплообменник 10 поступает на разделение в сепаратор 6. Газовая фаза из сепаратора 6, объединившись с верхним продуктом деметанизатора 12, направляется на расширение в детандер турбодетандерного агрегата 13 с целью получения холода и выводится с установки в виде товарного продукта - метановой фракции Ci. Жидкость из сепаратора 6 подается на орошение деметанизатора 12.
В деметанизаторе 12 осуществляется ректификация поступающей жидкости с получением метановой фракции C1 в качестве верхнего продукта и фракции углеводородов С2+ в качестве кубового остатка.
Фракцию углеводородов С2+, выводимую с куба деметанизатора 12 с температурой 50°С, перед транспортировкой потребителю стабилизируют путем охлаждения до температуры не выше 16°С, например, сначала в воздушном холодильнике 14, а затем в пропановом испарителе 15, что гарантирует ее жидкое состояние по всей длине продуктопровода в любое время года при давлении в начале продуктопровода не ниже 3,2 МПа и 1,8 МПа на конце. Охлаждение можно осуществлять на любой обычной холодильной установке, которая обеспечивает охлаждение фракции до температуры не выше 16°С для тех случаев применения, при которых трубопровод закопан в грунт. Однако предпочтительно, чтобы концевой холодильник содержал комбинацию теплообменников с воздушным или с водяным охлаждением и обычной холодильной установки с замкнутым циклом и пропаном в качестве холодильного агента.
Пример.
Рассмотрим осуществление данного способа на примере безнасосного транспортирования потребителю смеси углеводородов С2+ Оренбургского месторождения. На гелиевом заводе на установке низкотемпературного разделения углеводородного газа в деметанизаторе осуществляется разделение смеси углеводородов на метановую фракцию C1 с верха колонны и фракцию С2+ в качестве кубовой жидкости.
Кубовая жидкость отгонной секции деметанизатора 12 представляет собой фракцию углеводородов С2+ с высоким содержанием этана следующего состава, мас.%:
Метан 0,784
Углекислота 0,002
Этан 38,629
Пропан 34,383
Изобутан 6,644
Н.бутан 11,671
Изопентан 3,749
Н.пентан 2,707
Гексан + высшие 1,431
Присутствующие в кубовой жидкости в малых количествах метан и углекислота полностью в ней растворены и не оказывают практического влияния на физические свойства фракции С2+.
Для обеспечения однофазного (жидкого) состояния фракции С2+ по всей трассе продуктопровода и в любой период года экспериментально определены оптимальная температура и давление в начале трубопровода с учетом особенностей трассы трубопровода и температуры грунта при условии безнасосной подачи смеси. Исходные данные для расчетов: температура кубовой жидкости на выходе с деметанизатора - 50°C, давление процесса деметанизации - 3,2-3,6 МПа, протяженность продуктопровода 214 км, давление на входе завода-потребителя после узла разгазирования составляет 1,2-1,6 МПа, средняя температура грунта на глубине залегания трубопровода в летнее время составляет 16°C, а в зимнее - минус 3°C.
Предварительно было исследовано агрегатное состояние фракции C2+ с получением кривых фазовых переходов, построенных в координатах "давление - температура". Суть исследований заключается в том, что для данного состава смеси при заданных значениях температуры (T) и давления (p) определяют ее фазовое состояние, изменяя тем самым значения T и p, и интерпретируют кривую фазовых переходов. Кривая фазовых переходов данной смеси углеводородов представлена на фиг.2.
В результате изучения кривой фазовых переходов с учетом технологии выделения фракции C2+ из углеводородного газа определены минимальное начальное давление 3,2 МПа и максимальная температура 16°C фракции C2+ на входе в продуктопровод, обеспечивающие ее однофазное транспортирование на максимально возможные расстояния (до 300 км).
Ограничение по начальному давлению транспортируемой смеси объясняется условиями проведения ректификации в деметанизаторе 12 с давлением не менее 3,2 МПа. При более низких давлениях получение необходимого холода на турбодетандре для работы установки невозможно. Вместе с тем давление в колонне должно обеспечивать "покрытие" гидравлических потерь давления как при прохождении кубового продукта через холодильные аппараты перед подачей в продуктопровод, так и при транспортировании смеси по продуктопроводу до завода на расстояние 214 км (по условиям работы потребителя давление поступающего сырья в конечной точке продуктопровода на узле разгазирования не должно быть ниже 1,8 МПа с учетом дальнейшего снижения давления до заданных входных значений на заводе-потребителе, а по условиям прокладки трубопроводов температура смеси приобретает температуру грунта и не может быть выше 16°C, что соответствует средней температуре грунта в летнее время).
Из графика фазовых переходов видно, что даже при самых неблагоприятных условиях, которые могут быть на конечном участке продуктопровода в летнее время, а именно при давлении на выходе из продуктопровода 18 МПа и температуре 16°C данная смесь углеводородов C2+ будет находиться в равновесном состоянии (точка на кривой). Однако на практике из-за пониженной скорости потока по сравнению с максимально расчетной давление на выходе из продуктопровода значительно превышает это значение (до 2,5 МПа). Кроме того, рабочий диапазон деметанизатора 3,2-3,6 МПа позволяет дополнительно обеспечить жидкое состояние C2+ по всей длине продуктопровода.
Следовательно, начальные давление и температура, как видно из графиков фазового перехода, даже в летнее время обеспечивают однофазное (жидкое) транспортирование данной смеси до потребителя.

