RU2288446C1 - Оптическое устройство для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий - Google Patents

Оптическое устройство для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий Download PDF

Info

Publication number
RU2288446C1
RU2288446C1 RU2005114032/28A RU2005114032A RU2288446C1 RU 2288446 C1 RU2288446 C1 RU 2288446C1 RU 2005114032/28 A RU2005114032/28 A RU 2005114032/28A RU 2005114032 A RU2005114032 A RU 2005114032A RU 2288446 C1 RU2288446 C1 RU 2288446C1
Authority
RU
Russia
Prior art keywords
supports
holder
lens
loaded
spring
Prior art date
Application number
RU2005114032/28A
Other languages
English (en)
Inventor
Юрий Алексеевич Игнатьев (RU)
Юрий Алексеевич Игнатьев
Геннадий Вениаминович Акулов (RU)
Геннадий Вениаминович Акулов
Original Assignee
Федеральное государственное унитарное предприятие Федеральный научно-производственный центр "Алтай"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие Федеральный научно-производственный центр "Алтай" filed Critical Федеральное государственное унитарное предприятие Федеральный научно-производственный центр "Алтай"
Priority to RU2005114032/28A priority Critical patent/RU2288446C1/ru
Application granted granted Critical
Publication of RU2288446C1 publication Critical patent/RU2288446C1/ru

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

Оптическое устройство для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий содержит тубус с передающими линзами, окуляр, объектив с призмой, опоры и осветительную систему. Также оно снабжено жесткой балкой, закрепляемой на торцах исследуемого изделия, с возможностью вращения вокруг своей оси. Кроме того, устройство оснащено держателем, выполненным с возможностью перемещения вдоль балки, который через датчик перемещения и опоры, выполненные подпружиненными, взаимодействует с планкой, закрепленной на тубусе объектива и оснащенной двумя лазерными указками, установленными под углом друг к другу на равном расстоянии от призмы объектива. Балка снабжена натяжным устройством, которое выполнено с возможностью перемещения вдоль балки одновременно с держателем и соединено тросиком с подпружиненными опорами последнего и оснащено дополнительной подпружиненной опорой, соединенной с тубусом. Технический результат - разработка высокоточного оптического устройства, позволяющего бесконтактным методом измерять расстояние до исследуемой поверхности и тем самым определять диаметр и проводить контроль внутреннего профиля крупногабаритных изделий. 1 ил.

