RU2292305C1 - Способ извлечения ионов тяжелых металлов из водных растворов - Google Patents

Способ извлечения ионов тяжелых металлов из водных растворов Download PDF

Info

Publication number
RU2292305C1
RU2292305C1 RU2005124638/15A RU2005124638A RU2292305C1 RU 2292305 C1 RU2292305 C1 RU 2292305C1 RU 2005124638/15 A RU2005124638/15 A RU 2005124638/15A RU 2005124638 A RU2005124638 A RU 2005124638A RU 2292305 C1 RU2292305 C1 RU 2292305C1
Authority
RU
Russia
Prior art keywords
sorbent
extraction
ions
solution
lead
Prior art date
Application number
RU2005124638/15A
Other languages
English (en)
Inventor
Людмила Алексеевна Земнухова (RU)
Людмила Алексеевна Земнухова
Галина Алексеевна Федорищева (RU)
Галина Алексеевна Федорищева
Анна Николаевна Холомейдик (RU)
Анна Николаевна Холомейдик
Ирина Вадимовна Шевелева (RU)
Ирина Вадимовна Шевелева
Original Assignee
Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН)
Бурмистров Александр Сергеевич
Тен Петр Владимирович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН), Бурмистров Александр Сергеевич, Тен Петр Владимирович filed Critical Институт химии Дальневосточного отделения Российской академии наук (статус государственного учреждения) (Институт химии ДВО РАН)
Priority to RU2005124638/15A priority Critical patent/RU2292305C1/ru
Application granted granted Critical
Publication of RU2292305C1 publication Critical patent/RU2292305C1/ru

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

Изобретение относится к области химии, в частности к очистке водных растворов. Способ включает контактирование очищаемого раствора с сорбентом на основе диоксида кремния, представляющим собой рисовой шелуху, подвергнутую термической обработке при температуре 300-400°С в условиях недостатка кислорода в атмосфере выделяющихся пирогазов, при этом контактирование осуществляют в течение 10-24 часов при модуле раствор/сорбент 500-1000. Способ позволяет обеспечить высокую эффективность селективного извлечения ионов свинца и меди из содержащих их водных растворов в широком интервале концентраций. 3 ил.

