RU2291951C1 - Система перекрытия потока жидкости в скважине - Google Patents
Система перекрытия потока жидкости в скважине Download PDFInfo
- Publication number
- RU2291951C1 RU2291951C1 RU2005121429/03A RU2005121429A RU2291951C1 RU 2291951 C1 RU2291951 C1 RU 2291951C1 RU 2005121429/03 A RU2005121429/03 A RU 2005121429/03A RU 2005121429 A RU2005121429 A RU 2005121429A RU 2291951 C1 RU2291951 C1 RU 2291951C1
- Authority
- RU
- Russia
- Prior art keywords
- casing
- well
- valve
- ground
- packer
- Prior art date
Links
Images
Landscapes
- Testing Or Calibration Of Command Recording Devices (AREA)
Abstract
Изобретение относится к нефтедобывающей промышленности и может быть использовано при эксплуатации скважин на нефтяных залежах для перекрытия потока жидкости без глушения скважин утяжеленными растворами и обеспечения дистанционного управления работой скважин, а также для передачи информации о пластовом давлении на дневную поверхность. Обеспечивает повышение эффективности перекрытия жидкости в скважине, надежности и оперативности получения информации о пластовом давлении. Устройство содержит пакер, обсадную колонну, клапан-отсекатель, наземное и скважинное оборудование. Клапан-отсекатель управляется по каналу связи и размещен над пакером в нижней части обсадной колонны. При этом клапан-отсекатель установлен под пакером выше зоны перфорации на 30-50 метров. В качестве канала связи для управления клапаном-отсекателем выбрана обсадная колонна. Наземное оборудование дополнительно содержит приемо-передающий блок. Последний соединен посредством кинематической связи с обсадной колонной. Приемо-передающий блок содержит электрически соединенные между собой контроллер на микропроцессоре, наземный источник питания, электромеханические преобразователи. Скважинное оборудование дополнительно имеет глубинный измерительный приемо-передающий блок. Последний соединен посредством кинематической связи с обсадной колонной и содержит электрически соединенные между собой контроллер на микропроцессоре, датчики давления и температуры, источник питания, блок конденсаторов, электромеханические исполнительные механизмы, электромеханические преобразователи. 3 ил.
Description
Изобретение относится к нефтедобывающей промышленности и может быть использовано при эксплуатации скважин на нефтяных залежах для перекрытия потока жидкости без глушения скважин утяжеленными растворами и обеспечения дистанционного управления работой скважин, а также для передачи информации о пластовом давлении на дневную поверхность.
Каждый случай аварийного открытого фонтанирования скважины, разрушения оборудования устья, обсадных колонн и т.д. наносит серьезный ущерб, как окружающей среде, так и непоправимый ущерб самой нефтяной залежи. Для исключения этих нежелательных последствий скважины оборудуются клапанами-отсекателями пласта, размещаемыми в нижней части ствола скважины, для разъединения нижней фильтровой части скважины от ее верхней части и другим обязательным оборудованием для выполнения технологических процессов и операций.
Известен шаровой - глубинный клапан, установленный на вертикальном канале с возможностью перекрывания потока жидкости при подаче гидравлического импульса на этот клапан. Клапан имеет в целом вертикальную цилиндрическую конфигурацию, и его главным элементом является шар со сквозным пропускным отверстием для потока жидкости. Шар имеет возможность поворачиваться на двух тонких горизонтальных полуосях с установкой пропускного отверстия соосно упомянутому вертикальному каналу для пропуска потока жидкости или поворота на 90°, перекрытия его. Этот поворот происходит в одну сторону при подаче гидравлического импульса в верхнюю часть корпуса клапана, а в другую - под воздействием пружины, расположенной в нижней части корпуса (Патент №161083 Польша, МКИ Е 21 34/06, 1993).
Недостатком этого клапана является то, что гидравлический канал связи не обеспечит изоляцию скважины в экстремальных условиях, так как дистанционное управление клапаном-отсекателем при "открытии и/или закрытии" по гидравлическому каналу связи в случае аварии или пожаре не обеспечит изоляцию скважины и не ликвидирует открытое фонтанирование.
