RU2292571C1 - Комплексный скважинный прибор - Google Patents

Комплексный скважинный прибор Download PDF

Info

Publication number
RU2292571C1
RU2292571C1 RU2005125033/28A RU2005125033A RU2292571C1 RU 2292571 C1 RU2292571 C1 RU 2292571C1 RU 2005125033/28 A RU2005125033/28 A RU 2005125033/28A RU 2005125033 A RU2005125033 A RU 2005125033A RU 2292571 C1 RU2292571 C1 RU 2292571C1
Authority
RU
Russia
Prior art keywords
sensors
module
sti
pressure
sensor
Prior art date
Application number
RU2005125033/28A
Other languages
English (en)
Inventor
Игорь Юрьевич Белов (RU)
Игорь Юрьевич Белов
Владимир Иванович Белов (RU)
Владимир Иванович Белов
Original Assignee
Общество с ограниченной ответственностью "фирма "НИИД-50"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "фирма "НИИД-50" filed Critical Общество с ограниченной ответственностью "фирма "НИИД-50"
Priority to RU2005125033/28A priority Critical patent/RU2292571C1/ru
Application granted granted Critical
Publication of RU2292571C1 publication Critical patent/RU2292571C1/ru

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к области геофизических исследований и может быть использовано при исследованиях действующих нефтяных и газовых скважин, а также при проведении ремонтно-изоляционных работ. Сущность: устройство содержит составной корпус, в котором последовательно сверху вниз размещены следующие датчики: гамма-каротажа, локатора муфт, давления, температуры, влагомера, термокондуктивного расходомера, резистивиметра. В герметичной части составного корпуса размещены датчики гамма-каротажа, локатора муфт и давления. Причем чувствительная мембрана датчика давления соединена с окружающей средой гидропроводным каналом. В герметичных полостях негерметичной части составного корпуса размещены датчики температуры, влагомера, термокондуктивного расходомера и резистивиметра. Причем датчики температуры и влагомера расположены в одном месте и смещены относительно продольной оси прибора на равные расстояния. Технический результат: улучшение технико-эксплуатационных характеристик прибора, повышение достоверности получаемой информации. 3 з.п.ф-лы, 2 ил.