Description

Изобретение относится к селективному извлечению тяжелых металлов, преимущественно свинца и меди, из водных растворов и может найти применение на предприятиях металлургической и химической промышленности, а также в системах водоочистки.
Свинец - один из наиболее общеизвестных токсичных для человека микроэлементов. Известно, что для всех регионов России свинец является основным антропогенным поллютантом из группы тяжелых металлов, что связано с высоким индустриальным загрязнением. Его высокая токсичность обусловлена способностью проникать в организм и накапливаться в нем, оказывая политропное действие. При свинцовом токсикозе поражаются в первую очередь органы кроветворения, нервная система, органы чувств, почки и сердечно-сосудистая система.
Физиологическое воздействие меди зависит от дозы, при этом ее избыток может иметь опасные последствия для генома клеток. Хроническая интоксикация медью и ее солями может привести к функциональным расстройствам нервной системы, печени и почек, изъязвлению и перфорации носовой перегородки, аллергодерматозам.
Главной причиной опасного дисбаланса меди в организме является ее избыточное содержание в почве и водах вследствие промышленного загрязнения, поскольку медь широко используется в гальванотехнике, производстве искусственного волокна, минеральных красок, эмалей. Например, медь, используемая в производстве красителей для тканей, с фабричными стоками поступает в реки.
Известен ряд способов извлечения ионов тяжелых металлов из растворов с использованием сорбентов природного, преимущественно минерального, происхождения на основе диоксида кремния.
Известен способ извлечения из растворов тяжелых металлов, преимущественно свинца, в котором используется природный сорбент на основе кремнезема, представляющий собой дробленную горелую породу следующего состава, %: SiO2 68,2; Al2О3 21,5; Fe2О3 4,7, с общей пористостью 52-60%, модифицированную раствором карбоксиметилцеллюлозы. [пат. РФ №2223143, опубл. 10.02.04].
Недостатком известного способа является его недостаточно высокая эффективность при очистке растворов с высокими содержаниями тяжелых металлов, а также ухудшение эффективности в ходе эксплуатации сорбента в связи с заполнением его внутрипоровых каналов.
Известные способы, в которых используются сорбенты растительного происхождения, содержащие диоксид кремния, преимущественно предназначены для очистки воды от нефти и нефтепродуктов [з. РФ №2003127908, опубл. 20.04.05], либо от жидких органических веществ [пат. США №4619908, опубл. 28.06.86], либо используются для извлечения из воды целого ряда металлов, но не обеспечивают селективности в отношении свинца и меди [п. РФ №2233199, опубл. 27.07.04].
Наиболее близким к заявляемому является способ очистки сточных вод от ионов свинца [пат. РФ №2075444, опубл. 20.03.97], включающий пропускание очищаемой воды через сорбент природного происхождения на основе микрозернистого аморфного диоксида кремния, представляющий собой опоку Саратовского месторождения, предварительно дробленную и прокаленную при 300-700°С.
Недостаток известного способа заключается в том, что он обеспечивает эффективное извлечение свинца только при его достаточно низких концентрациях в растворе (3 мг/л).
Задачей заявляемого технического решения является разработка способа, обеспечивающего селективное извлечение ионов тяжелых металлов, преимущественно свинца и меди, из водных растворов, эффективное в широком интервале концентраций извлекаемых элементов в растворе (1-300 мг/л).
Поставленная задача решается способом извлечения ионов тяжелых металлов из водных растворов, включающим контактирование очищаемого раствора с сорбентом на основе диоксида кремния, представляющим собой термообработанный природный материал, при этом в качестве такого сорбента используют продукт, полученный в результате термической обработки рисовой шелухи, осуществляемой при температуре 300-400°С в условиях недостатка кислорода, а контактирование осуществляют в течение 10-24 часов при модуле раствор/сорбент (500-1000):1.
Заявляемый способ извлечения ионов тяжелых металлов, а именно свинца и меди, из водных растворов осуществляют в статических условиях ампульным методом. Для этого в емкость помещают подготовленный сорбент и заливают подлежащий очистке водный раствор. Время сорбции составляет от 10 до 24 часов и зависит от концентрации очищаемого раствора. Растворы с высокими концентрациями извлекаемых тяжелых металлов требуют большей временной выдержки в контакте с сорбентом и меньших значений модуля (отношения объема раствора к массе сорбента).
После очистки раствор отделяют от сорбента фильтрованием либо декантацией.
Для повышения степени извлечения при необходимости прошедший очистку раствор может быть подвергнут повторному контактированию со свежим сорбентом, т.е. по меньшей мере, одному повторному циклу извлечения.
Сорбент для осуществления заявляемого способа получают следующим образом. Очищенную от механических примесей, промытую и высушенную рисовую шелуху (цветочные пленки зерна риса) нагревают в реакторе с внешним обогревом при температуре 300-400°С в течение 1,5-2,0 часов в обедненной кислородом атмосфере, образованной выделяющимися пирогазами (Н2О, СО, СО2, N2, О2, а также карбонилсодержащие соединения, насыщенные и ненасыщенные углеводороды и др.). Атмосфера пирогазов образуется при нагревании рисовой шелухи в закрытом объеме реактора, исключающем свободный доступ воздуха и обеспечивающем некоторое избыточное давление пирогазов, при этом избыток пирогазов самопроизвольно выходит через специальный штуцер в камеру дожигания.
Термообработка рисовой шелухи в заявляемом интервале температур в условиях недостатка кислорода обеспечивает карбонизацию углеродсодержащих соединений, входящих в ее состав, и образование аморфного диоксида кремния.
ИК-спектр поглощения полученного сорбента, приведенный на фиг.1 (спектр получен с помощью спектрофотометра "IR Prestige-2" фирмы Shimadzu, Япония), включает только три полосы поглощения (456, 800 и 1090 см-1), характерные для колебательной связи Si-O в тетраэдрических группах SiO4, присущих аморфному SiO2 (на фиг.1 звездочкой (*) отмечены полосы поглощения вазелинового масла).
При термообработке в указанных условиях сохраняется кремнеземная скелетная структура, которую обнаруживает диоксид кремния на поверхности исходной необработанной рисовой шелухи и которая различима на фотографии, приведенной на фиг.2 (фотография поверхности получена с помощью электронного сканирующего микроскопа LEO-430 при увеличении ×400). При этом у рисовой шелухи, подвергнутой термической обработке, промежутки кремнеземной скелетной структуры заполнены гомогенно распределенным в них углеродом, что четко видно на фотографии, приведенной на фиг.3 (фотография поверхности полученного сорбента выполнена в тех же условиях, что и фотография, приведенная на фиг.2).
