RU2287433C2 - Transparent article with protecting coating - Google Patents

Transparent article with protecting coating Download PDF

Info

Publication number
RU2287433C2
RU2287433C2 RU2004134350/02A RU2004134350A RU2287433C2 RU 2287433 C2 RU2287433 C2 RU 2287433C2 RU 2004134350/02 A RU2004134350/02 A RU 2004134350/02A RU 2004134350 A RU2004134350 A RU 2004134350A RU 2287433 C2 RU2287433 C2 RU 2287433C2
Authority
RU
Russia
Prior art keywords
coating
layer
protective coating
functional
substrate
Prior art date
Application number
RU2004134350/02A
Other languages
Russian (ru)
Other versions
RU2004134350A (en
Inventor
Гарри БЬЮХЕЙ (US)
Гарри БЬЮХЕЙ
Джеймс Дж. ФИНЛИ (US)
Джеймс Дж. ФИНЛИ
Джеймс Дж. ТИЛЬ (US)
Джеймс Дж. ТИЛЬ
Джон П. ЛИХАН (US)
Джон П. ЛИХАН
Original Assignee
Ппг Индастриз Огайо, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/133,805 external-priority patent/US20020172775A1/en
Application filed by Ппг Индастриз Огайо, Инк. filed Critical Ппг Индастриз Огайо, Инк.
Priority claimed from US10/422,094 external-priority patent/US6916542B2/en
Publication of RU2004134350A publication Critical patent/RU2004134350A/en
Application granted granted Critical
Publication of RU2287433C2 publication Critical patent/RU2287433C2/en

Links

Images

Landscapes

  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

FIELD: automotive industry.
SUBSTANCE: article comprises substrate and covering pack provided with functional coating. The functional coating is applied at least to a part of the substrate. The protecting coating is applied at least to a part of the functional covering. The emitting factor of the covering pack covered with the protecting coating exceeds the emitting factor of the functional coating, and their reflection factor ranges from 1.4 to 2, with the thickness ranging from 100Å to 10 μm.
EFFECT: enhanced strength.
10 cl, 9 dwg, 2 ex

Description

Область техники, к которой относится изобретениеFIELD OF THE INVENTION

Данное изобретение относится в целом к изделиям с покрытием, имеющим защитное покрытие, например, к прозрачным элементам автомобиля с покрытием.This invention relates generally to coated products having a protective coating, for example, to the transparent elements of a coated car.

Уровень техникиState of the art

Известен способ уменьшения нагревания внутреннего пространства автомобиля посредством создания слоистого ветрового стекла, имеющего два слоя стекла с управляющим покрытием, ослабляющим инфракрасную или ультрафиолетовую часть солнечного света, расположенным между слоями. Слои стекла защищают слой, управляющий прохождением солнечного света, от механических и/или химических повреждений. Эти обычные ветровые стекла обычно изготавливают посредством формирования и отжига двух плоских стеклянных заготовок (одна из которых имеет нанесенное на нее покрытие регулирования прохождения солнечного света) для образования двух сформированных, отожженных стеклянных слоев с последующим скреплением стеклянных слоев друг с другом с помощью пластмассового промежуточного слоя. Поскольку обычные регулирующие прохождение солнечного света покрытия включают металлические слои, которые отражают тепло, то стеклянные заготовки обычно нагревают и формируют в виде «дублетов», т.е. заготовки располагают одну на другой во время нагревания и формования, при этом функциональное покрытие располагается между стеклянными заготовками для предотвращения неравномерного нагревания и охлаждения, которые могут повлиять на конечную форму слоев. Примеры слоистых автомобильных ветровых стекол и способы их изготовления раскрыты в патентах US 4820902, 5028759 и 5653903.A known method of reducing heating of the interior of a vehicle by creating a laminated windshield having two layers of glass with a control coating that attenuates the infrared or ultraviolet part of sunlight located between the layers. Layers of glass protect the layer that controls the passage of sunlight from mechanical and / or chemical damage. These conventional windshields are usually made by forming and annealing two flat glass preforms (one of which has a sunlight control coating applied thereto) to form two formed, annealed glass layers, followed by bonding the glass layers to each other using a plastic intermediate layer. Since conventional sunlight control coatings include metal layers that reflect heat, glass blanks are usually heated and formed into “doublets”, i.e. the blanks are placed one on top of the other during heating and molding, while the functional coating is located between the glass blanks to prevent uneven heating and cooling, which can affect the final shape of the layers. Examples of laminated automotive windshields and methods for their manufacture are disclosed in patents US 4820902, 5028759 and 5653903.

Нагреваемость дублета обычно ограничена способностью функционального покрытия выносить тепловую обработку без вредной деградации. Под «нагреваемостью» понимается максимальная температура и/или максимальное время при конкретной температуре, до которой можно нагревать подложку с покрытием без деградации функционального покрытия. Такая деградация может влиять на физические и/или оптические свойства покрытия, такие как отражение и/или пропускание солнечной энергии. Рассмотренная деградация может обуславливаться, например, окислением различных слоев в функциональном покрытии, содержащих металл. Например, функциональное покрытие, содержащее металлические слои, может быть чувствительным к кислороду, так что возможно некоторое изменение, например, ухудшение оптических свойств или свойств регулирования прохождения солнечного света, когда подложку с покрытием подвергают тепловой обработке, такой как нагревание для сгибания, закалка или отжиг, или отпуск, для использования в автомобильных прозрачных элементах и окнах, или же для использования в квартирных или коммерческих окнах, панелях, дверях или бытовых электроприборах.The heating of the doublet is usually limited by the ability of the functional coating to endure heat treatment without harmful degradation. By “heatability” is meant the maximum temperature and / or maximum time at a particular temperature to which the coated substrate can be heated without degradation of the functional coating. Such degradation may affect the physical and / or optical properties of the coating, such as reflection and / or transmission of solar energy. The considered degradation can be caused, for example, by the oxidation of various layers in a functional coating containing metal. For example, a functional coating containing metal layers may be sensitive to oxygen, so that some change is possible, for example, deterioration of optical properties or properties of regulating the passage of sunlight when the coated substrate is subjected to heat treatment, such as bending heat, hardening, or annealing , or vacation, for use in automotive transparent elements and windows, or for use in apartment or commercial windows, panels, doors or household electrical appliances.

Предпочтительно снабжать регулирующим солнечную энергию покрытием другие элементы автомобиля, такие как боковые стекла, задние стекла, сдвигающиеся крыши, прозрачные крыши и т.д. Однако процесс изготовления слоистых ветровых стекол не просто адаптировать к изготовлению других прозрачных автомобильных элементов слоистого или неслоистого типа. Например, автомобильные боковые стекла обычно изготавливают из единственной стеклянной заготовки, которую отдельно нагревают, формируют и закаливают с желаемой криволинейностью, задаваемой размерами отверстия в автомобиле, в которое подлежит установке боковое стекло. Проблема, возникающая при изготовления боковых стекол, которая не возникает при изготовлении ветровых стекол, заключается в отдельном нагревании стеклянных заготовок, имеющих покрытие, регулирующее отражение тепла солнечного света.It is preferable to provide other solar elements with a solar control coating, such as side windows, rear windows, sliding roofs, transparent roofs, etc. However, the manufacturing process of laminated windshields is not easy to adapt to the manufacture of other transparent automotive elements of a laminated or non-laminated type. For example, automobile side windows are usually made of a single glass billet, which is separately heated, formed and tempered with the desired curvature specified by the size of the hole in the car into which the side window is to be installed. A problem arising in the manufacture of side windows, which does not occur in the manufacture of windscreens, is the separate heating of glass blanks having a coating that regulates the reflection of the heat of sunlight.

Дополнительно к этому, если боковое стекло расположено так, что покрытие находится на наружной поверхности бокового стекла автомобиля, то покрытие является чувствительным к механическому повреждению, например, от объектов, ударяющихся в него, и к химическому повреждению от кислотных дождей или моющих средств, используемых при мойке автомобиля. Если покрытие находится на внутренней поверхности бокового стекла автомобиля, то покрытие является чувствительным к механическому повреждению от прикосновений находящихся в автомобиле людей или от перемещения вверх и вниз в оконном проеме и к химическому повреждению от контакта с обычными чистящими средствами для стекла. Дополнительно к этому, если покрытие является покрытием с низким коэффициентом черноты, то оно может способствовать парниковому эффекту, задерживая тепло внутри автомобиля. При этом коэффициент черноты определяется как отношение энергии, излучаемой данной поверхностью при заданной температуре, к энергии идеального излучателя (абсолютно черного тела) при той же температуре.In addition, if the side window is located so that the coating is on the outer surface of the side window of the car, then the coating is sensitive to mechanical damage, for example, from objects that hit it, and to chemical damage from acid rain or detergents used in car wash. If the coating is located on the inner surface of the side window of the car, the coating is sensitive to mechanical damage from the touch of people in the car or from moving up and down in the window opening and to chemical damage from contact with ordinary glass cleaning products. In addition, if the coating is a coating with a low coefficient of blackness, then it can contribute to the greenhouse effect, retaining heat inside the car. In this case, the blackness coefficient is defined as the ratio of the energy emitted by a given surface at a given temperature to the energy of an ideal emitter (absolutely black body) at the same temperature.

Хотя известен способ уменьшения химического повреждения или коррозии покрытия с помощью внешнего покрытия химически стойким материалом, такие покрытия обычно наносят как можно более тонкими для исключения отрицательного воздействия на оптические характеристики (например, цвет, отражательная и пропускная способность) расположенного под ним внутреннего покрытия и для незначительного увеличения коэффициента черноты подстилающего покрытия. Такие тонкие внешние покрытия обычно не отвечают требованиям стойкости во время формования, обработки или конечного использования обычных автомобильных элементов с покрытием, которые легко повреждаются и постоянно подвергаются воздействию окружающей среды. Дополнительно к этому такие тонкие внешние покрытия не могут смягчать указанный выше парниковый эффект. Примеры обычных покрытий раскрыты в патентах US 4716086, 4 786 563, 5425861, 5344718, 5376455, 5584902 и 5532180.Although a method is known for reducing chemical damage or corrosion of a coating by using an external coating with a chemically resistant material, such coatings are usually applied as thin as possible to avoid negative effects on the optical characteristics (e.g. color, reflectance and transmittance) of the inner coating located underneath and for slight increase the blackness coefficient of the underlying coating. Such thin exterior coatings generally do not meet the requirements of durability during the molding, processing or end use of conventional coated automotive components that are easily damaged and constantly exposed to the environment. Additionally, such thin external coatings cannot mitigate the above greenhouse effect. Examples of conventional coatings are disclosed in US patents 4716086, 4 786 563, 5425861, 5344718, 5376455, 5584902 and 5532180.

Поэтому было бы предпочтительным создание изделия, например, слоистого или неслоистого автомобильного прозрачного элемента, или панели, или листа, имеющего рабочее покрытие, которое решает, по меньшей мере, некоторые из указанных выше проблем.Therefore, it would be preferable to create a product, for example, a laminated or non-laminated automotive transparent element, or a panel, or a sheet having a working coating that solves at least some of the above problems.