Description

Изобретение относится к геофизической технике и может быть использовано при проведении геофизических исследований в действующих нефтяных, газовых и гидротермальных скважинах с целью оптимизации режимов их работы, при построении профиля притока или поглощения в скважинах с целью определения дебитов пластов и пропластков и при проведении ремонтно-изоляционных работ.
Данное изобретение позволяет увеличить эффективность измерений и повысить чувствительность и надежность работы комплексного скважинного прибора (далее - «прибор», «скважинный прибор»), в результате чего достигается технический эффект, заключающийся в повышении качества и достоверности получаемой информации, что в конечном итоге ведет к улучшению эксплуатационных характеристик прибора.
Известен аппаратурный комплекс (прибор) «Мега-К», состоящий из соединенных с помощью унифицированного стыковочного узла модулей, последовательно установленных сверху вниз: модуля гамма-каротажа (ГК), модуля датчика влагомера (W), модуля резистивиметра (РИ), модуля локатора муфт (ЛМ), модуля акустического трехканального шумомера (S), модуля датчиков давления (Р), температуры (Т) и термокондуктивного расходомера (СТИ) и модуля механического расходомера, каждый из которых снабжен телеметрическим блоком (НТВ «Каротажник», выпуск №68, г.Тверь 2000 г, стр.127, 128).
Недостатками прибора являются:
- большое количество соединений, которые снижают надежность прибора за счет увеличения количества уплотняемых мест и мест контактных соединений;
- явная избыточность электронных элементов, обусловленная наличием телеметрических блоков, установленных в каждом модуле, что увеличивает стоимость и общую длину прибора, усложняя проход прибора в местах искривления скважин, а следовательно, снижая надежность прибора;
- расположение модуля механического расходомера в нижней части прибора, что увеличивает возможность попадания грязи и мусора в его подвижные части при достижении забоя скважины, что снижает надежность работы модуля механического расходомера;
- расположение в центре прибора модуля акустического трехканального шумомера, корпус которого равен в диаметральном исполнении корпусу прибора, что увеличивает влияние на датчики шумов, возникающих от движения кабеля по стенкам колонны труб и движения самого прибора по колонне скважины, снижая достоверность получаемой информации;
- близкое расположение датчиков Т и СТИ в одном модуле, что усиливает взаимовлияние датчиков, значительно искажая информационный фон для датчиков Т, поскольку датчики СТИ работают с подогревом, что снижает достоверность получаемой информации с датчиков Т;
- разделение датчиков Т и СТИ перегородкой, с одной стороны - затеняет половину потока, сокращая информационное поле для датчиков, что влияет на качество получаемой информации обоих датчиков, а с другой стороны - значительно снижает прочность устройства в данном месте, снижая надежность прибора;
- в модуле датчика W измеряемый поток поступает односторонне, что ограничивает информационный диапазон датчика, снижая достоверность получаемой информации, а следовательно, снижает эффективность измерений.
Известен дистанционный прибор «Агат-К9-36», снабженный телеметрической системой, содержащий 9 различных датчиков и состоящий из 5 модулей, последовательно соединенных и установленных сверху вниз: модуля расходомера малого диаметра, модуля ГК, базового модуля, содержащего установленные в блоке датчики Т, Р, СТИ, W, S и ЛМ, модуля индукционного резистивиметра (РИ) и модуля высокочувствительного расходомера со складывающейся вертушкой (HTB «Каротажник», выпуск №68, г.Тверь, 2000 г., стр.107, 108; HTB «Каротажник», выпуск №111-112, г.Тверь, 2003 г., стр.103-104).
Недостатками прибора являются:
- сосредоточенная в одном месте базового модуля установка датчиков Т, Р, СТИ, W и S, что приводит к:
- резкому снижению прочности конструкции в месте их установки, а следовательно, к возможности деформации прибора в данном месте, т.е. снижению надежности прибора;
- взаимовлиянию датчиков Т и СТИ, так как датчики СТИ производят измерение при подогреве, искажая тем самым температуру измеряемых полей датчика Т, а значит, снижая достоверность информации, измеряемой датчиками Т.
Наиболее близким по технической сущности и достигаемому эффекту является аппаратурно-методический комплекс контроля за разработкой «АМК Геотрон», содержащий наземный регистрирующий комплекс и скважинный комплекс (прибор); прибор содержит набор скважинных модулей, соединяющихся в любой последовательности и комбинации, и включающий - модуль расходомера, установленный соосно с устройством, в нижней его части; модуль нейтронный; модуль плотномера; модуль технологический; модуль переходной, включающий установленные сверху вниз датчики S, СТИ и РИ, размещенные в герметичных, консольно закрепленных в корпусе карманах и последовательно установленные в диаметрально выполненных сквозных окнах; и основной модуль, включающий установленные сверху вниз датчики ЛМ, ГК, Р и датчики Т и W, установленные в герметичных карманах, закрепленных консольно, и совместно размещенные в диаметрально противоположных окнах, выполненных в корпусе устройства (НТВ «Каротажник», выпуск №72, г.Тверь, 2000 г., стр.180...182). Недостатками прибора являются:
- выполнение прибора в виде многомодульной компоновки, что приводит к значительному увеличению длины прибора, снижает прочность, надежность и проходимость прибора в местах изменения углов наклона скважины;
- расположение модуля расходомера внизу прибора, что приводит к засорению подвижных частей модуля расходомера при достижении забоя скважины, а следовательно, к снижению надежности его работы;
- по основному модулю - выполнение сплошного сквозного окна в корпусе, в месте установки датчика W, приводит к возникновению эффекта шунтирования, обусловленного изменением сигнала датчика (емкостного) при приближении окна к стенки скважины при движении прибора в процессе проведения измерений, что искажает показания датчика влагомера, влияя на достоверность информации, снижая эффективности исследования.
Технической задачей изобретения является увеличение эффективности измерений, повышение чувствительности измерении и надежности работы устройства, и улучшение эксплуатационных возможностей геофизического комплексного скважинного прибора.