Description

Изобретение относится к оптическим измерительным устройствам и может быть использовано для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий.
Изучение уровня техники выявило известные решения одинакового с изобретением назначения и сходные с ним по технической сущности, это, например, устройство для фотографирования внутренней поверхности (а.с. №131922, БИ №18, 1961 г., стр.45), которое с помощью вращающейся оптической головки с зеркалом, передающей разложенное по спирали изображение стенки к фотоумножителю через световоды, расположенные внутри исследуемого изделия между источником света и оптической головкой, а также между последней и фотоумножителем, с последующей регистрацией построчно разложенного изображения.
Несмотря на значительные достоинства - высокая разрешающая способность обнаружения дефектов и большая (до 6 м) длина световодов, устройство имеет ряд недостатков, исключающих возможность его использования для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий.
Во-первых, внутренняя поверхность исследуемого изделия должна иметь высокую отражательную способность, иначе отраженный от нее сигнал, особенно при внутреннем диаметре более 50-60 мм, потеряется в шумах фотоумножителя.
Во-вторых, устройство дает развертку внутренней поверхности исследуемого изделия без учета возможной деформации по ее длине, поэтому все размеры дефектов "привязаны" к диаметру, измеряемому на краях исследуемого изделия, что не всегда соответствует действительности.
В-третьих, при увеличении диаметра исследуемого изделия возникает необходимость центрировать расположение световодов для одинакового освещения поверхности и уменьшения искажений при сканировании, что значительно уменьшает освещенность внутренней поверхности исследуемого изделия.
Известно также оптическое устройство (гибкий эндоскоп) для фотографирования и передачи на телекамеру внутренней поверхности кривых каналов и полостей (Вейнберг В.В. и Саттаров Д.К. "Оптика световодов". Л.: "Машиностроение", 1977, стр.16). Оптическое устройство имеет источник света с конденсором, осветительный жгут, передающий свет до исследуемой поверхности, объектив с призмой, закрепленный на конце регулярного волоконно-оптического жгута, и окуляр. Объектив формирует изображение поверхности на торце волоконно-оптического жгута, передающего изображение к окуляру.
Описанное оптическое устройство своими характеристиками, а именно возможностью фотографирования дефектов и осмотра внутренней поверхности цилиндрических изделий любого диаметра, в большем объеме удовлетворяет требованиям, предъявляемым к измерительным оптическим устройствам, однако данное оптическое устройство имеет низкую разрешающую способность, что ведет к увеличению погрешности определения размеров дефектов на поверхности изделия, а отсутствие шкалы масштаба не позволяют определить реальные размеры наблюдаемых дефектов, что приводит к невозможности определения внутреннего диаметра изделия и построения его профиля.
В качестве прототипа взята конструкция оптического устройства (Сирота Г.А, Технические эндоскопы - приборы для визуального контроля труднодоступных объектов. "В мире неразрушающего контроля. Ежеквартальное журнальное обозрение", №2(8), 2000, стр.4) для осмотра качества поверхности глубоких горизонтальных отверстий (длиной до 7,5 м), которое состоит из визуальной и осветительной системы. Визуальная система представляет собой линзовую оптику, которая заключена в металлический тубус, составленный из сочлененных друг с другом частей с нанесенной шкалой по длине наружной поверхности. Осветительная система предназначена для освещения исследуемой поверхности и состоит из источника электрической энергии и источника света.
Такая конструкция позволяет варьировать длину оптического устройства от 1,6 до 7,6 м путем стыковки необходимого числа частей. При этом на свободном конце собранного тубуса закрепляется объектив с призмой для осмотра поверхности, а на противоположном - окуляр, обеспечивающий наведение на резкость изображения осматриваемой поверхности. При осмотре глубоких горизонтальных отверстий для исключения провисания тубуса и, вследствие этого, искажения изображения, последний снабжен специальными опорами, которые контактируют с исследуемой поверхностью. В зависимости от глубины отверстия сочленяется необходимое число частей тубуса, на которых крепятся опоры. Устройство вводится в отверстие, включается осветительная система, и проводится осмотр поверхности с поворотом оптической трубы вокруг своей оси и перемещением ее вдоль оси отверстия.
Основное преимущество описанного выше устройства - высокая разрешающая способность, однако при осмотре глубоких отверстий необходимо применение другого поддерживающего устройства для предотвращения повреждения поверхности при касании с ней подвижной головки устройства или опор, что не позволяет измерять расстояние от объектива до исследуемой поверхности, а также определить размеры дефектов, обнаруженных на контролируемой поверхности. Кроме того, касание опор может вызвать повреждение исследуемой поверхности, приводящее к увеличению числа дефектов и искажению информации о них.
Таким образом, перечисленные недостатки не позволяют использовать описанные оптические устройства для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий, т.е. решать поставленную техническую задачу.
Задачей заявляемого изобретения является разработка высокоточного оптического устройства, позволяющего бесконтактным методом измерять расстояние до исследуемой поверхности и тем самым определять диаметр и проводить контроль внутреннего профиля крупногабаритных изделий.
Поставленная задача решается предлагаемой конструкцией оптического устройства для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий, которое содержит тубус с передающими линзами, окуляр, объектив с призмой, опоры и осветительную систему, при этом оно снабжено жесткой балкой, закрепляемой на торцах исследуемого изделия с возможностью вращения вокруг своей оси, оснащенной держателем, выполненным с возможностью перемещения вдоль балки, который через датчик перемещения и опоры, выполненные подпружиненными, взаимодействует с планкой, закрепленной тубусе объектива и оснащенной двумя лазерными указками, установленными под углом друг к другу на равном расстоянии от призмы объектива, причем балка снабжена натяжным устройством, которое выполнено с возможностью перемещения вдоль балки одновременно с держателем, соединено тросиком с подпружиненными опорами последнего и оснащено дополнительной подпружиненной опорой, соединенной с тубусом.