Раскрытие изобретенияDisclosure of invention

Изделие согласно изобретению содержит подложку и функциональное покрытие, не ограниченное отражающим инфракрасную часть солнечного света диэлектрическим функциональным покрытием, расположенное, по меньшей мере, на части подложки. Защитное покрытие нанесено, по меньшей мере, на часть функционального покрытия. Функциональное покрытие и защитное покрытие создают покрывающий пакет. Защитное покрытие обеспечивает покрывающему пакету коэффициент излучения, превышающий коэффициент излучения функционального покрытия. Защитное покрытие может иметь толщину в диапазоне от более 100 Å до менее 10 микрон и коэффициент отражения в диапазоне от 1,4 до 2, например, от 1,4 до 1,8. Защитное покрытие может содержать один или более слоев. В одном варианте выполнения защитное покрытие содержит первый слой, сформированный, по меньшей мере, на части функционального покрытия, и второй слой, сформированный, по меньшей мере, на части первого слоя. В одном частном, не имеющем ограничительного характера варианте выполнения, первый слой может содержать от 50 до 100 мас.% оксида алюминия и от 50 до 0 мас.% диоксида кремния, а второй слой содержит от 50 до 100 мас.% диоксида кремния и от 50 до 0 мас.% оксида алюминия.The product according to the invention contains a substrate and a functional coating, not limited to the reflecting infrared portion of sunlight by a dielectric functional coating, located at least on a part of the substrate. A protective coating is applied to at least a portion of the functional coating. Functional coating and protective coating create a coating bag. The protective coating provides the emissivity of the coating bag in excess of the emissivity of the functional coating. The protective coating may have a thickness in the range from more than 100 Å to less than 10 microns and a reflection coefficient in the range from 1.4 to 2, for example, from 1.4 to 1.8. The protective coating may contain one or more layers. In one embodiment, the protective coating comprises a first layer formed at least in part of the functional coating and a second layer formed in at least part of the first layer. In one particular, non-limiting embodiment, the first layer may contain from 50 to 100 wt.% Alumina and from 50 to 0 wt.% Silicon dioxide, and the second layer contains from 50 to 100 wt.% Silicon dioxide and from 50 to 0 wt.% Alumina.

Монолитный прозрачный элемент согласно изобретению содержит стеклянную подложку и функциональное покрытие, нанесенное, по меньшей мере, на часть стеклянной подложки. Защитное покрытие нанесено, по меньшей мере, на часть функционального покрытия с образованием покрывающего пакета. Защитное покрытие может содержать оксид алюминия и может иметь толщину в диапазоне от 1 микрона до 10 микрон. Защитное покрытие может содержать один или более слоев. В одном варианте выполнения защитное покрытие содержит первый слой, сформированный, по меньшей мере, на части рабочего покрытия, и второй слой, сформированный, по меньшей мере, на части первого слоя. В одном частном, не имеющем ограничительного характера варианте выполнения первый слой может содержать от 50 до 100 мас.% оксида алюминия и от 50 до 0 мас.% диоксида кремния, а второй слой - от 50 до 100 мас.% диоксида кремния и от 50 до 0 мас.% оксида алюминия.The monolithic transparent element according to the invention comprises a glass substrate and a functional coating applied to at least a portion of the glass substrate. A protective coating is applied to at least a portion of the functional coating to form a coating bag. The protective coating may contain alumina and may have a thickness in the range from 1 micron to 10 microns. The protective coating may contain one or more layers. In one embodiment, the protective coating comprises a first layer formed at least in part of the working coating and a second layer formed in at least part of the first layer. In one particular, non-limiting embodiment, the first layer may contain from 50 to 100 wt.% Alumina and from 50 to 0 wt.% Silicon dioxide, and the second layer from 50 to 100 wt.% Silicon dioxide and from 50 up to 0 wt.% alumina.

Краткое описание чертежейBrief Description of the Drawings

На чертежах изображено:The drawings show:

фиг.1 - разрез кромочной части слоистого автомобильного прозрачного элемента, например бокового стекла, включающего признаки изобретения, на виде сбоку (в увеличенном масштабе);figure 1 is a section of the edge of the layered automotive transparent element, such as side glass, including features of the invention, in side view (on an enlarged scale);

фиг.2 - устройство (с удаленными для ясности частями) для изготовления стеклянных заготовок G согласно изобретению в изометрической проекции;figure 2 - device (with parts removed for clarity) for the manufacture of glass blanks G according to the invention in isometric view;

фиг.3 - разрез части монолитного изделия, включающего признаки изобретения, на виде сбоку (в увеличенном масштабе);figure 3 is a sectional view of a part of a monolithic product, including features of the invention, in side view (on an enlarged scale);

фиг.4 - график, показывающий результаты испытания на истирание по Таберу подложек, имеющих защитное покрытие, согласно изобретению по сравнению с подложками без защитного покрытия;4 is a graph showing the results of the Taber abrasion test of substrates having a protective coating according to the invention compared to substrates without a protective coating;

Фиг.5 - график средней матовости для выбранных подложек согласно фиг.4;Figure 5 is a graph of average haze for selected substrates according to figure 4;

фиг.6 - график величины коэффициента черноты в зависимости от толщины покрытия для подложек, имеющих защитное покрытие согласно изобретению;6 is a graph of the magnitude of the coefficient of blackness versus coating thickness for substrates having a protective coating according to the invention;

фиг.7 - график, показывающий результаты испытания на истирание по Таберу подложек, имеющих защитное покрытие, согласно изобретению;7 is a graph showing the results of a Taber abrasion test of substrates having a protective coating according to the invention;

фиг.8 - гистограмма, показывающая воздействие тепловой обработки и толщины покрытия на истирание по Таберу для подложек с покрытием, имеющих защитное покрытие согласно изобретению; Fig. 8 is a histogram showing the effect of heat treatment and coating thickness on Taber abrasion for coated substrates having a protective coating according to the invention;

фиг.9 - график, показывающий изменение пропускания видимого света (Lta) в зависимости от нагревания для подложки с рабочим покрытием, имеющей защитное покрытие согласно изобретению (линия А), и для подложки с рабочим покрытием без защитного покрытия (линия В). Снижение кривизны наклона линии В указывает на ухудшение характеристик подложки с покрытием без защиты по сравнению с подложкой с защищенным покрытием при одинаковых условиях нагревания.Fig. 9 is a graph showing the variation in visible light transmittance (Lta) as a function of heating for a coated working substrate having a protective coating according to the invention (line A) and for a coated working substrate without a protective coating (line B). A decrease in the curvature of the slope of line B indicates a deterioration in the performance of the coated substrate without protection as compared to the coated coated substrate under the same heating conditions.

Осуществление изобретенияThe implementation of the invention

Используемые в данном случае понятия, относящиеся к пространству или направлению, такие как слева, справа, внутри, снаружи, сверху, снизу, верх, низ и т.п., употребляются в соответствии с чертежами на фигурах. Однако следует понимать, что изобретение допускает различные альтернативные ориентации, так что эти понятия не следует понимать как ограничивающие изобретение.Used in this case, concepts relating to space or direction, such as left, right, inside, outside, top, bottom, top, bottom, etc., are used in accordance with the drawings in the figures. However, it should be understood that the invention allows for various alternative orientations, so that these concepts should not be understood as limiting the invention.

Кроме того, все используемые в описании и в формуле изобретения числа, выражающие размеры, физические характеристики, параметры процессов, количество ингредиентов, условия реакций и т.п., следует понимать во всех случаях как модифицированные понятием «около». В соответствии с этим, если не указано противоположное, указанные в последующем описании и в формуле изобретения числовые величины могут изменяться в зависимости от желаемых свойств, которые должны быть обеспечены данным изобретением. Наконец, но не в качестве попытки ограничить замены величин на эквивалентные в формуле изобретения, каждая числовая величина должна, по меньшей мере, истолковываться с учетом числа представленных десятичных знаков и с помощью применения обычных правил округления. Кроме того, все представленные диапазоны следует понимать как охватывающие начальную и конечную величины диапазона и любой и все поддиапазоны, включенные в него. Например, указанный диапазон «от 1 до 10» следует понимать как включающий любой и все поддиапазоны между (и включая) минимальной величиной 1 и максимальной величиной 10; т.е. все поддиапазоны, начинающиеся с минимальной величины 1 или более и заканчивающиеся максимальной величиной 10 или менее, например 5,5. Понятия «плоская» или «по существу плоская» подложка относятся к подложке, которая по существу является плоской по форме, т.е. подложке, лежащей первично в одной геометрической плоскости, при этом подложка, как понятно для специалистов в данной области техники, может включать небольшие изгибы, выступы или углубления. Кроме того, используемые в данном случае понятия «сформированный на», «нанесенный на» или «созданный на» означает «сформированный», «нанесенный», «созданный», но не обязательно в контакте с поверхностью. Например, покрывающий слой «сформированный на» подложке не исключает наличие одного или более других покрывающих слоев или пленок того же или другого состава, расположенных между сформированным покрывающим слоем и подложкой. Например, подложка может включать обычные покрытия, известные из уровня техники, такие как стекло или керамика. Все документы, на которые делаются ссылки, следует понимать как документы, полное содержание которых включается в данное описание. Используемые в данном случае понятия «полимер» или «полимерный» относятся к олигомерам, гомополимерам, сополимерам и терполимерам, например, полимерам, образованным из двух или более типов мономеров или полимеров.In addition, all the numbers used in the description and in the claims expressing dimensions, physical characteristics, process parameters, amount of ingredients, reaction conditions, etc., should be understood in all cases as modified by the term "about". Accordingly, unless otherwise indicated, the numerical values indicated in the following description and in the claims may vary depending on the desired properties to be provided by this invention. Finally, but not as an attempt to limit the substitution of equivalent quantities in the claims, each numerical value should at least be construed in light of the number of decimal places presented and by applying the usual rounding rules. In addition, all presented ranges should be understood as covering the initial and final values of the range and any and all subranges included in it. For example, the indicated range “from 1 to 10” should be understood as including any and all subranges between (and including) a minimum value of 1 and a maximum value of 10; those. all subranges starting with a minimum value of 1 or more and ending with a maximum value of 10 or less, for example 5.5. The terms “flat” or “substantially flat” substrate refer to a substrate that is substantially flat in shape, i.e. a substrate lying primarily in one geometric plane, while the substrate, as is understood by those skilled in the art, may include slight bends, protrusions, or indentations. In addition, the terms “formed on”, “deposited on” or “created on” used in this case means “formed”, “applied”, “created”, but not necessarily in contact with the surface. For example, a coating layer “formed on” a substrate does not exclude the presence of one or more other coating layers or films of the same or different composition located between the formed coating layer and the substrate. For example, the substrate may include conventional coatings known in the art, such as glass or ceramic. All referenced documents should be understood as documents whose full contents are included in this description. Used in this case, the concept of "polymer" or "polymer" refers to oligomers, homopolymers, copolymers and terpolymers, for example, polymers formed from two or more types of monomers or polymers.