Указанная задача достигается тем, что в комплексном скважинном приборе, содержащем составной корпус, в котором установлены датчики - локатора муфт (ЛМ), гамма-каротажа (ГК), давления (Р), температуры (Т), влагомера (W), термокондуктивного расходомера (СТИ) и резистивиметра (РИ) последовательно, сверху вниз, размещены, в герметичной части составного корпуса, датчики ГК, ЛМ и Р, причем чувствительная мембрана датчика Р соединена с окружающей средой гидропроводным каналом, а в герметичных полостях негерметичной части составного корпуса-датчики T, W, СТИ и РИ, причем, датчики Т и W, расположены в одном месте и смещены относительно продольной оси прибора на равные расстояния, причем, в корпусе, в месте под установку датчиков Т и W, выполнены две пары взаимно перпендикулярных, разных по ширине, сквозных окон, снабженных поперечными перемычками, а сам прибор снабжен дополнительным модулем расходомера, который оснащен центратором и установлен сверху над основным модулем, и вторым дополнительным модулем - акустическим шумомером, который установлен под основным модулем и оснащен акустическим изолятором.
Новыми признаками прибора являются:
- компактное размещение всех датчиков в одном основном модуле, что позволяет сократить длину всего прибора, повысить его надежность и проходимость, т.е., повысить эксплуатационные характеристики прибора;
- последовательная установка снизу вверх датчиков Т, W, СТИ и РИ, что с одной стороны, исключает взаимное влияние датчиков СТИ и Т, так как поток скважинной жидкости при перемещении прибора вверх по скважине сносит аномальные температурные искажения, создаваемые датчиком СТИ от зоны исследования датчика Т, повышая эффективность и достоверность измерения, а с другой стороны - позволяет комплексно исследовать по составу минерализацию скважинных и пластовых флюидов и определить присутствие нефти с учетом боковых потоков, поступающих из заколонного пространства скважины, повышая эффективность измерений;
- последовательная установка снизу вверх датчиков ЛМ и ГК, что уменьшает влияние магнитного поля от постоянных магнитов ЛМ на поток электронов в фотоэлектронном умножителе, установленном в датчике ГК, повышая надежность и достоверность измерений;
- расположение датчиков Т и W в одном сквозном окне со смещением относительно продольной оси прибора на равные расстояния, что позволяет сократить длину прибора без внесения взаимных искажений на информационные поля обоих датчиков, повышая их чувствительность и достоверность измерений;
- выполнение в корпусе, в месте установки датчиков Т и W, двух пар, перпендикулярно размещенных, разных по ширине окон, снабженных поперечными перемычками, что исключает возможность возникновения шунтирования и искажения информации в датчиках W и увеличивает прочность корпуса в данном месте, что повышает достоверность информации датчиков и надежность прибора;
- установка модуля расходомера над основным модулем, что защищает модуль расходомера от попадания мусора с забоя, поскольку расходомер забоя не достигает, а следовательно, повышает надежность работы модуля;
- установка модуля акустического щумомера под основным модулем, что максимально удаляет его от паразитных шумов, возникающих при трении геофизического кабеля и головки скважинного прибора о стенку колонны скважины, обеспечивая его эффективность измерения;
- оснащение модуля акустического шумомера акустическим изолятором, что обеспечивает изоляцию модуля от шумов, возникающих при касании корпуса прибора о стенку колонны скважины.
Из анализа патентной и научно-технической литературы подобное решение не известно, что и позволяет сделать вывод о «Новизне» и «Изобретательском уровне» предлагаемого комплексного скважинного прибора (скважинного прибора).
На фиг.1 представлен вариант конструкции предложенного скважинного прибора.
Скважинный прибор содержит:
составной корпус 1, датчик 2 ЛМ, датчик 3 ГК, датчик 4 Р, датчик 5 Т, датчик 6 W и датчик 7 СТИ и датчик 8 РИ, причем составной корпус 1 содержит герметичную часть 9, в которой последовательно сверху вниз размещены датчики 3, 2 и 4, а чувствительная мембрана датчика 4 соединена с окружающей средой гидропроводным каналом 10, и негерметичную часть 11 составного корпуса 1, где в герметичных полостях установлены датчики 5, 6, 7 и 8, причем датчики 5 и 6 расположены в одном месте и смещены относительно продольной оси прибора на равные расстояния, здесь же расположены две взаимноперпендикулярные пары, разных по ширине, окон 12 и 13, 14 и 15, снабженные поперечными перемычками 16 и 17, которые с одной стороны предохраняют корпус 1 прибора от воздействия изгибающих моментов сил, возникающих при прохождении прибора в местах искривления скважины, а с другой стороны предотвращают от влияния эффекта шунтирования корпуса и колонны труб в скважине на датчик 6, установленный в данном окне; амортизирующий наконечник 18 и приборную головку 19 под кабельный наконечник.
На фиг.2 представлен вариант конструкции предложенного технического решения скважинного прибора с двумя дополнительными модулями - дополнительный модуль расходомера 20, который оснащен центратором 21 и установлен сверху над основным модулем, к которому модуль расходомера 20 подсоединен вместо приборной головки 19 под кабельный наконечник, и акустический модуль 22, который установлен под основным модулем и оснащен акустическим изолятором 23, установленным в корпусе акустического модуля.
Скважинный прибор, подсоединенный к геофизическому регистратору через геофизический кабель, опускают на этом кабеле через насосно-компрессорные трубы на забой скважины.
При спуске скважинного прибора производят фоновые измерения всех параметров, регистрируемых скважинным прибором. При этом нагреватель датчика СТИ выключен, а сам датчик работает как дублирующий термометр.
Во время нахождения скважинного прибора в исследуемой скважине скважинные флюиды омывают корпус скважинного прибора и все его измерительные датчики. При достижении скважинного прибора забоя включается нагреватель датчика СТИ, и при подъеме скважинного прибора производят запись со всех датчиков.
Полный объем и порядок работ по детальному исследованию конкретной скважины производится в зависимости от поставленной задачи по методикам, утвержденным геологической службой геофизического предприятия, согласованным с геологической службой нефтегазодобывающего предприятия.
Предлагаемое устройство реализовано при разработке и выпуске комплексной скважинной аппаратуры модели «Сова» и опробовано во многих геофизических производственных предприятиях России, что позволяет сделать вывод о «Промышленной применимости».
Данное устройство позволяет повысить эффективность и надежность измерений, повысить чувствительность измерений и надежность работы устройства, значительно сократив общую длину сжважинного прибора, в результате чего достигается технический эффект, заключающийся в повышении качества и достоверности получаемой информации, в повышении проходимости скважинного прибора по скважине, что в конечном итоге ведет к улучшению эксплуатационных характеристик комплексного скважинного прибора.