Сравнение заявляемого технического решения с прототипом показывает, что оно отличается от последнего наличием жесткой балки, которая закрепляется на торцах исследуемого изделия с возможностью вращения вокруг своей оси, оснащенной держателем с возможностью перемещения вдоль балки, который через датчик перемещения и опоры, выполненные подпружиненными, взаимодействует с планкой, которая закрепляется на тубусе объектива и оснащается двумя лазерными указками, установленными под углом друг к другу на равном расстоянии от призмы объектива, кроме того, балка снабжена натяжным устройством, которое выполнено с возможностью перемещения вдоль балки одновременно с держателем и соединено тросиком с подпружиненными опорами последнего и оснащено дополнительной подпружиненной опорой, соединенной с тубусом.
Введение в устройство балки, закрепляемой на торцах исследуемого изделия позволяет центрировать объектив с призмой и перемещать их вдоль отверстия при измерениях профиля последнего.
Наличие двух подвижных опор дает возможность призме с объективом и лазерными указками под действием натяжного устройства передвигаться перпендикулярно исследуемой поверхности. Введение подпружинивания опор позволяет, во-первых, вводить устройство в отверстия, имеющие диаметр меньше измеряемого, а во-вторых, возвращать объектив устройства в исходное положение после проведения измерений диаметра исследуемой поверхности. Это перемещение объектива с призмой относительно поверхности регистрируется с помощью датчика, связанного с объективом рабочим элементом через тросик, а своим корпусом - с жесткой балкой. Совпадение лучей лазерных указок на поверхности, наблюдаемое через оптическое устройство, определяет величину необходимого перемещения объектива с призмой измерений диаметра и контроля внутреннего профиля крупногабаритных изделий.
Новые качества известного конструктивного решения заключаются в возможности контролируемого перемещения объектива к исследуемой поверхности канала по совмещению лучей лазерных указок и датчика, регистрирующего перемещение. Движение объектива перпендикулярно поверхности канала обеспечивается наличием подпружиненных опор путем одновременного перемещения их пружин с помощью натяжного устройства.
Такое выполнение конструкции из уровня техники явным образом не вытекает и не было очевидным для специалистов, а имеющиеся отличия непосредственно влияют на решение поставленной задачи.
Проведенные измерения от подвижной головки до поверхности с помощью макета заявляемого технического решения показали правильность используемых в заявке технических решений.
Сущность предлагаемого изобретения поясняется графическим материалом, на котором приняты следующие обозначения:
1 - призма и объектив устройства,
2 - планка,
3 - элементы крепления жесткой балки,
4 - лазерные указки,
5 - жесткая балка,
6 - держатель подвижных опор,
7 - опора,
8 - датчик перемещения,
9 - тросик датчика,
10 - тросик натяжного устройства,
11 - тубус,
12 - исследуемая поверхность,
13 - натяжное устройство,
14 - окуляр оптического устройства,
15 - дополнительная опора
а - расстояние между лучами указок на исследуемой поверхности,
В - расстояние между осями поворота указок 4,
Предлагаемое устройство работает следующим образом.
В канале устанавливается жесткая балка 5, закрепляемая с помощью элементов крепления 3 на торцах канала. На держателе 6, имеющем возможность передвигаться вдоль балки 5, закрепляются две подпружиненные опоры 7, на противоположных концах которых устанавливаются планка 2, на которой крепится призма с объективом 1 и тубус 11 оптического устройства, лазерные указки 4 на одинаковом удалении от призмы и объектива 1 под углом друг к другу. На другом конце жесткой балки 5 устанавливается натяжное устройство 13, к которому с помощью дополнительной опоры 15 крепится тубус 11 с окуляром 14. Проверяется свобода перемещения опор 7 и 15, к ним прикрепляется тросик 10 натяжного устройства 13, замеряется расстояние в между указками 4, измеряется угол их наклона к оси балки 5 (обычно угол ставят в пределах α=45-60 градусов) и определяется расстояние между между призмой и датчиком перемещения 8 на жесткой балке 5. По величине вытянутого тросика 9 датчика перемещения 8 записывается первоначальное показание датчика перемещения 8, стоящего между балкой 5 и призмой с объективом 1. Устройство вводится в канал, включаются лазерные указки 4 и проводится совмещение лучей (расстояние а равно нулю) указок 4 на исследуемой поверхности 12, что наблюдается через окуляр 14 оптического устройства путем передачи изображения исследуемой поверхности 12 оптической системой устройства. Для этого с помощью тросика 10 натяжного устройства 13 призма 1 перемещается к исследуемой поверхности 12 на величину S, что фиксируется датчиком перемещения 8.
Измеряемое расстояние R от поверхности до жесткой балки определяется выражением:
R=L+S+B/(2/tgα);
где L - первоначальное расстояние между призмой с объективом и жесткой балкой;
S - приближение призмы к исследуемой поверхности, фиксируемое датчиком перемещения;
В - расстояние между указками;
α - угол наклона указок к оси балки.
Перемещая призму с объективом 1 вдоль жесткой балки 5, и замеряя расстояние между балкой и поверхностью 12, можно построить профиль исследуемой поверхности канала 12. Повернув балку 5 с держателем 6 опор в зажимах 3 на 180 градусов и проведя вышеуказанные операции измерения расстояния до поверхности в тех же точках по длине канала, определяют диаметр канала и его полный профиль. Устройство позволяет проводить измерение профиля канала в продольном сечении под любым углом к горизонтальной плоскости канала.
Изготовление предлагаемого оптического устройства реализуемо практически, так как его составные элементы не являются дефицитными, а необходимость в использовании предлагаемого оптического устройства, обеспечивающего бесконтактное и достоверное измерение диаметра и контроль внутреннего профиля крупногабаритных изделий, очевидна.