Термообработка в заявляемых условиях помимо сохранения скелетной структуры природного кремнеземного полимера обеспечивает оптимальное соотношение C:SiO2, при котором полученный сорбент работает селективно в отношении Pb и Cu и обеспечивает их эффективное извлечение. Кремнеземная матрица за счет развитой системы пор вмещает количество углерода, примерно в 3 раза превышающее ее по весу.
Избыток кислорода при термообработке на воздухе и температура обработки, выше заявляемой приводят к слишком быстрому удалению углерода, в первую очередь, с поверхности кремнеземной матрицы и в результате чего нарушается соотношение С:SiO2, оптимальное для решения поставленной задачи.
После отфильтровывания либо декантации очищенного раствора отработанный сорбент в силу своей доступности и дешевизны подлежит утилизации, например, путем сжигания, при этом адсорбированный металл может быть собран одним из известных методов и использован.
Примеры конкретного осуществления способа.
С помощью заявляемого способа осуществляли очистку модельных растворов, содержащих ионы свинца, меди, кадмия и железа в концентрации от 1,0 до 300 мг/л. В емкость помещали подготовленный сорбент, затем вносили подлежащий очистке раствор и выдерживали в течение 10-24 часов. Очищенный раствор отфильтровывали и в фильтрате определяли содержание каждого из ионов.
Для повышения степени извлечения собранный фильтрат вносили в емкость со свежим сорбентом и повторно выдерживали в течение того же времени, после чего раствор снова отфильтровывали (повторный цикл).
Отработанный сорбент собирали в специальную емкость для последующей утилизации.
После каждого цикла очистки подсчитывали степень извлечения (S, %) ионов металлов из раствора по формуле:
S=(Сисхкон)/Сисх100%,
где Сисх и Скон - исходная и конечная концентрации (мг·л-1) ионов в растворе.
Для получения сорбента подготовленную рисовую шелуху подвергали термической обработке в закрытом реакторе без свободного доступа воздуха в атмосфере образующихся пирогазов, т.е. в атмосфере, обедненной кислородом. Обработанную шелуху высушивали на воздухе при комнатной температуре до постоянного веса.
В результате был получен сорбент, представляющий собой дисперсный материал в виде чешуек черного цвета насыпной плотностью ~450 г/л.
Удельная поверхность полученного сорбента (заполненной кремнеземной матрицы, вмещающей углерод), определенная по известной методике [Айвазов Б.Г. Практикум по химии поверхностных явлений и адсорбции. М.: Высшая школа, 1973. 206 с. (с.153-154)], составляет примерно 350 м2/г, при том, что для исходной рисовой шелухи этот показатель не превышает 140 м2/г. Полученный сорбент имеет наибольшее число пор с размером ~45 нм, что установлено изопиестическим методом [Экспериментальные методы в адсорбции и молекулярной хроматографии. Под ред. Ю.С.Никитина и Р.С.Петровой. М.: Изд. Московского университета, 1990. 318 с. (с.167-169)].
Сорбент содержит 70% углерода и около 25% аморфного кремнезема. Остальное включает адсорбированную (до 3%) и связанную (Si-OH) воду и неорганические вещества (Р - до 2%). Определения проводили по стандартным методикам с помощью элементного анализа на С, Н, Р, а также силикатного анализа.
Пример 1
Подготовленную шелуху подвергают термообработке при температуре 300°С в течение 2 часов.
0,5 г полученного сорбента заливают 500 мл водного раствора (модуль 1000:1), содержащего ионы Pb, Cu, Cd и Fe в концентрации 1,0 мг/л каждый.
Время контактирования раствора с сорбентом составляет 10 часов.
После первого цикла сорбции содержание ионов Pb в отфильтрованном растворе составляет 0,01 мг/л, Cu - 0,02 мг/л, Cd - 0,9 мг/л, Fe - 0,95 мг/л. Степень извлечения Pb составляет 99,0%, Cu - 80,0% (для Cd и Fe степень извлечения не подсчитывалась, поскольку извлечение практически отсутствовало).
После второго цикла сорбции ионы Pb и Cu в растворе не обнаружены (полная очистка), содержание ионов Cd и Fe в растворе не изменяется.
Пример 2
Подготовленную рисовую шелуху подвергают термической обработке при температуре 350°С в течение 1 часа 40 мин.
0,5 г полученного сорбента заливают 500 мл водного раствора (модуль 1000:1), содержащего ионы Pb, Cu, Cd и Fe в концентрации 20 мг/л каждый.
Время контактирования раствора с сорбентом составляет 10 часов.
После первого цикла сорбции содержание ионов Pb в отфильтрованном растворе составляет 7,4 мг/л, Cu - 12,2 мг/л, Cd - 19,2 мг/л, Fe - 19,8. Степень извлечения Pb составляет 63,0%, Cu - 39%.
После второго цикла сорбции содержание ионов Pb составляет 0,1 мг/л, Cu - 5,6 мг/л; содержание Cd и Fe в растворе практически не изменяется. Степень извлечения Pb после двух циклов составляет 99,5%, Cu - 72%.
(Для Cd и Fe степень извлечения не подсчитывалась).
Пример 3
Подготовленную рисовую шелуху подвергают термической обработке в температуре 400°С в течение 1 часа 30 мин.
1,0 г сорбента заливают 500 мл водного раствора (модуль 500:1), содержащего ионы Pb, Cu, Cd и Fe в концентрации 100 мг/л каждый.
Время контактирования раствора с сорбентом составляет 20 часов.
После первого цикла сорбции содержание ионов Pb в отфильтрованном растворе составляет 15,8 мг/л, Cu - 25,6 мг/л, Cd - 98,0 мг/л, Fe - 98,8 мг/л. Степень извлечения Pb составляет 84,2%, Cu - 74,4%.
После второго цикла сорбции содержание ионов Pb составляет 0,2 мг/л, Cu - 11,2 мг/л; содержание Cd и Fe в растворе практически не изменяется. Степень извлечения Pb после двух циклов составляет 99,8%, Cu - 88,8%.
(Для Cd и Fe степень извлечения не подсчитывалась).
Пример 4
Подготовленную рисовую шелуху подвергают термической обработке при температуре 350°С в течение 2 часов.
1,0 г сорбента заливают 500 мл водного раствора (модуль 500:1), содержащего ионы Pb, Cu, Cd и Fe в концентрации 300 мг/л каждый.
Время контактирования раствора с сорбентом составляет 24 часа.
После первого цикла сорбции содержание ионов Pb в отфильтрованном растворе составляет 40,5 мг/л, Cu - 81,0, Cd - 298,0 мг/л, Fe - 298,5 мг/л. Степень извлечения Pb составляет 86,5%, Cu - 73,0%.
После второго цикла сорбции содержание ионов Pb составляет 0,6 мг/л, Cu - 35,2 мг/л; содержание Cd и Fe в растворе практически не изменяется. Степень извлечения Pb после двух циклов составляет 99,8%, Cu - 88,3%.
(Для Cd и Fe степень извлечения не подсчитывалась).
Таким образом, заявляемый способ обеспечивает высокую эффективность селективного извлечения ионов свинца и меди из содержащих их водных растворов в широком интервале концентраций, что является техническим результатом способа. Кроме того, предлагаемый способ является простым, а используемый в способе сорбент получен с помощью простой и не требующей сложного оборудования технологии из дешевого и возобновляемого сырья, представляющего собой отход в виде рисовой шелухи, что позволяет широко использовать предлагаемый способ для выделения ионов свинца и меди из сточных вод различного происхождения и жидких отходов различных технологических процессов.