Claims (4)

1. Комплексный скважинный прибор, содержащий составной корпус, в котором установлены датчики локатора муфт (ЛМ), гамма-каротажа (ГК), давления (Р), температуры (Т), влагомера (W), термокондуктивного расходомера (СТИ) и резистивиметра (РИ), отличающийся тем, что в приборе последовательно сверху вниз размещены в герметичной части составного корпуса датчики ГК, ЛМ и Р, причем чувствительная мембрана датчика Р соединена с окружающей средой гидропроводным каналом, а в герметичных полостях негерметичной части составного корпуса - датчики Т, W, СТИ и РИ, причем датчики Т и W расположены в одном месте и смещены относительно продольной оси прибора на равные расстояния.
2. Прибор по п.1, отличающийся тем, что в корпусе в месте под установку датчиков Т и W выполнено две пары взаимоперпендикулярных, разных по ширине сквозных окон, снабженных поперечными перемычками.
3. Прибор по п.1, отличающийся тем, что снабжен дополнительным модулем расходомера, который оснащен центратором и установлен сверху над основным модулем.
4. Прибор по п.1, отличающийся тем, что снабжен вторым дополнительным модулем - акустическим шумомером, который установлен под основным модулем и оснащен акустическим изолятором.
RU2005125033/28A 2005-08-05 2005-08-05 Комплексный скважинный прибор RU2292571C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005125033/28A RU2292571C1 (ru) 2005-08-05 2005-08-05 Комплексный скважинный прибор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005125033/28A RU2292571C1 (ru) 2005-08-05 2005-08-05 Комплексный скважинный прибор

Publications (1)

Publication Number Publication Date
RU2292571C1 true RU2292571C1 (ru) 2007-01-27

Family

ID=37773527

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005125033/28A RU2292571C1 (ru) 2005-08-05 2005-08-05 Комплексный скважинный прибор

Country Status (1)