Известен клапан-отсекатель, включающий регулирующий клапан с поршнем, который управляется при помощи таймера и электромотора (Патент №5375618 США, Е 21 В 34/10, 1994).
Недостаток этого клапана-отсекателя заключается в том, что управление клапаном при помощи таймера неэффективно, т.к. промежуток времени между включением и отключением клапана-отсекателя не возможно заранее точно запрограммировать.
Система перекрытия потока жидкости в скважине, содержащая пакер, клапан-отсекатель, канал связи для управления клапаном, наземную и скважинную аппаратуру для выполнения технологических процессов и операций, при этом клапан-отсекатель установлен над пакером в нижней части обсадной колонны (Молчанов Г.В. и др. Машины и оборудование для добычи нефти и газа, М., Недра 1984, с.34-45), выбрана в качестве прототипа. При эксплуатации скважин, оснащенных такими клапанами-отсекателями пласта, возникает необходимость выполнения целого ряда внутрискважинных процессов и операций, которые осуществляются под давлением, а также наличие абразивной промывочной жидкости делает работу таких клапанов-отсекателей пластов весьма низкой. Недостатком является необходимость сохранять определенное давление в течение всего срока эксплуатации, что снижает надежность клапана. Клапаны-отсекатели с дистанционным управлением имеют более сложную конструкцию в целом. Кроме этого, одновременная передача нескольких забойных параметров (температура, давление и т.д.) на поверхность представляется технически неосуществимой задачей.
Задачей настоящего изобретения является создание эффективной и надежной системы для перекрытия жидкости в скважине без глушения для оперативного управления разработкой месторождений и эффективного выполнения ремонтов в скважине.
Технический результат - повышение эффективности перекрытия жидкости в скважине, надежности и оперативности получения информации о пластовом давлении.
Технический результат достигается тем, что система перекрытия потока жидкости в скважине, содержащая пакер, обсадную колонну и управляемый по гидравлическому каналу связи клапан-отсекатель, который установлен в нижней части обсадной колонны над пакером, наземную и скважинную аппаратуру, согласно изобретению клапан-отсекатель установлен под пакером выше зоны перфорации на 30-50 метров, в качестве канала связи для управления клапаном-отсекателем выбрана обсадная колонна, при этом наземное оборудование дополнительно содержит приемо-передающий блок, соединенный посредством кинематической связи с обсадной колонной, содержащий и электрически соединенные между собой контроллер на микропроцессоре, наземный источник питания, электромеханические преобразователи, а скважинное оборудование дополнительно имеет глубинный измерительный приемо-передающий блок, соединенный посредством кинематической связи с обсадной колонной, содержащий и электрически соединенные между собой контроллер на микропроцессоре, датчики давления и температуры, источник питания, блок конденсаторов, электромеханические исполнительные механизмы, электромеханические преобразователи.
В качестве канала связи используют обсадную колонну, по которой информацию передают в виде механических колебаний - кодированных команд (сигналов), при этом несущая частота этих передаваемых колебании совпадает с собственной частотой обсадной колонны. Частота выбирается с учетом собственной частоты обсадной колонны, которая зависит от массы, длины и др. параметров колонны.
По сравнению с гидравлическим каналом связи такой вариант передачи информации - закодированных команд на клапан-отсекатель обеспечивает работоспособность системы в случае пожара или аварии на устьевом оборудовании, тем самым уменьшаются вредные воздействия на окружающую среду и время ликвидации аварии. Цифровой вариант передаваемого сигнала представляет последовательность кодовых комбинаций электрических импульсов и обладает также повышенной помехоустойчивостью. Кроме того, совместное применение дистанционно управляемого глубинного клапана-отсекателя и датчика давления позволяет без глушения и остановки скважины составить карту пластового давления заданного участка нефтяного месторождения, что исключает загрязнение призабойной зоны пласта и снижение добычи нефти. Пластовое давление измеряют при закрытом клапане-отсекателе при помощи датчика давления, установленного в глубинном измерительном приемо-передающем блоке скважинного оборудования.
Следует отметить, что применение в качестве канала связи обсадной колонны исключает необходимость использования кабельной линии связи, что при установке клапана-отсекателя вблизи зоны перфорации мало надежно.