Как следует из последующего описания, защитное (например, барьерное) покрытие, согласно изобретению можно использовать при изготовлении как слоистых, так и неслоистых изделий, например из одной подложки. Под «защитным покрытием» или «барьерным покрытием» понимается пленка, слой или покрытие, сформированное из защитного или барьерного материала и имеющее достаточную толщину для ограничения пропускания содержащих кислород газов через покрытие. Под «защитным материалом» или «барьерным материалом» понимается материал, имеющий низкую проницаемость для содержащих кислород газов, таких как воздух или пары воды. Материал может иметь высокую сопротивляемость прохождению кислорода или воздуха или водяного пара через него. Более подходящий барьерный материал имеет ограниченную склонность к растрескиванию, когда он сформирован в виде покрытия при условиях согласно изобретению и является, по существу, устойчивым относительно кислорода при таких условиях. Для специалистов в данной области техники понятно, что проницаемость материала является функцией толщины материала. Защитное покрытие согласно данному изобретению проявляет относительно высокую сопротивляемость в совокупности как воздуху, так и водяному пару, однако при некоторых применениях не требуется сопротивляемости им обоим. Поэтому низкая проницаемость для воздуха или водяного пара является достаточной для классификации покрытия в качестве «защитного покрытия». Варианты выполнения защитных покрытий, согласно данному изобретению задуманные, прежде всего, в качестве кислородных барьеров, могут иметь проницаемость для кислорода, такую как, приблизительно, менее 1,5, такую как менее 1,0, такую как менее 0.5, измеренную в кубических сантиметрах кислорода, проникающего через образец толщиной 1 мм на площади 100 квадратных дюймов в течение 24 часов при разнице парциального давления кислорода в одну атмосферу при температуре 23°С и относительной влажности, равной нулю. Защитный слой может быть устойчивым к содержащим кислород газам, так что покрытие может выдерживать тепловую обработку, такую как нагревание для сгибания, прогиба, закалки или отжига, с минимальным, если оно есть, изменением его барьерных свойств относительно кислорода по сравнению со свойствами, имеющимися до стадии теплообработки.As follows from the following description, a protective (eg, barrier) coating according to the invention can be used in the manufacture of both laminated and non-laminated products, for example from one substrate. By “protective coating” or “barrier coating” is meant a film, layer or coating formed from a protective or barrier material and having a sufficient thickness to limit the transmission of oxygen-containing gases through the coating. By “protective material” or “barrier material” is meant a material having a low permeability to oxygen-containing gases such as air or water vapor. The material may have a high resistance to the passage of oxygen or air or water vapor through it. A more suitable barrier material has a limited tendency to crack when it is formed into a coating under the conditions of the invention and is substantially resistant to oxygen under such conditions. For specialists in the art it is clear that the permeability of the material is a function of the thickness of the material. The protective coating according to this invention exhibits a relatively high resistance together with both air and water vapor, however, in some applications it is not required to resist both of them. Therefore, low permeability to air or water vapor is sufficient to classify the coating as a “protective coating”. Embodiments of the protective coatings according to this invention, designed primarily as oxygen barriers, can have oxygen permeability, such as approximately less than 1.5, such as less than 1.0, such as less than 0.5, measured in cubic centimeters oxygen penetrating through a sample 1 mm thick on an area of 100 square inches for 24 hours with a difference of the partial pressure of oxygen in one atmosphere at a temperature of 23 ° C and a relative humidity of zero. The protective layer can be resistant to oxygen-containing gases, so that the coating can withstand heat treatment, such as heating for bending, bending, hardening, or annealing, with a minimum, if any, change in its barrier properties with respect to oxygen compared to those available before heat treatment stages.

Для использования в слоистых изделиях защитное покрытие может быть обычно более тонким, чем для неслоистых изделий. Сначала будет приведено описание в качестве примера структурных компонентов и способа изготовления слоистого изделия согласно изобретению, а затем будет приведено описание конструкции примера монолитного изделия согласно изобретению. Под «монолитным» понимается наличие единственной структурной опоры или структурного элемента, например единственной подложки. В последующем в качестве примера выполнения изделия (слоистого или монолитного) приводится описание автомобильного бокового стекла. Однако изобретение не ограничивается автомобильными боковыми стеклами, и его можно использовать для любых изделий, таких как, например, изолирующие стеклянные блоки, квартирные или коммерческие слоистые окна (например, верхний свет) или прозрачные элементы для наземных, воздушных, космических, надводных и подводных транспортных средств, например, ветровых стекол, задних фонарей, раздвижных крыш.For use in laminated products, the protective coating can usually be thinner than for non-laminated products. First, an exemplary description of structural components and a method for manufacturing a layered product according to the invention will be given, and then a construction description of an example of a monolithic product according to the invention will be given. By “monolithic” is meant the presence of a single structural support or structural element, for example, a single substrate. In the following, as an example of the product (laminated or monolithic), a description of automobile side glass is provided. However, the invention is not limited to automotive side windows, and it can be used for any products, such as insulating glass blocks, apartment or commercial laminated windows (e.g. overhead lights) or transparent elements for ground, air, space, surface and underwater vehicles means, for example, windshields, taillights, sliding roofs.

На фиг.1 показано слоистое изделие в виде бокового стекла 10, включающего признаки изобретения. Слоистое боковое стекло 10 содержит первую подложку или слой 12, имеющий наружную главную поверхность 13 и внутреннюю главную поверхность 14. Под «слоем» понимается подложка, которая согнута в желаемую форму или кривизну и/или обработана нагреванием, таким как отжиг или закалка. Функциональное покрытие 16 может быть сформировано, по меньшей мере, на части или, предпочтительно, на всей внутренней главной поверхности 14 любым обычным способом, таким как, например, химическое осаждение из паровой фазы, магнетронное напыление осаждением из паровой фазы, пиролизное распыление. Как будет более подробно описано ниже, защитное или барьерное покрытие 17 согласно изобретению может быть сформировано, по меньшей мере, на части или, предпочтительно, на всем рабочем покрытии 16. Защитное покрытие способствует не только повышению механической и химической стойкости, но также обеспечивает улучшенные характеристики нагревания для сгибания и/или формования заготовки, на которую оно нанесено. Полимерный слой 18 может быть расположен между первым слоем 12 и вторым слоем или подложкой 20, имеющей внутреннюю главную поверхность 22 и наружную главную поверхность 23. В одном варианте выполнения, не имеющем ограничительного характера, внешняя главная поверхность 23 может быть обращена наружу автомобиля, а внешняя главная поверхность 13 может быть обращена внутрь автомобиля. Обычный кромочный герметик 26 может быть нанесен по периметру слоистого бокового стекла 10 во время и/или после ламинирования обычным способом. Декоративная лента 90, например, непрозрачная, прозрачная или цветная лента, может быть предусмотрена на поверхности, по меньшей мере, одного из слоев 12 и 20, например, по периметру одной из внутренних или наружных главных поверхностей.Figure 1 shows a laminated product in the form of a side window 10, including features of the invention. Laminated side glass 10 comprises a first substrate or layer 12 having an outer main surface 13 and an inner main surface 14. By “layer” is meant a substrate that is bent into a desired shape or curvature and / or processed by heating, such as annealing or hardening. The functional coating 16 may be formed at least in part or, preferably, on the entire inner main surface 14 by any conventional method, such as, for example, chemical vapor deposition, magnetron sputtering, vapor deposition, pyrolysis spraying. As will be described in more detail below, the protective or barrier coating 17 according to the invention can be formed at least in part or, preferably, on the entire working coating 16. The protective coating not only improves mechanical and chemical resistance, but also provides improved performance heating to bend and / or form the workpiece on which it is applied. The polymer layer 18 may be located between the first layer 12 and the second layer or substrate 20 having an inner main surface 22 and an outer main surface 23. In one embodiment, which is not restrictive, the outer main surface 23 may face the outside of the car, and the outer the main surface 13 may be facing inside the car. Conventional edge sealant 26 can be applied around the perimeter of the laminated side window 10 during and / or after lamination in the usual way. Decorative tape 90, for example, an opaque, transparent or colored tape, may be provided on the surface of at least one of the layers 12 and 20, for example, around the perimeter of one of the inner or outer main surfaces.

В широкой практике применения изобретения подложки, используемые для первого слоя 12 и второго слоя 20, могут быть из любого материала, имеющего любые желаемые характеристики, такого как непрозрачный, полупрозрачный или прозрачный для видимого света. Под «прозрачным» понимается материал, имеющий коэффициент пропускания через подложку более 0% вплоть до 100%. Под «видимым светом» или «диапазоном видимого света» понимается электромагнитное излучение в диапазоне от 395 нм до 800 нм. В качестве альтернативного решения подложка может быть полупрозрачной или непрозрачной. Под «полупрозрачной» понимается подложка, обеспечивающая прохождение электромагнитного излучения (например, видимого света) через подложку, но рассеивающая энергию так, что объекты со стороны подложки, противоположной наблюдателю, четко не видны. Под «непрозрачной» понимается подложка, имеющая коэффициент пропускания видимого света, равный 0%. Примеры подходящих подложек включают, например, пластмассовые подложки (такие как акриловые полимеры: полиакрилаты, полиалкиметакрилаты, полиметилметакрилаты, полиэтилметакрилаты, полипропилметакрилаты и т.п.; полиуретаны; поликарбонаты; полиакрилтерефталаты: полиэтилентерефталат (PET), полипропилентерефталаты, полибутилентерефталаты и т.п.; содержащие полисилоксан полимеры; или сополимеры любых мономеров для их изготовления или любые их смеси); металлические подложки, например, такие как оцинкованная сталь, нержавеющая сталь и алюминий; керамические подложки; кафельные подложки; стеклянные подложки или смеси или комбинации любых из них. Например, подложка может быть обычным неокрашенным натриево-кальциево-силикатным стеклом, т.е. «прозрачным стеклом», или же может быть окрашенным стеклом, боросиликатным стеклом, свинцовым стеклом, закаленным, незакаленным, отожженным и усиленным нагреванием стеклом. Стекло может быть любого типа, таким как обычное флоат-стекло или листовое стекло, и может иметь любой состав, имеющий любые оптические свойства, например, любую величину пропускания видимого излучения, ультрафиолетового излучения, инфракрасного излучения и/или полного солнечного спектра. Типы стекла, подходящего для практической реализации изобретения, описаны, например, в патентах US 4746347, 4792536, 5240886, 5385872 и 5393593. Изобретение не ограничивается толщиной подложки. Подложка может быть в целом более толстой для типичных архитектурных применений, чем для типичных применений в автомобиле. В одном варианте выполнения подложка может быть стеклянной, имеющей толщину в диапазоне от 1 до 20 мм, например от около 1 до 10 мм, или от 2 до 6 мм, или от 3 до 5 мм. Для формирования слоистого автомобильного бокового стекла первый и второй слои 12, 20 могут иметь толщину приблизительно менее 3 мм, например менее 2,5 мм, или в диапазоне толщин от около 1 до около 2,1 мм. Как будет описано ниже, толщина монолитных изделий может быть больше.In the widespread practice of applying the invention, the substrates used for the first layer 12 and the second layer 20 may be of any material having any desired characteristics, such as opaque, translucent, or transparent to visible light. By "transparent" is meant a material having a transmittance through the substrate of more than 0% up to 100%. By "visible light" or "range of visible light" is meant electromagnetic radiation in the range from 395 nm to 800 nm. Alternatively, the substrate may be translucent or opaque. “Translucent” means a substrate that allows electromagnetic radiation (for example, visible light) to pass through the substrate, but dissipates energy so that objects from the side of the substrate opposite the observer are not clearly visible. By “opaque” is meant a substrate having a visible light transmittance of 0%. Examples of suitable substrates include, for example, plastic substrates (such as acrylic polymers: polyacrylates, polyalkyl methacrylates, polymethyl methacrylates, polyethyl methacrylates, polypropyl methacrylates and the like; polyurethanes; polycarbonates; polyacryl terephthalates: polyethylene terephthalate (PET); polypropylene terephthalate; polysiloxane-containing polymers; or copolymers of any monomers for their manufacture or any mixtures thereof); metal substrates, for example, such as galvanized steel, stainless steel and aluminum; ceramic substrates; tile substrates; glass substrates or mixtures or combinations of any of them. For example, the substrate may be ordinary unpainted sodium-calcium-silicate glass, i.e. “Transparent glass”, or it can be tinted glass, borosilicate glass, lead glass, tempered, non-tempered, annealed and heat-strengthened glass. Glass may be of any type, such as ordinary float glass or sheet glass, and may have any composition having any optical properties, for example, any amount of transmittance of visible radiation, ultraviolet radiation, infrared radiation and / or the full solar spectrum. Types of glass suitable for practicing the invention are described, for example, in US Pat. Nos. 4,746,347, 4,792,536, 5,240,886, 5,385,872 and 5,393,593. The invention is not limited to the thickness of the substrate. The substrate may be generally thicker for typical architectural applications than for typical automotive applications. In one embodiment, the substrate may be glass, having a thickness in the range from 1 to 20 mm, for example from about 1 to 10 mm, or from 2 to 6 mm, or from 3 to 5 mm. To form laminated automotive side glass, the first and second layers 12, 20 may have a thickness of approximately less than 3 mm, for example less than 2.5 mm, or in a thickness range of from about 1 to about 2.1 mm. As will be described below, the thickness of the monolithic products may be greater.