Claims (1)

  1. Оптическое устройство для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий, содержащее тубус с передающими линзами, окуляр, объектив с призмой, опоры и осветительную систему, отличающееся тем, что оно снабжено жесткой балкой, закрепляемой на торцах исследуемого изделия, с возможностью вращения вокруг своей оси, оснащенной держателем, выполненным с возможностью перемещения вдоль балки, который через датчик перемещения и опоры, выполненные подпружиненными, взаимодействует с планкой, закрепленной на тубусе объектива и оснащенной двумя лазерными указками, установленными под углом друг к другу на равном расстоянии от призмы объектива, причем балка снабжена натяжным устройством, которое выполнено с возможностью перемещения вдоль балки одновременно с держателем и соединено тросиком с подпружиненными опорами последнего и оснащено дополнительной подпружиненной опорой, соединенной с тубусом.
RU2005114032/28A 2005-05-06 2005-05-06 Оптическое устройство для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий RU2288446C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005114032/28A RU2288446C1 (ru) 2005-05-06 2005-05-06 Оптическое устройство для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005114032/28A RU2288446C1 (ru) 2005-05-06 2005-05-06 Оптическое устройство для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий

Publications (1)

Publication Number Publication Date
RU2288446C1 true RU2288446C1 (ru) 2006-11-27

Family

ID=37664503

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005114032/28A RU2288446C1 (ru) 2005-05-06 2005-05-06 Оптическое устройство для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий

Country Status (1)

Country Link
RU (1) RU2288446C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Сирота Г.А. Технические эндоскопы - приборы для визуального контроля труднодоступных объектов. - В мире неразрушающего контроля. Ежеквартальное журнальное обозрение, № 2(8), 2000, с.4. Вейнберг В.В., Саттаров Д.К. Оптика световодов. Л.: Машиностроение, 1977, с.16. *

Similar Documents

Publication Publication Date Title
CN106767545A (zh) 一种高精度高空间分辨角度测量仪及角度测量方法
EP3177902B1 (en) Methods and apparatus for determining geometric properties of optical fiber preforms
JP2010528281A (ja) ピンホールカメラを有する撮像光学検査デバイス
US7869034B2 (en) Multi-angle and multi-channel inspecting device
US10551176B2 (en) Sensor device and method of inspecting the surface of a cylindrical hollow enclosure
JP2007278705A (ja) スリット光を用いた内面検査装置
RU2757474C2 (ru) Сканирующее устройство и способ измерения и обследования круглых отверстий в прозрачных жидкостях в среде с ионизирующим излучением
RU2288446C1 (ru) Оптическое устройство для измерения диаметра и контроля внутреннего профиля крупногабаритных изделий
US20240085170A1 (en) Method for assessing a depression, in particular a bore, in a workpiece
CN108490518A (zh) 一种新型棱镜
US10571244B2 (en) Measuring surface roughness
Yoshizawa et al. Development of an inner profile measurement instrument using a ring beam device
KR100790706B1 (ko) 렌즈 초점 거리 측정 장치
WO2015001650A1 (ja) Vブロック方式の屈折率測定装置並びにこれに用いられる屈折率算出装置及び屈折率算出方法
JP3920713B2 (ja) 光学変位測定装置
RU2413205C1 (ru) Рентгенооптический эндоскоп
RU2335734C1 (ru) Устройство для обнаружения и измерения поверхностных дефектов
RU2290626C2 (ru) Устройство для визуального и измерительного контроля внутренних полостей
RU2285235C2 (ru) Устройство для визуального и измерительного контроля внутренних полостей
KR100344344B1 (ko) 휴대용 비파괴 비접촉 광계측기
RU207785U1 (ru) Устройство диагностирования коррозионного состояния внутренней поверхности железобетонных опор контактной сети
JPH10122833A (ja) 表面測定装置
RU2325048C1 (ru) Лазерный центратор для рентгеновского излучателя
RU2405137C1 (ru) Рентгенооптический эндоскоп
RU2294552C2 (ru) Автоколлимационный эндоскоп

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20080507