Место размещения клапана-отсекателя, определенное на основе промысловых экспериментов, должно быть на 30-50-м выше зоны перфорации, что позволяет ускорить получение данных по пластовому давлению и исключить попадание клапана в зону песчаной пробки. Таким образом, обеспечивается работоспособность устройства в широком диапазоне условий добычи.
Общее назначение наземной аппаратуры приемо-передающего блока - передача команд на открытие и закрытие клапана-отсекателя, а также формирование запроса о выдаче информации о текущем пластовом давлении и температуре в кодированном (цифровом) виде.
Назначение глубинного измерительного приемо-передающего блока - прием и преобразование команд на "открытие" и "закрытие" клапана-отсекателя, а также преобразование измеренных величин в кодированные электрические сигналы и, соответственно, затем в механические колебания.
На чертежах представлена система перекрытия потока жидкости нефтяных скважин, а именно: на фиг.1 изображена скважинная часть системы перекрытия; на фиг.2 приведена блок-схема глубинного измерительного приемо-передающего блока; на фиг.3 приведена блок-схема наземного приемо-передающего блока.
Скважинная часть системы перекрытия (фиг.1) содержит пакер 1 и установленный под ним шаровой клапан-отсекатель 2 с хвостовиком 3, на котором установлены глубинный измерительный приемо-передающий блок 4, содержащий контроллер на микропроцессоре 5, электромеханические преобразователи 6 и 7, датчики давления 8 и температуры 9, источник питания 10, блок конденсаторов 11, электромеханические исполнительные механизмы 12 и 13. Все указанные элементы размещены в герметизированном корпусе 14. Выход исполнительного механизма 12 при помощи кинематической связи соединен через сегмент храповика 15 с осью 16 шарового клапана-отсекателя 2. Для надежности работы клапан-отсекатель снабжен вторым электромеханическим исполнительным механизмом 13, который соединен с осью 16 шарового клапана-отсекателя 2 посредством сегмента храповика 17. Клапан-отсекатель 2 установлен в нижней части обсадной колонны 18 под пакером 1 выше зоны перфорации на 30-50 м (не показано). Электромеханические преобразователи 6 и 7 посредством кинематической связи соединены с обсадной колонной 18 (не показано).
В глубинном измерительном приемо-передающем блоке 4 (фиг.2) вход контроллера на микропроцессоре 5 соединен с выходом электромеханического преобразователя 6, вход которого соединен при помощи кинематической связи с обсадной колонной 18. Контроллер на микропроцессоре 5 соединен посредством электрической связи с источником питания 10 и через блок конденсаторов 11 с электромеханическим исполнительным механизмом 12 и 13. Источник питания 10 соединен электрически с блоком конденсаторов 11. Контроллер на микропроцессоре 5 соединен электрически с датчиками давления 8 и температуры 9.
Наземный приемо-передающий блок 19 (фиг.3) содержит контроллер на микропроцессоре 20, выход которого посредством электромеханического преобразователя 21 кинематической связью соединен с обсадной колонной 18, а вход контроллера 20 посредством электрической связи соединен с выходом электромеханического преобразователя 22, вход последнего посредством кинематической связи соединен с обсадной колонной 18. 23 - колонна насосно-компрессорных труб, наземный источник питания, соединенный с контроллером на микропроцессоре (не показан).
Преобразователи 21 и 7 преобразуют электрические сигналы в механические колебания, а преобразователи 22 и 6 преобразуют механические колебания в электрические сигналы. В качестве указанных преобразователей могут быть использованы пьезоэлектрические преобразователи, работающие на основе прямого или обратного пьезоэффектов. (Материалы первой международной выставки: Автоматизация, телемеханизация и связь в нефтяной промышленности. 2001, с.26-27).
В качестве датчиков давления 8 и температуры 9 могут быть использованы сенсорные датчики (Измерительные системы датчиков преобразователей. Новые компоненты. 1998, №4, с.72).
Контроллеры на микропроцессоре 20 и 5 обеспечиваются программой и памятью, способны принимать низкочастотные колебания, обрабатывать их и выдавать команды на приемо-передающие блоки. Контроллер на микропроцессоре 20 преобразует данные о текущем значении давления и температуре в цифровую форму, которые высвечиваются на табло (не показано).