Подложка может иметь барьерные свойства относительно кислорода, например, может быть изготовлена из материала, который предотвращает или ограничивает диффузию кислорода через подложку. В качестве альтернативного решения может быть сформировано другое барьерное относительно кислорода покрытие (дополнительно к барьерному покрытию 17, описание которого будет приведено ниже), по меньшей мере, над частью подложки, а затем может быть сформировано функциональное покрытие 16 над этим другим барьерным относительно кислорода покрытием. Другое барьерное относительно кислорода покрытие может быть из любого материала, предотвращающего или ограничивающего диффузию кислорода, такого как, но не ограничиваясь этим, материала, применяемого для защитного покрытия 17, описание которого будет приведено ниже.The substrate may have barrier properties with respect to oxygen, for example, may be made of a material that prevents or limits the diffusion of oxygen through the substrate. As an alternative solution, another oxygen-barrier coating (in addition to the barrier coating 17, which will be described below) can be formed over at least a portion of the substrate, and then a functional coating 16 can be formed over this other oxygen-barrier coating. The other oxygen barrier coating may be any material that prevents or limits the diffusion of oxygen, such as, but not limited to, the material used for the protective coating 17, which will be described below.

Функциональное покрытие может быть любого желаемого типа. В данном случае понятие «функциональное покрытие» относится к покрытию, которое модифицирует одно или несколько физических свойств подложки, на которую оно нанесено, например оптические, химические или механические свойства, и не предназначено для полного удаления с подложки во время последующей обработки. Функциональное покрытие 16 может иметь один или более слоев или пленок, имеющих одинаковые или различные свойства или функции. Используемое в данном случае понятие «пленка» относится к покрытой зоне с желаемым или выбранным составом покрытия. «Слой» может содержать одну или более «пленок», а «покрытие» может содержать один или более «слоев».The functional coating may be of any desired type. In this case, the term "functional coating" refers to a coating that modifies one or more physical properties of the substrate on which it is applied, for example, optical, chemical or mechanical properties, and is not intended to be completely removed from the substrate during subsequent processing. The functional coating 16 may have one or more layers or films having the same or different properties or functions. Used in this case, the concept of "film" refers to a covered area with the desired or selected coating composition. A “layer” may contain one or more “films”, and a “coating” may contain one or more “layers”.

Функциональное покрытие 16 может быть электрически проводящим покрытием, таким как, например, используемое для изготовления нагреваемых окон покрытие, раскрытое в патентах US 5653903 и 5028759, или покрытием с одной или несколькими пленками, используемым в качестве антенны. Аналогичным образом рабочее покрытие может быть покрытием, регулирующим прохождение солнечного света. Используемое здесь понятие «регулирующее прохождение солнечного света покрытие» относится к покрытию, содержащему один или более слоев или пленок, которые влияют на свойства пропускания солнечного света изделия с покрытием, включая, но не ограничиваясь этим, количество излучения солнечного света, например, видимого, инфракрасного или ультрафиолетового излучения, падающего и/или проходящего через изделие с покрытием, поглощение или отражение инфракрасного или ультрафиолетового излучения, коэффициент затенения, коэффициент черноты и т.д. Регулирующее прохождение солнечного света покрытие может блокировать, поглощать или отфильтровывать выбранные части спектра солнечного света, такие как, например, инфракрасный, ультрафиолетовый и/или видимый спектры. Примеры регулирующих прохождение солнечного света покрытий, которые можно использовать для практической реализации изобретения, содержаться, например, в патентах US 4898789, 5821001, 4716086, 4610771, 4902580, 4716086, 4806220, 4898790, 4834857, 4948677, 5059295 и 5028759, а также в заявке на патент США №09/058 440.Functional coating 16 may be an electrically conductive coating, such as, for example, the coating used for making heated windows, disclosed in US Pat. Nos. 5,653,903 and 5,028,759, or a coating with one or more films used as an antenna. Similarly, the working coating may be a coating that regulates the passage of sunlight. The term “sunlight control coating” as used herein refers to a coating containing one or more layers or films that affect the sunlight transmission properties of the coated article, including, but not limited to, the amount of sunlight emitted, for example, visible, infrared or ultraviolet radiation incident and / or passing through a coated article, absorption or reflection of infrared or ultraviolet radiation, shading coefficient, blackness coefficient, and .d. A sunlight control coating can block, absorb, or filter out selected parts of the sunlight spectrum, such as, for example, infrared, ultraviolet, and / or visible spectra. Examples of regulating the passage of sunlight of coatings that can be used for the practical implementation of the invention can be found, for example, in US Pat. US patent No. 09/058 440.

Функциональное покрытие может быть покрытием с малым коэффициентом черноты, которое позволяет проходить через покрытие излучению с длиной волны видимого света, например, от 395 до 800 нм, но отражает инфракрасную составляющую солнечного света, имеющую более длинные волны. Под «малым коэффициентом черноты» понимается коэффициент черноты менее 0,4, или менее 0,3, или менее 0,2, или менее 0,1, например, менее или равный 0,05. Примеры покрытий с малым коэффициентом черноты можно найти, например, в патентах US 4952423 и 4504109 и в патенте GB 2302102. Функциональное покрытие 16 может быть однослойным или многослойным покрытием и может включать один или более металлов, неметаллов, полуметаллов, полупроводников и/или сплавов, соединений, композитов, комбинаций или их смесей. Например, функциональное покрытие 16 может быть однослойным покрытием из оксида металла, многослойным покрытием из оксида металла, покрытием из оксида неметалла, покрытием из нитрида металла или оксинитрида, или многослойным покрытием.The functional coating may be a coating with a low black coefficient, which allows radiation with a wavelength of visible light, for example, from 395 to 800 nm, to pass through the coating, but reflects the infrared component of sunlight having longer waves. By "low black factor" is meant a black coefficient of less than 0.4, or less than 0.3, or less than 0.2, or less than 0.1, for example, less than or equal to 0.05. Examples of coatings with a low coefficient of blackness can be found, for example, in US Pat. compounds, composites, combinations, or mixtures thereof. For example, functional coating 16 may be a single layer of a metal oxide coating, a multi-layer coating of metal oxide, a coating of non-metal oxide, a coating of metal nitride or oxynitride, or a multi-layer coating.

Подходящие функциональные покрытия для использования в изобретении предлагаются в торговле фирмой PPG Industries, Inc. of Pittsburg, Пенсильвания под названием семейства покрытий SUNGATE® и SOLARBRAN®. Такие функциональные покрытия обычно содержат один или более противоотражательных покрывающих пленок, содержащих диэлектрические или противоотражательные материалы, такие как оксиды металлов или оксиды металлических сплавов, которые являются прозрачными для видимого света. Функциональное покрытие может включать также одну или более отражающих инфракрасное излучение пленок, содержащих отражающий металл, например благородный метал, такой как золото, медь или серебро, или их комбинации или сплавы, и могут дополнительно содержать грунтовочную пленку или барьерную пленку, такую как титановая пленка, как известно из уровня техники, расположенные над и/или под отражательным металлическим слоем. Функциональное покрытие может иметь любое желаемое число отражающих инфракрасную энергию пленок, таких как 1 или более слоев серебра, например, 2 слоя серебра или, например, 3 и более слоев серебра.Suitable functional coatings for use in the invention are commercially available from PPG Industries, Inc. of Pittsburg, PA under the name of the SUNGATE ® and SOLARBRAN ® coating families. Such functional coatings typically comprise one or more anti-reflective coating films containing dielectric or anti-reflective materials, such as metal oxides or metal alloy oxides, which are transparent to visible light. The functional coating may also include one or more infrared reflective films comprising a reflective metal, for example a noble metal such as gold, copper or silver, or combinations or alloys thereof, and may further comprise a primer film or a barrier film such as a titanium film, as is known in the art, located above and / or below a reflective metal layer. The functional coating can have any desired number of infrared energy reflecting films, such as 1 or more layers of silver, for example, 2 layers of silver or, for example, 3 or more layers of silver.

Функциональное покрытие 16 может быть расположено, например, на одной из внутренних главных поверхностей 14, 22 слоистого изделия для обеспечения меньшей чувствительности покрытия 16 к окружающему и механическому износу, чем при расположении его на наружной поверхности слоистого изделия. Однако функциональное покрытие 16 может быть предусмотрено на одной или на обеих наружных главных поверхностях 13 или 23. Как показано на фиг.1, часть покрытия 16, например, зона с шириной около 1-20 мм, такой как 2-4 мм, вокруг наружного периметра покрытой зоны, может быть удалена или стерта обычным способом, например, с помощью шлифования перед ламинированием или маскирования во время ламинирования, для минимизации повреждения функционального покрытия 16 на кромке слоистого материала за счет воздействия погодных условий или окружающей среды во время использования. Дополнительно к этому удаление можно выполнять для обеспечения рабочих параметров, например, для антенн, нагреваемых ветровых стекол или для улучшения пропускания радиоволн, при этом удаляемая часть может иметь любой размер. Для эстетических целей может быть предусмотрена окрашенная, непрозрачная или полупрозрачная полоса 90 над любой поверхностью слоев или покрытий, например, над одной или обеими поверхностями одного или обоих слоев, например, по периметру наружной главной поверхности 13 для закрывания удаленной части. Полоса 90 может быть выполнена из керамического материала и может вжигаться на наружную главную поверхность 13 любым обычным способом.The functional coating 16 can be located, for example, on one of the inner main surfaces 14, 22 of the laminated product to provide less sensitivity of the coating 16 to environmental and mechanical wear than when it is located on the outer surface of the laminated product. However, a functional coating 16 may be provided on one or both of the outer main surfaces 13 or 23. As shown in FIG. 1, a portion of the coating 16, for example, an area with a width of about 1-20 mm, such as 2-4 mm, around the outer the perimeter of the covered area, can be removed or erased in the usual way, for example, by grinding before lamination or masking during lamination, to minimize damage to the functional coating 16 at the edge of the laminate due to weather or environmental influences emya use. In addition, the removal can be performed to ensure operating parameters, for example, for antennas, heated windshields or to improve the transmission of radio waves, while the removed part can be of any size. For aesthetic purposes, a colored, opaque or translucent strip 90 may be provided over any surface of the layers or coatings, for example, over one or both surfaces of one or both layers, for example, around the perimeter of the outer main surface 13 to cover the removed portion. The strip 90 may be made of ceramic material and may be burned onto the outer main surface 13 in any conventional manner.