Claims (1)

  1. Способ подготовки к транспортированию смеси углеводородов, при котором смесь предварительно разделяют на метановую фракцию C1 с последующей подачей ее в газопровод и фракцию углеводородов С2+, которую перед подачей в трубопровод стабилизируют, отличающийся тем, что фракцию углеводородов С2+ стабилизируют путем перевода в жидкое состояние посредством предварительного охлаждения до температуры не выше 16°С и подают в продуктопровод, поддерживая давление в начале трубопровода не ниже 3,2 МПа.
RU2005128413/06A 2005-09-12 2005-09-12 Способ подготовки к транспортированию смеси углеводородов RU2297573C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005128413/06A RU2297573C1 (ru) 2005-09-12 2005-09-12 Способ подготовки к транспортированию смеси углеводородов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005128413/06A RU2297573C1 (ru) 2005-09-12 2005-09-12 Способ подготовки к транспортированию смеси углеводородов

Publications (1)

Publication Number Publication Date
RU2297573C1 true RU2297573C1 (ru) 2007-04-20

Family

ID=38036906

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005128413/06A RU2297573C1 (ru) 2005-09-12 2005-09-12 Способ подготовки к транспортированию смеси углеводородов

Country Status (1)

Country Link
RU (1) RU2297573C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2630202C1 (ru) * 2016-09-30 2017-09-05 Публичное акционерное общество "Газпром" Способ извлечения фракции С2+ из сырого газа и установка для его осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2630202C1 (ru) * 2016-09-30 2017-09-05 Публичное акционерное общество "Газпром" Способ извлечения фракции С2+ из сырого газа и установка для его осуществления

Similar Documents

Publication Publication Date Title
RU2641778C2 (ru) Комплексный способ извлечения газоконденсатных жидкостей и сжижения природного газа
KR101568763B1 (ko) Lng를 생산하는 방법 및 시스템
AU2010200707B2 (en) Nitrogen removal with iso-pressure open refrigeration natural gas liquids recovery
RU2430316C2 (ru) Способ для сжижения углеводородного потока и устройство для его осуществления
US6223557B1 (en) Process for removing a volatile component from natural gas
US9759481B2 (en) Method for producing a flow which is rich in methane and a cut which is rich in C2+ hydrocarbons from a flow of feed natural gas and an associated installation
US6125653A (en) LNG with ethane enrichment and reinjection gas as refrigerant
RU2499209C2 (ru) Способ и установка для сжижения потока углеводородов
JP2002527714A (ja) 蒸留法を用いた多成分加圧供給流を分別するための方法
US8522574B2 (en) Method for nitrogen rejection and or helium recovery in an LNG liquefaction plant
JP2002508055A (ja) 天然ガス液化のための改良された多成分冷凍方法
US20080148770A1 (en) Process to obtain liquefied natural gas
NO320741B1 (no) Avkjolingsprosess for flytendegjoring av naturgass
AU2016273821C1 (en) Single-unit gas separation process having expanded, post-separation vent stream
WO2009101127A2 (en) Method and apparatus for cooling a hydrocarbon stream
US8080701B2 (en) Method and apparatus for treating a hydrocarbon stream
RU2580453C1 (ru) Способ переработки природного углеводородного газа
CN202924980U (zh) 天然气液化与重烃处理装置
WO2010040735A2 (en) Methods of treating a hydrocarbon stream and apparatus therefor
RU2297573C1 (ru) Способ подготовки к транспортированию смеси углеводородов
RU2720732C1 (ru) Способ и система охлаждения и разделения потока углеводородов
NO146554B (no) Fremgangsmaate og apparat for separering av en tilfoerselsgass under trykk
AU2016273826C1 (en) Single-unit gas separation process having expanded, post-separation vent stream
US20200378682A1 (en) Use of dense fluid expanders in cryogenic natural gas liquids recovery

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160913