В качестве электромеханических исполнительных механизмов 12 и 13 могут быть использованы соленоид или электрический двигатель постоянного или переменного тока.
Частоту механических колебаний пьезоэлектрических преобразователей 21, 7 принимают равной частоте собственных колебании обсадной колонны 18. При этом происходит резкое возрастание амплитуды вынужденных колебаний, в результате чего увеличивается дальность и надежность передачи механических колебаний по обсадной колонне. Резонансную частоту можно определить экспериментальным путем. Для этого необходимо снабдить преобразователи 21 и 74 регулятором частоты (не показано) и выполнить эксперимент передачи механических колебаний по обсадной колонне: максимальной амплитуде сигнала соответствует резонансная частота.
Механический контакт преобразователей 6 и 7 с внутренней поверхностью обсадной колонны 18 обеспечивается специальным приспособлением (не показано), например, путем применения пружинистых зажимов или выдвижных клиньев.
В качестве источника питания 10 применяется герметизированная электрическая батарея или аккумулятор на элементах с большой энергетической емкостью.
Пакер 1 обеспечивает установку клапана-отсекателя 2 и герметичное разделение пространства под и над клапаном-отсекателем 2.
Система работает следующим образом. Для закрытия клапана-отсекателя 2 от приемо-передающего блока 19 на устье скважины по обсадной колонне 18 подается кодированный сигнал на глубинный измерительный приемо-передающий блок 4, контроллер 5 передает команду на блок конденсаторов 11 для подачи напряжения на электромеханические исполнительные механизмы 12 и 13, поворачивающие сегменты храповиков 15 и 17 и, соответственно, ось 16 шарового клапана-отсекателя 2 на 90 град. в направлении закрытия. Для получения информации о пластовом давлении подают кодированный сигнал с выхода приемо-передающего блока 19 по обсадной колонне 18 на вход глубинного приемо-передающего блока 4, который соединяется с датчиком давления 8 и передает кодированный сигнал о величине пластового давления по обсадной колонне 18 на контроллер 17, который "раскодирует" сигнал и выдает информацию о величине пластового давления в цифровой форме.
Следует отметить, что после закрытия клапана-отсекателя 2 забойное давление под пакером 1 увеличивается и через некоторое время равняется с пластовым давлением.
Для открытия клапана-отсекателя 2 от приемо-передающего блока 19 подается кодированный сигнал по обсадной колонне 18 на глубинный приемо-передающий блок 4, который соединяет блок конденсаторов 11 с электромеханическими исполнительными механизмами 12 и 13, изменив при этом полярность напряжения. При этом сегменты храповиков 15 и 17 поворачивают ось 16 клапана-отсекателя 2 в первоначальное /открытое/ положение. Для определения величины пластового давления преобразователь 22 снабжен контролирующим прибором (не показано) который фиксирует пластовое давление. После этого система автоматически (по программе) переходит в режим ожидания следующей команды. Для открытия и закрытия шарового клапана-отсекателя потребуется поворот на 90°.
Отдельно каждой скважине присваивается свой код, по коду скважина вызывается и принимает задание на: "открытие", "закрытие", "температура", "давление" и т.д. Электронная часть, способная принимать низкочастотные волны, обрабатывать их и выдавать команды на наземное оборудование, а именно приемо-передающий блок, в скважине находится в ждущем режиме.
Таким образом, применение в качестве канала обсадной колонны позволяет эффективно выполнять текущий ремонт скважин и ликвидировать пожары и аварии на скважине. А снабжение системы перекрытия потока жидкости в скважине дополнительно датчиком давления и обеспечение передачи информации по беспроводному каналу связи позволит существенно расширить область применения таких систем, т.к. можно получить без глушения скважин информацию о пластовом давлении.
Ожидаемый экономический эффект от применения предлагаемой системы и способа изоляции скважин составляет для ОАО "Томскнефть" около 20 млн руб. в год.