Защитное (барьерное) покрытие 17 согласно изобретению можно формировать по меньшей мере на, например, части, а предпочтительно на всей наружной поверхности функционального покрытия 16. Защитное покрытие, среди прочего, может повышать коэффициент черноты покрывающего пакета (например, функционального покрытия и защитного покрытия) до величины, большей коэффициента черноты одного функционального покрытия 16. Например, если функциональное покрытие имеет величину коэффициента черноты 0,2, то добавление защитного покрытия 17 может повысить величину коэффициента черноты полученного покрывающего пакета до более 0,2. В одном варианте выполнения защитное покрытие может повысить коэффициент черноты полученного покрывающего пакета в два или более раз по сравнению с коэффициентом черноты одного функционального покрытия (например, если коэффициент черноты функционального покрытия равен 0,05, то добавление защитного покрытия может увеличивать коэффициент черноты полученного покрывающего пакета до 0,1 или более), например, в 5 раз или более, например, в 10 раз или более, например, в 20 раз или более. Защитное покрытие может увеличивать коэффициент черноты, по меньшей мере, одного функционального покрытия и, по меньшей мере, одного нанесенного защитного покрытия, когда функциональное покрытие имеет коэффициент черноты в диапазоне от 0,02 до 0,30, более подходяще от 0,03 до 0,15, по меньшей мере, на от менее 10 до 3000%, или внутри этого диапазона на 50-200%, или 10-200%, или 200-1000%, или 1000-3000%. В другом варианте выполнения изобретения защитное покрытие 17 может увеличивать коэффициент черноты полученного покрывающего пакета по существу до коэффициента черноты подложки, на которую нанесено покрытие. Например, если подложка является стеклом, имеющим коэффициент черноты около 0,84, то защитное покрытие 17 может обеспечить коэффициент черноты покрывающего пакета в диапазоне от 0,3 до 0,9, такой, например, как более 0,3, более 0,5, более 0,6 или в диапазоне от 0,5 до 0,9. Как будет показано ниже, увеличение коэффициента черноты рабочего покрытия 16 посредством нанесения защитного покрытия 17 улучшает характеристики нагревания и охлаждения покрытого слоя 12 во время обработки. Защитное покрытие 17 защищает также функциональное покрытие 16 от механических и химических воздействий во время обращения, хранения, транспортировки и обработки.The protective (barrier) coating 17 according to the invention can be formed at least on, for example, part, and preferably on the entire outer surface of the functional coating 16. The protective coating, among other things, can increase the black factor of the coating bag (for example, functional coating and protective coating) to a value greater than the blackness coefficient of one functional coating 16. For example, if the functional coating has a blackness coefficient of 0.2, the addition of a protective coating 17 may increase the blackness coefficient of the resulting coating packet to more than 0.2. In one embodiment, the protective coating can increase the black factor of the resulting coating bag by two or more times as compared to the black coefficient of one functional coating (for example, if the blackness coefficient of the functional coating is 0.05, then adding a protective coating can increase the blackness of the resulting coating bag up to 0.1 or more), for example, 5 times or more, for example, 10 times or more, for example, 20 times or more. The protective coating can increase the blackness of at least one functional coating and at least one applied protective coating when the functional coating has a blackness in the range from 0.02 to 0.30, more suitably from 0.03 to 0 , 15, at least from less than 10 to 3000%, or within this range by 50-200%, or 10-200%, or 200-1000%, or 1000-3000%. In another embodiment, the protective coating 17 may increase the black factor of the resulting coating bag substantially to the black factor of the coated substrate. For example, if the substrate is glass having a black factor of about 0.84, then the protective coating 17 can provide a black coefficient of the coating bag in the range from 0.3 to 0.9, such as, for example, more than 0.3, more than 0.5 , more than 0.6 or in the range from 0.5 to 0.9. As will be shown below, an increase in the black coefficient of the working coating 16 by applying a protective coating 17 improves the heating and cooling characteristics of the coated layer 12 during processing. The protective coating 17 also protects the functional coating 16 from mechanical and chemical influences during handling, storage, transportation and processing.

В одном варианте выполнения защитное покрытие 17 может иметь показатель преломления, по существу одинаковый с показателем преломления слоя 12, на который оно ламинировано. Например, если слой 12 является стеклом, имеющим показатель преломления 1,5, то защитное покрытие 17 может иметь показатель преломления менее 2, такой как 1,4-1,8, или 1,3-1,8, или 1,5±2.In one embodiment, the protective coating 17 may have a refractive index substantially the same as that of the layer 12 on which it is laminated. For example, if layer 12 is glass having a refractive index of 1.5, then the protective coating 17 may have a refractive index of less than 2, such as 1.4-1.8, or 1.3-1.8, or 1.5 ± 2.

Защитное покрытие 17 может иметь любую желаемую толщину. В одном примере выполнения слоистого изделия, защитное покрытие 17 может иметь толщину в диапазоне от 100 Å до 50000 Å, или от 500 Å до 50000 Å, или, от 500 Å до 10000 Å, или такую как от 100 Å до 2000 Å. В других, не ограничивающих изобретение вариантах выполнения, защитное покрытие 17 может иметь толщину в диапазоне от 100 Å до 10 микрон, например, от 101 Å до 1000 Å, или от 1000 Å до 1 микрона, или от 1 мкм до 10 мкм, или от 200 Å до 1000 Å. Кроме того, защитное покрытие 17 может иметь неравномерную толщину на поверхности функционального покрытия 16. Под «неравномерной толщиной» понимается, что толщина защитного покрытия 17 может изменяться над заданной единичной зоной, например, защитное покрытие 17 может иметь высокие или низкие точки или зоны.The protective coating 17 may have any desired thickness. In one exemplary embodiment of the laminate, the protective coating 17 may have a thickness in the range from 100 Å to 50,000 Å, or from 500 Å to 50,000 Å, or from 500 Å to 10,000 Å, or such as from 100 Å to 2,000 Å. In other non-limiting embodiments, the protective coating 17 may have a thickness in the range from 100 Å to 10 microns, for example, from 101 Å to 1000 Å, or from 1000 Å to 1 micron, or from 1 μm to 10 μm, or from 200 Å to 1000 Å. In addition, the protective coating 17 may have an uneven thickness on the surface of the functional coating 16. By “uneven thickness” it is meant that the thickness of the protective coating 17 can vary over a predetermined unit area, for example, the protective coating 17 can have high or low points or zones.

Защитное покрытие 17 может быть выполнено из любого желаемого материала или смеси материалов. В одном примере выполнения защитное покрытие 17 может включать один или более материалов из оксидов металлов, таких как, например, оксид алюминия, оксид кремния или их смеси. Например, защитное покрытие может быть единственным покрывающим слоем, содержащим оксид алюминия в диапазоне от 0 до 100 мас.% и/или диоксид кремния в диапазоне от 0 до 100 мас.%, или содержащим от 5 до 100 мас.% диоксида алюминия и от 95 до 0 мас.% диоксида кремния, или содержащим от 10 до 100 мас.% диоксида алюминия или от 90 до 10 мас.% диоксида кремния, или содержащим от 15 до 90 мас.% диоксида алюминия и от 85 до 10 мас.% диоксида кремния, или содержащим от 50 до 75 мас.% диоксида алюминия или от 50 до 25 мас.% диоксида кремния, или содержащим от 50 до 70 мас.% диоксида алюминия и от 50 до 30 мас.% диоксида кремния, или содержащим от 35 до 100 мас.% диоксида алюминия и от 65 до 0 мас.% диоксида кремния, например, от 70 до 90 мас.% диоксида алюминия и от 10 до 30 мас.% диоксида кремния, например, от 75 до 85 мас.% диоксида алюминия и от 15 до 25 мас.% диоксида кремния, например, 88 мас.% диоксида алюминия и 12 мас.% диоксида кремния, например, от 65 до 75 мас.% диоксида алюминия и от 25 до 35 мас.% диоксида кремния, например, 70 диоксида алюминия и 30 мас.% диоксида кремния, например, от 60 до менее 75 мас.% диоксида алюминия и от более 25 до 40 мас.% диоксида кремния. Для регулирования показателя преломления покрытия 17 могут присутствовать также другие материалы, такие как алюминий, хром, гафний, иттрий, никель, бор, фосфор, титан, цирконий и/или их оксиды. В одном варианте выполнения показатель преломления защитного покрытия может быть в диапазоне от 1 до 3, например, от 1 до 2, или от 1,4 до 2, или от 1,4 до 1,8.The protective coating 17 may be made of any desired material or mixture of materials. In one embodiment, the protective coating 17 may include one or more materials of metal oxides, such as, for example, alumina, silica, or mixtures thereof. For example, the protective coating may be the only coating layer containing alumina in the range from 0 to 100 wt.% And / or silica in the range from 0 to 100 wt.%, Or containing from 5 to 100 wt.% Aluminum dioxide and from 95 to 0 wt.% Silicon dioxide, or containing from 10 to 100 wt.% Aluminum dioxide or from 90 to 10 wt.% Silicon dioxide, or containing from 15 to 90 wt.% Aluminum dioxide and from 85 to 10 wt.% silica, or containing from 50 to 75 wt.% alumina or from 50 to 25 wt.% silica, or containing from 50 to 70 wt.% alumina I and from 50 to 30 wt.% silicon dioxide, or containing from 35 to 100 wt.% aluminum dioxide and from 65 to 0 wt.% silicon dioxide, for example, from 70 to 90 wt.% aluminum dioxide and from 10 to 30 wt.% silicon dioxide, for example, from 75 to 85 wt.% aluminum dioxide and from 15 to 25 wt.% silicon dioxide, for example, 88 wt.% aluminum dioxide and 12 wt.% silicon dioxide, for example, from 65 to 75 wt.% aluminum dioxide and from 25 to 35 wt.% silicon dioxide, for example, 70 alumina and 30 wt.% silicon dioxide, for example, from 60 to less than 75 wt.% aluminum dioxide and from more than 25 to 40 wt.% silica. Other materials such as aluminum, chromium, hafnium, yttrium, nickel, boron, phosphorus, titanium, zirconium and / or their oxides may also be present to control the refractive index of the coating 17. In one embodiment, the refractive index of the protective coating may be in the range from 1 to 3, for example, from 1 to 2, or from 1.4 to 2, or from 1.4 to 1.8.

В качестве альтернативного решения защитное покрытие 17 может быть многослойным покрытием, сформированным с помощью отдельно сформированных слоев из материалов из оксидов металлов, такими как, например, двухслойный материал, образованный одним содержащим оксиды металлов слоем (например, содержащим диоксид кремния и/или оксид алюминия первым слоем), сформированным над другим содержащим оксиды металлов слоем (например, содержащим диоксид кремния и/или оксид алюминия вторым слоем). Отдельные слои многослойного защитного покрытия 17 могут иметь любую желаемую толщину.Alternatively, the protective coating 17 may be a multilayer coating formed using separately formed layers of materials from metal oxides, such as, for example, a two-layer material formed by one layer containing metal oxides (for example, containing silicon dioxide and / or alumina first a layer) formed over another layer containing metal oxides (for example, containing silicon dioxide and / or alumina second layer). The individual layers of the multilayer protective coating 17 may have any desired thickness.