Claims (1)

  1. Способ извлечения ионов тяжелых металлов из водных растворов путем контактирования очищаемого раствора с сорбентом на основе диоксида кремния, представляющим собой термообработанный природный материал, отличающийся тем, что в качестве сорбента используют продукт, полученный в результате термической обработки рисовой шелухи при температуре 300-400°С в условиях недостатка кислорода, а контактирование осуществляют в течение 10-24 ч при модуле раствор/сорбент (500-1000):1.
RU2005124638/15A 2005-08-02 2005-08-02 Способ извлечения ионов тяжелых металлов из водных растворов RU2292305C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005124638/15A RU2292305C1 (ru) 2005-08-02 2005-08-02 Способ извлечения ионов тяжелых металлов из водных растворов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005124638/15A RU2292305C1 (ru) 2005-08-02 2005-08-02 Способ извлечения ионов тяжелых металлов из водных растворов

Publications (1)

Publication Number Publication Date
RU2292305C1 true RU2292305C1 (ru) 2007-01-27

Family

ID=37773411

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005124638/15A RU2292305C1 (ru) 2005-08-02 2005-08-02 Способ извлечения ионов тяжелых металлов из водных растворов

Country Status (1)

Country Link
RU (1) RU2292305C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579447C2 (ru) * 2012-01-05 2016-04-10 Ухань Кайди Инджиниринг Текнолоджи Рисерч Инститьют Ко., Лтд. Комплексный способ использования биомассы, содержащей аморфный диоксид кремния
RU2608029C1 (ru) * 2015-11-23 2017-01-12 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Способ извлечения ионов тяжелых металлов из водных растворов
FR3113669A1 (fr) * 2020-09-03 2022-03-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de préparation d’un matériau siliceux à partir de balle de riz
RU2788460C1 (ru) * 2021-10-25 2023-01-19 Фатима Акимовна Гагиева Способ извлечения ионов меди (ii) из растворов