Claims (1)
- Система перекрытия потока жидкости в скважине, содержащая пакер, обсадную колонну и управляемый по каналу связи клапан-отсекатель, размещенный над пакером в нижней части обсадной колонны, наземное и скважинное оборудование, отличающаяся тем, что клапан-отсекатель установлен под пакером выше зоны перфорации на 30-50 м, в качестве канала связи для управления клапаном-отсекателем выбрана обсадная колонна, при этом наземное оборудование дополнительно содержит приемопередающий блок, соединенный посредством кинематической связи с обсадной колонной, содержащий и электрически соединенные между собой контроллер на микропроцессоре, наземный источник питания, электромеханические преобразователи, а скважинное оборудование дополнительно имеет глубинный измерительный приемопередающий блок, соединенный посредством кинематической связи с обсадной колонной, содержащий и электрически соединенные между собой контроллер на микропроцессоре, датчики давления и температуры, источник питания, блок конденсаторов, электромеханические исполнительные механизмы, электромеханические преобразователи.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2005121429/03A RU2291951C1 (ru) | 2005-07-07 | 2005-07-07 | Система перекрытия потока жидкости в скважине |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2005121429/03A RU2291951C1 (ru) | 2005-07-07 | 2005-07-07 | Система перекрытия потока жидкости в скважине |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2291951C1 true RU2291951C1 (ru) | 2007-01-20 |
Family
ID=37774717
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2005121429/03A RU2291951C1 (ru) | 2005-07-07 | 2005-07-07 | Система перекрытия потока жидкости в скважине |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2291951C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2486331C2 (ru) * | 2007-12-05 | 2013-06-27 | Бейкер Хьюз Инкорпорейтед | Кроссовер с дистанционным управлением для создания гравийного фильтра, использующий связь и дистанционные измерения с помощью снабженных кабелем бурильных труб |
RU2592903C1 (ru) * | 2015-08-28 | 2016-07-27 | Петр Игоревич Сливка | Способ проведения подземного ремонта скважины для смены глубинно-насосного оборудования без воздействия на пласт |
RU2661966C2 (ru) * | 2013-03-15 | 2018-07-23 | ВЕЗЕРФОРД ТЕКНОЛОДЖИ ХОЛДИНГЗ, ЭлЭлСи | Способ и устройство |
-
2005
- 2005-07-07 RU RU2005121429/03A patent/RU2291951C1/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
МОЛЧАНОВ Г.В. и др. Машины и оборудование для добычи нефти и газа. - М.: Недра, 1984, с.34-45. * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2486331C2 (ru) * | 2007-12-05 | 2013-06-27 | Бейкер Хьюз Инкорпорейтед | Кроссовер с дистанционным управлением для создания гравийного фильтра, использующий связь и дистанционные измерения с помощью снабженных кабелем бурильных труб |
RU2661966C2 (ru) * | 2013-03-15 | 2018-07-23 | ВЕЗЕРФОРД ТЕКНОЛОДЖИ ХОЛДИНГЗ, ЭлЭлСи | Способ и устройство |
US10287852B2 (en) | 2013-03-15 | 2019-05-14 | Weatherford Technology Holdings, Llc | Method and apparatus for actuating downhole tools |
RU2592903C1 (ru) * | 2015-08-28 | 2016-07-27 | Петр Игоревич Сливка | Способ проведения подземного ремонта скважины для смены глубинно-насосного оборудования без воздействия на пласт |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2016358458B2 (en) | Autonomous downhole flow control valve for well pressure control | |
US5941307A (en) | Production well telemetry system and method | |
US5960883A (en) | Power management system for downhole control system in a well and method of using same | |
US5706892A (en) | Downhole tools for production well control | |
CA2093899C (en) | Shut-in tools | |
US5172717A (en) | Well control system | |
US5279363A (en) | Shut-in tools | |
US6745844B2 (en) | Hydraulic power source for downhole instruments and actuators | |
EP3464801A1 (en) | Well with pressure activated acoustic or electromagnetic transmitter | |
RU2291951C1 (ru) | Система перекрытия потока жидкости в скважине | |
NO20200566A1 (en) | Feedback signaling from downhole tools | |
GB2309471A (en) | Downhole production well instrumentation | |
AU734605B2 (en) | Computer controlled downhole tools for production well control | |
CA2235969A1 (en) | Method of operating a downhole shut-in tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PD4A | Correction of name of patent owner | ||
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20140708 |