В одном варианте выполнения защитное покрытие 17 может содержать первый слой, образованный над функциональным покрытием, и второй слой, образованный над первым слоем. В одном варианте выполнения, не ограничивающем изобретение, первый слой может содержать оксид алюминия или смесь или сплав, содержащий оксид алюминия и диоксид кремния. Например, первый слой может содержать смесь диоксида кремния и оксида алюминия, имеющую более 5 мас.% оксида алюминия, такую как имеющую более 10 мас.% оксида алюминия, такую как имеющую более 15 мас.% оксида алюминия, такую как имеющую более 30 мас.% оксида алюминия, такую как имеющую более 40 мас.% оксида алюминия, такую как имеющую от 50 до 70 мас.% оксида алюминия, такую как имеющую от 70 до 100 мас.% оксида алюминия и от 30 до 0 мас.% диоксида кремния. В одном не ограничивающем изобретение варианте выполнения первый слой может иметь толщину в диапазоне от более 0 Å до 1 мкм, такую как от 50 Å до 100 Å, такую как от 101 Å до 250 Å, такую как от 100 Å до 150 Å, такую как от более 100 Å до 125 Å. Второй слой может содержать диоксид кремния или смесь или сплав, содержащий диоксид кремния и оксид алюминия. Например, второй слой может содержать смесь диоксида кремния и оксида алюминия, имеющую более 40 мас.% диоксида кремния, такую как имеющую более 60 мас.% диоксида кремния, такую как имеющую более 60 мас.% диоксида кремния, такую как имеющую более 70 мас.% диоксида кремния, такую как имеющую более 80 мас.% диоксида кремния, такую как имеющую от 80 до 90 мас.% диоксида кремния и от 10 до 20 мас.% оксида алюминия, например, 85 диоксида кремния и 15 мас.% оксида алюминия. В одном не ограничивающем изобретение варианте выполнения второй слой может иметь толщину в диапазоне от более 0 Å до 2 мкм, такую как от 50 Å до 5000 Å, такую как от 50 Å до 2000 Å, такую как от 100 Å до 1000 Å, такую как от 300 Å до 500 Å, такую как от 350 Å до 400 Å. Как будет показано ниже, присутствие защитного покрытия 17 может улучшить нагреваемость подложки с функциональным покрытием.In one embodiment, the protective coating 17 may comprise a first layer formed above the functional coating and a second layer formed above the first layer. In one non-limiting embodiment, the first layer may comprise alumina or a mixture or alloy containing alumina and silica. For example, the first layer may comprise a mixture of silica and alumina having more than 5 wt.% Alumina, such as having more than 10 wt.% Alumina, such as having more than 15 wt.% Alumina, such as having more than 30 wt. wt.% alumina, such as having more than 40 wt.% alumina, such as having from 50 to 70 wt.% alumina, such as having from 70 to 100 wt.% alumina and from 30 to 0 wt.% dioxide silicon. In one non-limiting embodiment, the first layer may have a thickness in the range of more than 0 Å to 1 μm, such as 50 Å to 100 Å, such as 101 Å to 250 Å, such as 100 Å to 150 Å, such as from more than 100 Å to 125 Å. The second layer may comprise silica or a mixture or alloy containing silica and alumina. For example, the second layer may comprise a mixture of silica and alumina having more than 40 wt.% Silica, such as having more than 60 wt.% Silica, such as having more than 60 wt.% Silica, such as having more than 70 wt. % silica, such as having more than 80 wt.% silica, such as having 80 to 90 wt.% silica and 10 to 20 wt.% alumina, for example 85 silica and 15 wt.% oxide aluminum. In one non-limiting embodiment, the second layer may have a thickness in the range of more than 0 Å to 2 μm, such as 50 Å to 5000 Å, such as 50 Å to 2000 Å, such as 100 Å to 1000 Å, such from 300 Å to 500 Å, such as from 350 Å to 400 Å. As will be shown below, the presence of a protective coating 17 can improve the heatability of the functional coated substrate.

Полимерный слой может включать любой полимерный материал. «Полимерный материал» может содержать один полимерный компонент или же может содержать смесь различных полимерных компонентов, таких как, например, один или более пластмассовых материалов или один или более термореактивных или термопластичных материалов. Полимерный слой 18 может склеивать слои. Применяемые термореактивные компоненты включают сложные полиэфиры, эпоксиды, фенолы и полиуретаны, такие как термореактивный уретан с инжекционным формованием реакционных жидких компонентов (RIM), или их смеси. Применяемые термопластичные материалы включают термопластичные полиолефины, такие как полиэтилен и полипропилен, полиамиды, такие как нейлон, термопластичные полиуретаны, термопластичные сложные полиэфиры, полиакрилаты, винильные полимеры, поликарбонаты, сополимеры акрилонитрила, бутадиена и стирола (ABS), каучук на основе сополимера этилена, пропилена и диенового мономера (EPDM), их сополимеры и смеси.The polymer layer may include any polymer material. A "polymeric material" may contain a single polymer component or may contain a mixture of various polymeric components, such as, for example, one or more plastic materials or one or more thermoset or thermoplastic materials. The polymer layer 18 can adhere the layers. Used thermoset components include polyesters, epoxides, phenols and polyurethanes, such as thermoset urethane with injection molding of the reaction liquid components (RIM), or mixtures thereof. Used thermoplastic materials include thermoplastic polyolefins such as polyethylene and polypropylene, polyamides such as nylon, thermoplastic polyurethanes, thermoplastic polyesters, polyacrylates, vinyl polymers, polycarbonates, copolymers of acrylonitrile, butadiene and styrene (ABS), propylene-based rubber, copolymer and diene monomer (EPDM), copolymers and mixtures thereof.

Подходящие полиакрилаты включают сополимеры одной или более акриловой кислоты, метакриловой кислоты и их акрилатов, таких как метилметакрилат, этилметакрилат, гидроксиэтилметакрилат, бутилметакрилат, этилакрилат, гидроксиэтилакрилат, бутилакрилат и 2-этилгексилакрилат. Другие акрилаты и способы их получения раскрыты в патенте US 5196485.Suitable polyacrylates include copolymers of one or more acrylic acid, methacrylic acid and their acrylates such as methyl methacrylate, ethyl methacrylate, hydroxyethyl methacrylate, butyl methacrylate, ethyl acrylate, hydroxyethyl acrylate, butyl acrylate and 2-ethylhexyl acrylate. Other acrylates and methods for their preparation are disclosed in US Pat. No. 5,196,485.

Полезные сложные полиэфиры и алкиды можно получать известным способом посредством конденсации многоатомных спиртов, таких как этиленгликоль, пропиленгликоль, бутиленгликоль, 1,6-гексиленгликоль, неопентилгликоль, триметилопропан и пентаэритритол, с поликарбоновыми кислотами, такими как адепиновая кислота, малеиновая кислота, фумаровая кислота, фталевая кислота, тримеллитовая кислота, или сушащие масляные жирные кислоты. Примеры подходящих материалов из сложных полиэфиров раскрыты в патентах US 5739213 и 5811198.Useful polyesters and alkyds can be prepared in a known manner by condensation of polyhydric alcohols, such as ethylene glycol, propylene glycol, butylene glycol, 1,6-hexylene glycol, neopentyl glycol, trimethylopropane and pentaerythritol, with polycarboxylic acids such as adepinic acid, fumeic acid acid, trimellitic acid, or drying butyric fatty acids. Examples of suitable polyester materials are disclosed in US Pat. Nos. 5,739,213 and 5,811,198.

Полезные полиуретаны включают продукты реакции полимерных полиолов, таких как сложные олигоэфирполиолы или акриловые полиолы с полиизоцианатом, включая ароматические диизоцианаты, такие как 4,4'-дифенилметандиизоцианат, алифатические диизоцианаты, такие как 1,6-гексаметилендиизоцианат, и циклоалифатические диизоцианаты, такие как изофорондиизоцианат и 4,4'-метилен-бис (циклогексилизоцианат). Понятие «полиуретан», используемое в данном описании, подразумевает включение полиуретанов, а также полимочевин и сополимеров полиуретана и мочевины.Useful polyurethanes include reaction products of polymeric polyols, such as oligoester polyols or acrylic polyols with a polyisocyanate, including aromatic diisocyanates, such as 4,4'-diphenylmethanediisocyanate, aliphatic diisocyanates, such as 1,6-hexamethylene diisocyanate, and cycloaliphatic diisocyanates 4,4'-methylene bis (cyclohexyl isocyanate). The term "polyurethane" as used in this description means the inclusion of polyurethanes, as well as polyureas and copolymers of polyurethane and urea.

Подходящие эпоксидные рабочие материалы раскрыты в патенте US 5820987.Suitable epoxy working materials are disclosed in US Pat. No. 5,820,987.

Полезные винильные полимеры включают поливинилацетил, поливинилформаль и поливинилбутираль.Useful vinyl polymers include polyvinylacetyl, polyvinyl formal and polyvinyl butyral.

Полимерный слой 18 может иметь любую толщину, например, в одном не ограничивающем изобретение варианте выполнения для поливинилбутирала толщина может быть в диапазоне от 0,50 мм до, приблизительно, 0,80 мм, такой как 0,76 мм. Полимерный материал может иметь любой показатель преломления. В одном варианте выполнения полимерный материал имеет показатель преломления в диапазоне от 1,4 до 1,7, такой как от 1,5 до 1,6.The polymer layer 18 may have any thickness, for example, in one non-limiting embodiment of the invention for polyvinyl butyral, the thickness may be in the range from 0.50 mm to about 0.80 mm, such as 0.76 mm. The polymeric material may have any refractive index. In one embodiment, the polymeric material has a refractive index in the range of 1.4 to 1.7, such as 1.5 to 1.6.

Защитное покрытие 17 может иметь показатель преломления, который по существу является одинаковым с показателем преломления материала полимерного слоя 18. Под «по существу одинаковым показателем преломления» понимается, что показатель преломления материала защитного покрытия и материала полимерного слоя являются одинаковыми или достаточно близкими, так что вызываются небольшие или вообще не вызываются нежелательные оптические эффекты, такие как нежелательные изменения цвета, отражательной или пропускающей способности за счет наличия защитного покрытия 17. Действительно защитное покрытие 17 ведет себя как продолжение материала полимерного слоя. Присутствие защитного покрытия 17 предпочтительно не приводит к появлению оптически нежелательной границы раздела между защитным покрытием 17 и полимерным слоем 18. В одном варианте выполнения защитное покрытие 17 и полимерный слой 18 могут иметь показатели преломления, которые имеют отличие ±0,2, или ±0,1, или ±0,05. За счет обеспечения одинаковых или по существу одинаковых показателей преломления материала защитного покрытия и материала полимерного слоя присутствие защитного покрытия 17 не оказывает отрицательного влияния на оптические свойства слоистого изделия по сравнению с оптическими свойствами слоистого материала без защитного покрытия 17. Например, если полимерный слой 18 содержит поливинилбутераль, имеющий показатель преломления 1,7, то защитное покрытие 17 можно выбирать или формировать с показателем преломления менее 2, таким как от 1,3 до 1,8, например, 1,5±0,2.The protective coating 17 may have a refractive index that is substantially the same as the refractive index of the material of the polymer layer 18. By “substantially the same refractive index” is meant that the refractive index of the protective coating material and the material of the polymer layer are the same or close enough so that small or no unwanted optical effects, such as unwanted changes in color, reflectance or transmittance due to the presence of Indeed protective coating 17. Protective coating 17 behaves as a continuation of the polymeric layer material. The presence of the protective coating 17 preferably does not result in an optically undesirable interface between the protective coating 17 and the polymer layer 18. In one embodiment, the protective coating 17 and the polymer layer 18 may have refractive indices that differ by ± 0.2, or ± 0, 1, or ± 0.05. By providing the same or substantially the same refractive indices of the protective coating material and the polymer layer material, the presence of the protective coating 17 does not adversely affect the optical properties of the laminated product as compared to the optical properties of the laminated material without the protective coating 17. For example, if the polymer layer 18 contains polyvinyl butyral having a refractive index of 1.7, the protective coating 17 can be selected or formed with a refractive index of less than 2, such as from 1.3 to 1, 8, for example, 1.5 ± 0.2.