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2579447C2 (ru) * 2012-01-05 2016-04-10 Ухань Кайди Инджиниринг Текнолоджи Рисерч Инститьют Ко., Лтд. Комплексный способ использования биомассы, содержащей аморфный диоксид кремния
RU2608029C1 (ru) * 2015-11-23 2017-01-12 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ИГХТУ) Способ извлечения ионов тяжелых металлов из водных растворов
FR3113669A1 (fr) * 2020-09-03 2022-03-04 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procédé de préparation d’un matériau siliceux à partir de balle de riz
EP3964479A1 (fr) 2020-09-03 2022-03-09 Commissariat à l'énergie atomique et aux énergies alternatives Procédé de préparation d'un matériau siliceux à partir de balle de riz
RU2788460C1 (ru) * 2021-10-25 2023-01-19 Фатима Акимовна Гагиева Способ извлечения ионов меди (ii) из растворов
RU2789637C1 (ru) * 2022-06-27 2023-02-06 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Применение алюмосиликата натрия, получаемого на основе отходов производства рисовой соломы, в качестве сорбента для извлечения ионов сурьмы(iii)

Similar Documents

Publication Publication Date Title
Khattri et al. Removal of malachite green from dye wastewater using neem sawdust by adsorption
Nidheesh et al. Adsorption and desorption characteristics of crystal violet in bottom ash column
Heidari et al. Removal of Ni (II), Cd (II), and Pb (II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica
Ayyappan et al. Removal of Pb (II) from aqueous solution using carbon derived from agricultural wastes
Abdelwahab et al. Use of rice husk for adsorption of direct dyes from aqueous solution: a case study of Direct F. Scarlet
Chikwe et al. Competitive adsorption of organic solvents using modified and unmodified calcium bentonite clay mineral
Anoop Krishnan et al. Kinetic and isotherm modeling of methylene blue adsorption onto kaolinite clay at the solid-liquid interface
Habeeb et al. Kinetic, isotherm and equilibrium study of adsorption capacity of hydrogen sulfide-wastewater system using modified eggshells
Ahmed et al. Experimental study and dynamic simulation of melanoidin adsorption from distillery effluent
Samarghandi et al. Removal of acid black dye by pumice stone as a low cost adsorbent: kinetic, thermodynamic and equilibrium studies.
Kılıç et al. Investigation of dyes adsorption with activated carbon obtained from Cordia myxa
Samad et al. Synthesis of zinc oxide nanoparticles reinforced clay and their applications for removal of Pb (II) ions from aqueous media
Mihayo et al. Defluoridation of aqueous solution using thermally activated biosorbents prepared from Adansonia digitata fruit pericarp
Nibret et al. Removal of methylene blue dye from textile wastewater using water hyacinth activated carbon as adsorbent: synthesis, characterization and kinetic studies
RU2292305C1 (ru) Способ извлечения ионов тяжелых металлов из водных растворов
Shojaei et al. Ultrasonic-assisted synthesis of zeolite/activated carbon@ MnO2 composite as a novel adsorbent for treatment of wastewater containing methylene blue and brilliant blue
Khader et al. Reduction of oil and COD from produced water by activated carbon, zeolite, and mixed adsorbents in a fixed-bed column
Adams et al. Purification of crude oil contaminated water using fly ash/clay
Isiuku et al. Adsorption performance of acid-activated carbon derived from gmelina arborea in batch removal of methyl violet from aqeuous solution
Gandhimathi et al. Bottom ash adsorption of basic dyes from their binary aqueous solutions.
Bhowmick et al. Comparative adsorption study on rice husk and rice husk ash by using amaranthus gangeticus pigments as dye
Ahmed et al. Improvement of organic matter removal in water produced of oilfields using low cost Moringa peels as a new green environmental adsorbent
Ravindiran et al. Prevention of groundwater contamination from the pollutants released from dyeing industries using biochar produced from palm shell
Fouladi et al. Removal of gas condensate from industrial wastewater using low‐cost adsorbents: Optimization by Box–Behnken design method
Albayati et al. Biosorption technique for naphthalene removal from aqueous solution by Chara sp., algae

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20070803

PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120803

NF4A Reinstatement of patent

Effective date: 20130820

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190803