Country Link
RU (1) RU2292571C1 (ru)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2443860C1 (ru) * 2010-06-10 2012-02-27 Закрытое акционерное общество "ГЕОФИЗМАШ" Термоманометрическая система с расходомером и влагомером
RU2445653C2 (ru) * 2010-05-13 2012-03-20 Учреждение Российской академии наук Институт геофизики Уральского отделения РАН Устройство для проведения геоакустического каротажа
RU2495241C2 (ru) * 2011-12-29 2013-10-10 Общество с ограниченной ответственностью фирма "НИИД-50" Комплексный скважинный прибор
RU2520733C2 (ru) * 2012-09-18 2014-06-27 Валерий Владимирович Комлык Скважинная геофизическая аппаратура
RU2523335C1 (ru) * 2013-05-06 2014-07-20 Олег Сергеевич Николаев Устройство для пофазного замера физических параметров флюида в горизонтальной скважине
RU179494U1 (ru) * 2018-02-06 2018-05-16 Общество с Ограниченной Ответственностью "ТНГ-Групп" Прибор контроля перфорации
RU2674046C1 (ru) * 2018-02-21 2018-12-04 Акционерное общество "Сибнефтемаш" Комплексный прибор для исследования высокотемпературных скважин
EA032180B1 (ru) * 2016-09-02 2019-04-30 Общество С Ограниченной Ответственностью "Микс" (Ооо "Микс") Автономный комплексный скважинный прибор и способ определения параметров скважины
CN112253099A (zh) * 2020-10-27 2021-01-22 中国石油天然气集团有限公司 一种随钻方位居中伽马测井仪

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2445653C2 (ru) * 2010-05-13 2012-03-20 Учреждение Российской академии наук Институт геофизики Уральского отделения РАН Устройство для проведения геоакустического каротажа
RU2443860C1 (ru) * 2010-06-10 2012-02-27 Закрытое акционерное общество "ГЕОФИЗМАШ" Термоманометрическая система с расходомером и влагомером
RU2495241C2 (ru) * 2011-12-29 2013-10-10 Общество с ограниченной ответственностью фирма "НИИД-50" Комплексный скважинный прибор
RU2520733C2 (ru) * 2012-09-18 2014-06-27 Валерий Владимирович Комлык Скважинная геофизическая аппаратура
RU2523335C1 (ru) * 2013-05-06 2014-07-20 Олег Сергеевич Николаев Устройство для пофазного замера физических параметров флюида в горизонтальной скважине
EA032180B1 (ru) * 2016-09-02 2019-04-30 Общество С Ограниченной Ответственностью "Микс" (Ооо "Микс") Автономный комплексный скважинный прибор и способ определения параметров скважины
RU179494U1 (ru) * 2018-02-06 2018-05-16 Общество с Ограниченной Ответственностью "ТНГ-Групп" Прибор контроля перфорации
RU2674046C1 (ru) * 2018-02-21 2018-12-04 Акционерное общество "Сибнефтемаш" Комплексный прибор для исследования высокотемпературных скважин
CN112253099A (zh) * 2020-10-27 2021-01-22 中国石油天然气集团有限公司 一种随钻方位居中伽马测井仪

Similar Documents

Publication Publication Date Title
RU2292571C1 (ru) Комплексный скважинный прибор
US8964504B2 (en) Method and apparatus for evaluating a cemented borehole casing
EP3204605B1 (en) Integrated multiple parameter sensing system and method for leak detection
CA2753420C (en) System and method for wellbore monitoring
US9903972B2 (en) Seismic cable, system and method for acquiring information about seismic, microseismic and mechanical vibration incidents in a well
CA2554254A1 (en) System and method for measurements of depth and velocity of instrumentation within a wellbore
US9279317B2 (en) Passive acoustic resonator for fiber optic cable tubing
US8387743B2 (en) Systems and methods for acoustically measuring bulk density
CA2749767C (en) A complex tool for well monitoring
US10041343B2 (en) Micro-sonic density imaging while drilling systems and methods
WO2001033046A1 (en) Method and apparatus for accurate temperature and pressure measurement
CN113513302A (zh) 基于分布式光纤水听器的井下流体监测系统及监测方法
US9121972B2 (en) In-situ system calibration
SG187720A1 (en) Micro-sonic density imaging while drilling systems and methods
RU2495241C2 (ru) Комплексный скважинный прибор
RU2440493C1 (ru) Профилемер-дефектоскоп для исследования технического состояния обсадных колонн и насосно-компрессорных труб нефтегазовых скважин
US20160291187A1 (en) Encoded Driving Pulses for a Range Finder
RU2373392C1 (ru) Способ обнаружения заколонных перетоков жидкости в скважинах
RU2480583C1 (ru) Телеметрическая система контроля параметров забоя
EP2304473B1 (en) Systems and methods for acoustically measuring bulk density
CA2958230C (en) Electronic sensor apparatus, methods, and systems
RU21419U1 (ru) Комплексный скважинный прибор
RU2672073C2 (ru) Комплексный прибор для исследования скважин
RU2102597C1 (ru) Способ контроля состояния крепи скважины
CN118148614A (zh) 油井井下产液剖面的光纤在线测量系统及方法