Ниже приводится в качестве примера описание способа изготовления слоистого бокового стекла 10, использующего признаки изобретения.The following is an example of a description of a method of manufacturing a laminated side window 10 using features of the invention.

Создают первую подложку и вторую подложку. Первая и вторая подложки могут быть плоскими стеклянными заготовками, имеющими толщину от около 1,0 мм до 6 мм, обычно от около 1,0 мм до около 3,0 мм, или такую как от около 1,5 мм до около 2,3 мм. Рабочее покрытие 16 может быть сформировано, по меньшей мере, на части главной поверхности первой стеклянной подложки, например, главной поверхности 14. Рабочее покрытие 16 можно формировать любым обычным способом, таким как, но, не ограничиваясь этим, магнетронное напыления осаждением из паровой фазы (MSVD), пиролизное осаждение, такое как химическое осаждение из паровой фазы (CVD), пиролиз пульверизованного слоя, химическое осаждение из паровой фазы при атмосферном давлении (APCVD), химическое осаждение из паровой фазы при низком давлении (LPCVD), ускоряемое плазмой химическое осаждение из паровой фазы (PECVD), поддерживаемое плазмой химическое осаждение из паровой фазы (PACVD), или термическое испарение с помощью резистивного нагревания или нагревания электронным лучом, катодное электродуговое осаждение, осаждение плазменным распылением расплавленного порошка, мокрое химическое осаждение (например, золь-гель, серебрение зеркал и т.д.) или любой другой желаемый способ. Например, рабочее покрытие 16 можно формировать над первой подложкой после разрезания первой подложки на нужный размер. В качестве альтернативного решения рабочее покрытие 18 можно формировать над стеклянным листом перед его обработкой и/или над лентой флоат-стекла, опирающейся на ванну из расплавленного металла, например, олова, в обычной флоат-камере с помощью одного или более обычных устройств для нанесения покрытия посредством осаждения из паровой фазы, расположенных в флоат-камере. После выхода из флоат-камеры ленту можно разрезать с образованием первой покрытой подложки.Create the first substrate and the second substrate. The first and second substrates may be flat glass preforms having a thickness of from about 1.0 mm to 6 mm, typically from about 1.0 mm to about 3.0 mm, or such as from about 1.5 mm to about 2.3 mm The coating 16 can be formed at least on a portion of the main surface of the first glass substrate, for example, the main surface 14. The coating 16 can be formed by any conventional method, such as, but not limited to, magnetron sputtering by vapor deposition ( MSVD), pyrolysis deposition, such as chemical vapor deposition (CVD), spray pyrolysis, atmospheric vapor deposition (APCVD), low pressure chemical vapor deposition (LPCVD), accele plasma-assisted chemical vapor deposition (PECVD), plasma-supported chemical vapor deposition (PACVD), or thermal evaporation by resistive heating or electron beam heating, cathodic arc deposition, plasma deposition of molten powder, wet chemical deposition (e.g. sol-gel, silvering mirrors, etc.) or any other desired method. For example, the working coating 16 can be formed above the first substrate after cutting the first substrate to the desired size. Alternatively, a working coating 18 may be formed over a glass sheet before processing and / or over a float glass ribbon supported by a bath of molten metal, such as tin, in a conventional float chamber using one or more conventional coating devices by vapor deposition located in the float chamber. After exiting the float chamber, the tape can be cut to form the first coated substrate.

В качестве альтернативного решения рабочее покрытие 16 можно формировать над полосой флоат-стекла после выхода ленты из флоат-камеры. Например, в патентах US 4584206, 4900110 и 5714199 раскрыты способы и устройства для нанесения содержащей металл пленки на нижнюю поверхность стеклянной ленты. Такое известное устройство может быть расположено по потоку после ванны расплавленного олова в процессе изготовления флоат-стекла для создания функционального покрытия на нижней поверхности стеклянной ленты, т.е. на той стороне ленты, которая находилась в контакте с расплавленным металлом. Кроме того, функциональное покрытие 16 можно формировать над первой подложкой с помощью магнетронного напыления осаждением из паровой фазы после разрезания подложки на желаемый размер.As an alternative solution, the working coating 16 can be formed over a strip of float glass after the tape exits the float chamber. For example, in US patents 4,584,206, 4,900,110 and 5,714,199 disclose methods and devices for applying a metal-containing film to the lower surface of a glass ribbon. Such a known device can be located downstream of a bath of molten tin during the manufacture of float glass to create a functional coating on the lower surface of the glass ribbon, i.e. on the side of the tape that was in contact with molten metal. In addition, the functional coating 16 can be formed over the first substrate by magnetron sputtering by vapor deposition after cutting the substrate to a desired size.

Защитное покрытие 17 может быть сформировано, по меньшей мере, над частью функционального покрытия 16. Защитное покрытие 17 обеспечивает несколько преимуществ при обработке в процессе изготовления слоистого изделия. Например, защитное покрытие 17 может защищать функциональное покрытие 16 от механического и/или химического воздействия во время транспортировки, хранения и обработки. Дополнительно к этому, как будет описано ниже, защитное покрытие 17 может облегчать отдельное нагревание и охлаждение заготовки с рабочим покрытием за счет увеличения коэффициента излучения полученного покрывающего пакета. Хотя ранее на функциональные покрытия наносили верхние покрытия для обеспечения защиты функционального покрытия от химического и механического воздействия во время обработки, эти верхние покрытия выполняли как можно более тонкими для того, чтобы не оказывать отрицательного воздействия на эстетические свойства и свойства регулирования солнечной энергии, такие как коэффициент черноты покрытия. В противоположность этому в данном изобретении защитное покрытие 17 можно выполнять достаточно толстым для увеличения коэффициента черноты покрывающего пакета. Кроме того, за счет по существу согласования показателя преломления защитного покрытия 17 с показателем преломления материала полимерного слоя 18 (и/или подложки, на которую он ламинирован), присутствие защитного покрытия 17 оказывает небольшое влияние или не влияет на эстетические и/или оптические свойства слоистого изделия 10.A protective coating 17 may be formed over at least part of the functional coating 16. The protective coating 17 provides several advantages during processing in the manufacturing process of the laminated product. For example, the protective coating 17 may protect the functional coating 16 from mechanical and / or chemical attack during transportation, storage and processing. In addition, as will be described below, the protective coating 17 can facilitate the separate heating and cooling of the workpiece with the working coating by increasing the emissivity of the resulting coating package. Although functional coatings were previously coated with topcoats to protect the functional coating from chemical and mechanical stress during processing, these topcoats were made as thin as possible so as not to adversely affect the aesthetic and solar control properties, such as the coefficient black coating. In contrast, in the present invention, the protective coating 17 can be made thick enough to increase the black factor of the overpack. In addition, by substantially matching the refractive index of the protective coating 17 with the refractive index of the material of the polymer layer 18 (and / or the substrate on which it is laminated), the presence of the protective coating 17 has little or no effect on the aesthetic and / or optical properties of the laminate products 10.

Если функциональное покрытие 16 является покрытием с малым коэффициентом черноты, имеющим один или более отражающих инфракрасное излучение металлических слоев, то добавление защитного покрытия 17 для увеличения коэффициента черноты покрывающего пакета уменьшает характеристики отражения теплового инфракрасного излучения функционального покрытия 16. Однако покрывающий пакет по-прежнему отражает инфракрасное солнечное излучение.If the functional coating 16 is a low black coefficient coating having one or more infrared reflective metal layers, then adding a protective coating 17 to increase the blackness of the coating package reduces the reflection characteristics of the thermal infrared radiation of the functional coating 16. However, the coating package still reflects infrared solar radiation.

Защитное покрытие 17 можно формировать с помощью любого обычного способа, например, одним из способов, которые были указаны выше для нанесения функционального покрытия, например, способа химического осаждения из паровой фазы в ванне или вне ванны, магнетронного напыления осаждением из паровой фазы, или соль-гель. Например, подложку с функциональным покрытием можно направлять в обычное устройство для магнетронного напыления осаждением из паровой фазы, имеющее один или более металлических электродов, например катодов (мишеней), которые можно распылять в содержащей кислород атмосфере с образованием защитного покрытия из оксидов металлов. В одном, не имеющем ограничительного характера варианте выполнения устройство магнетронного напыления осаждением из паровой фазы может содержать один или более катодов, содержащих алюминий, кремний и/или смеси или сплавы алюминия и кремния. Катоды могут иметь содержание, например, от 5 до 100 мас.% алюминия и от 95 до 0 мас.% кремния, такое как от 10 до 100 мас.% алюминия и от 90 до 0 мас.% кремния, такое как от 35 до 100 мас.% алюминия и от 0 до 65 мас.% кремния, например, от 50 до 80 мас.% алюминия и от 20 до 50 мас.% кремния, например, 70 алюминия и 30 мас.% кремния. Дополнительно к этому могут присутствовать также другие материалы или присадки, такие как алюминий, хром, гафний, иттрий, никель, бор, фосфор, титан, цирконий для облегчения распыления катода (катодов) и/или для оказания влияния на показатель преломления или прочность полученного покрытия.The protective coating 17 can be formed using any conventional method, for example, one of the methods described above for applying a functional coating, for example, a method of chemical vapor deposition in the bath or outside the bath, magnetron sputtering by vapor deposition, or salt gel. For example, a functional coated substrate can be sent to a conventional vapor deposition magnetron sputtering device having one or more metal electrodes, for example cathodes (targets), which can be sprayed in an oxygen-containing atmosphere to form a protective coating of metal oxides. In one non-limiting embodiment, the vapor deposition magnetron sputtering device may comprise one or more cathodes containing aluminum, silicon and / or mixtures or alloys of aluminum and silicon. The cathodes may have a content, for example, from 5 to 100 wt.% Aluminum and from 95 to 0 wt.% Silicon, such as from 10 to 100 wt.% Aluminum and from 90 to 0 wt.% Silicon, such as from 35 to 100 wt.% Aluminum and from 0 to 65 wt.% Silicon, for example, from 50 to 80 wt.% Aluminum and from 20 to 50 wt.% Silicon, for example, 70 aluminum and 30 wt.% Silicon. In addition to this, other materials or additives may also be present, such as aluminum, chromium, hafnium, yttrium, nickel, boron, phosphorus, titanium, zirconium to facilitate sputtering of the cathode (s) and / or to influence the refractive index or strength of the resulting coating .

Согласно одному частному аспекту данного изобретения защитное покрытие можно наносить с использованием системы магнетронного напыления с осаждением из паровой фазы, имеющей источник электропитания переменного тока и одну или более катодных мишеней. Катодная мишень может в качестве примера включать алюминий в диапазоне от 5 до 100 мас.% и кремний в диапазоне от 0 до 95 мас.%, например, алюминий в диапазоне от 20 до 80 мас.% и кремний в диапазоне от 20 до 80 мас.%, например, алюминий в диапазоне от 20 до 70 мас.% и кремний в диапазоне от 30 до 80 мас.%, например, алюминий в диапазоне от 35 до 100 мас.% и кремний в диапазоне от 0 до 65 мас.%, например, алюминий в диапазоне от 40 до 90 мас.% и кремний в диапазоне от 10 до 60 мас.%, например, алюминий в диапазоне от 50 до 80 мас.% и кремний в диапазоне от 20 до 50 мас.%, например, алюминий в диапазоне от 50 до 70 мас.% и кремний в диапазоне от 30 до 50 мас.%, например, алюминий в диапазоне от 60 до 70 мас.% и кремний в диапазоне от 30 до 40 мас.%. В одном примере выполнения содержание алюминия может составлять 60 мас.%, а кремния - 40 мас.%. В другом примере выполнения содержание алюминия может составлять 70 мас.%, а кремния - 30 мас.%. Содержащую алюминий и кремний мишень можно выбирать из их смесей или сплавов, и можно дополнительно включать одну или более присадок. Присадки можно выбирать, например, из хрома, гафния, иттрия, никеля, бора, фосфора, титана, циркония, тантала, ниобия и их смесей и комбинаций.According to one particular aspect of the invention, the protective coating can be applied using a vapor deposition magnetron sputtering system having an AC power source and one or more cathode targets. The cathode target may, as an example, include aluminum in the range from 5 to 100 wt.% And silicon in the range from 0 to 95 wt.%, For example, aluminum in the range from 20 to 80 wt.% And silicon in the range from 20 to 80 wt. wt.%, for example, aluminum in the range from 20 to 70 wt.% and silicon in the range from 30 to 80 wt.%, for example, aluminum in the range from 35 to 100 wt.% and silicon in the range from 0 to 65 wt.% for example, aluminum in the range from 40 to 90 wt.% and silicon in the range from 10 to 60 wt.%, for example, aluminum in the range from 50 to 80 wt.% and silicon in the range from 20 to 50 wt.%, for example aluminum in in the range from 50 to 70 wt.% and silicon in the range from 30 to 50 wt.%, for example, aluminum in the range from 60 to 70 wt.% and silicon in the range from 30 to 40 wt.%. In one embodiment, the aluminum content may be 60 wt.%, And silicon - 40 wt.%. In another embodiment, the aluminum content may be 70 wt.%, And silicon - 30 wt.%. An aluminum and silicon containing target may be selected from mixtures or alloys thereof, and one or more additives may be further included. Additives can be selected, for example, from chromium, hafnium, yttrium, nickel, boron, phosphorus, titanium, zirconium, tantalum, niobium, and mixtures and combinations thereof.

Катод может быть цилиндрической мишенью магнетронного типа (типа C-mag), такой как описана в патенте US 5814195. Катод может быть также плоским или двойным плоским. Мощность источника электропитания может находиться в диапазоне от 50 до 500 кВт. Катодная мишень может быть плазменной распылительной мишенью, содержащей алюминий в диапазоне от 5 до 100 мас.% и кремний в диапазоне от 0 до 95 мас.%, или же в любых других диапазонах, указанных выше для мишени. Система с источником электропитания переменного тока и катодной мишенью может иметь катодную мишень с оптическим мониторингом плазменного излучения. Система с источником электропитания переменного тока и катодной мишенью может иметь также источник электропитания переменного тока с контуром автоматического регулирования с обратной связью по напряжению. Система с источником электропитания переменного тока и катодной мишенью может иметь источник электропитания переменного тока, работающий на частоте в диапазоне между 10 и 100 кГц. Дополнительно к этому система с источником электропитания переменного тока и катодной мишенью может иметь источник электропитания переменного тока, работающий на частоте в диапазоне между 10 и 100 кГц, таком как от 30 до 70 кГц. На рынке такие устройства предлагаются фирмой Advanced Energy of Fort Collins, Колорадо (например, модели Crystal и Asterol) или фирмой ВОС Coating Tech, или Von Ardenne of Fairfield, Калифорния или Дрезден, Германия (например, устройство плазменного излучения, модель №РЕМ-05). Систему с источником электропитания переменного тока и катодной мишенью можно использовать, по меньшей мере, с одним из газов, выбранных, например, из аргона, кислорода, азота, нитроксида и смесей, включающие любые два или более газов. В одном варианте выполнения газ может включать аргон и, по меньшей мере, один другой газ, выбранный из кислорода, неона, гелия, нитроксида, озона или любой смеси из двух или более этих газов.The cathode may be a cylindrical magnetron type target (C-mag type), such as described in US Pat. No. 5,814,195. The cathode may also be flat or double flat. Power supply can be in the range from 50 to 500 kW. The cathode target may be a plasma spray target containing aluminum in the range from 5 to 100 wt.% And silicon in the range from 0 to 95 wt.%, Or in any other ranges indicated above for the target. A system with an AC power source and a cathode target may have a cathode target with optical monitoring of plasma radiation. A system with an alternating current power source and a cathode target may also have an alternating current power source with an automatic feedback loop with voltage feedback. A system with an AC power source and a cathode target may have an AC power source operating at a frequency in the range between 10 and 100 kHz. Additionally, a system with an AC power source and a cathode target may have an AC power source operating at a frequency in the range between 10 and 100 kHz, such as from 30 to 70 kHz. On the market, such devices are offered by Advanced Energy of Fort Collins, Colorado (e.g. Crystal and Asterol models) or BOC Coating Tech, or Von Ardenne of Fairfield, California or Dresden, Germany (e.g. plasma radiation device, model No.REM-05 ) A system with an AC power source and a cathode target can be used with at least one of the gases selected, for example, from argon, oxygen, nitrogen, nitroxide and mixtures, including any two or more gases. In one embodiment, the gas may include argon and at least one other gas selected from oxygen, neon, helium, nitroxide, ozone, or any mixture of two or more of these gases.

Как указывалось выше, защитное покрытие 17 можно формировать в виде единственного слоя, содержащего один или более материалов с оксидами металлов, или же в виде многослойного покрытия, имеющего два или более отдельных слоев, при этом каждый отдельный слой содержит один или более материалов с оксидами металлов. Защитное покрытие 17 можно наносить в достаточном количестве или с достаточной толщиной для увеличения коэффициента черноты покрывающего пакета, превышающего коэффициент черноты только одного функционального покрытия. В одном варианте выполнения защитное покрытие можно наносить с толщиной в диапазоне от 100 Å до 50000 Å для увеличения коэффициента черноты покрывающего пакета до или свыше 0,3, или свыше 0,4, или свыше 0,5.As mentioned above, the protective coating 17 can be formed as a single layer containing one or more materials with metal oxides, or as a multilayer coating having two or more separate layers, each individual layer containing one or more materials with metal oxides . The protective coating 17 can be applied in sufficient quantity or with sufficient thickness to increase the black factor of the overpack, exceeding the black factor of only one functional coating. In one embodiment, the protective coating can be applied with a thickness in the range from 100 Å to 50,000 Å to increase the black factor of the coating bag to or above 0.3, or above 0.4, or above 0.5.

Функциональное покрытие 16 и/или защитное покрытие 17 можно наносить на плоскую подложку или на подложку после ее изгибания и формирования с желаемым контуром.The functional coating 16 and / or the protective coating 17 can be applied to a flat substrate or to a substrate after it is bent and formed with the desired contour.

Покрытую первую подложку и непокрытую вторую подложку можно разрезать с получением первого покрытого слоя и второго непокрытого слоя, соответственно при этом каждый слой имеет желаемую форму и желаемые размеры. Покрытый и непокрытый слои можно фальцевать, промывать, сгибать и формовать в соответствии с желаемым контуром с целью образования первого и второго слоев 12 и 20 соответственно для ламинирования. Как понятно для специалистов в данной области техники, общие формы покрытых и непокрытых заготовок и слоев зависят от конкретного автомобиля, в котором они должны быть установлены, поскольку конечная форма боковых стекол отличается у разных производителей автомобилей.The coated first substrate and the uncovered second substrate can be cut to obtain a first coated layer and a second uncoated layer, respectively, with each layer having a desired shape and size. The coated and uncoated layers can be folded, washed, bent and molded in accordance with the desired contour in order to form the first and second layers 12 and 20, respectively, for lamination. As is understood by those skilled in the art, the general shapes of coated and uncoated preforms and layers depend on the particular vehicle in which they are to be installed, since the final shape of the side windows differs between different car manufacturers.

Покрытым и непокрытым заготовкам можно придавать форму с использованием любого желаемого способа. Например, заготовки можно формовать с использованием способа RPR, описанного в патенте US 5286271, или модифицированного способа RPR, раскрытого в заявке на патент США №09/512852. На фиг.2 показано дополнительное устройство 30 RPR, пригодное для практической реализации изобретения и содержащее печь 32, например, печь с излучением тепла или туннельную печь Лера, имеющую печной конвейер 34, содержащий множество расположенных на расстоянии друг от друга роликов 36 печного конвейера. Нагреватели, такие как излучающие тепло катушки, могут быть расположены выше и/или ниже печного конвейера 34 по длине печи 32, и ими можно управлять для образования зон нагревания с различными температурами по длине печи 32.Coated and uncoated preforms can be shaped using any desired method. For example, preforms can be molded using the RPR method described in US Pat. No. 5,286,271 or the modified RPR method disclosed in US patent application No. 09/512852. Figure 2 shows an additional RPR device 30 suitable for the practical implementation of the invention and comprising a furnace 32, for example, a heat radiation furnace or a Lera tunnel furnace having a furnace conveyor 34 containing a plurality of spaced apart rollers 36 of the furnace conveyor. Heaters, such as heat-emitting coils, can be located above and / or below the furnace conveyor 34 along the length of the furnace 32, and they can be controlled to form heating zones with different temperatures along the length of the furnace 32.

Участок 50 формования может быть расположен вблизи выходного конца печи 32 и может включать нижнюю форму 51, имеющую установленное с возможностью вертикального перемещения упругое кольцо 52 и конвейер формовочного участка, имеющий множество роликов 56. Верхняя вакуумная форма 58, имеющая съемную или изменяемую формовочную поверхность 60 заданной формы, может быть расположена над нижней формой 51. Вакуумная форма 58 установлена с возможностью перемещения с помощью челночной системы 61.The molding portion 50 may be located near the outlet end of the furnace 32 and may include a lower mold 51 having a vertically movable elastic ring 52 and a molding section conveyor having a plurality of rollers 56. An upper vacuum mold 58 having a removable or variable molding surface 60 of a predetermined molds, can be located above the lower mold 51. The vacuum mold 58 is mounted to move using the shuttle system 61.

Передаточный участок 62, имеющий множество фасонных передаточных роликов 64, может быть расположен вблизи выходного конца формовочного участка 50. Передаточные ролики 64 могут иметь поперечную кривизну по высоте, соответствующую по существу поперечной кривизне формовочной поверхности 60.The transfer section 62 having a plurality of shaped transfer rollers 64 may be located near the output end of the molding section 50. The transfer rollers 64 may have a transverse height curvature corresponding to the substantially transverse curvature of the molding surface 60.

Участок 70 отпуска или охлаждения может быть расположен вблизи выходного конца передаточного участка 62 и может включать множество роликов 72 для перемещения заготовок через участок 70 для охлаждения, отпуска и/или закалки. Ролики 72 могут иметь поперечную кривизну по высоте, которая по существу соответствует кривизне передаточных роликов 64.The tempering or cooling section 70 may be located near the output end of the transfer section 62 and may include a plurality of rollers 72 for moving the workpieces through the cooling, tempering and / or quenching section 70. The rollers 72 may have a transverse curvature in height, which essentially corresponds to the curvature of the transfer rollers 64.

В прошлом нагревание заготовок (подложек) с рабочим покрытием приводило к трудностям из-за отражения тепла функциональным покрытием 16, которое приводило к неравномерному нагреванию покрытой и непокрытой сторон заготовки. В заявке на патент США №09/512852 раскрыт способ устранения этой проблемы посредством модификации способа нагревания RPR посредством подачи тепла сначала в направлении поверхности заготовки, не имеющей функционального покрытия. В данном изобретении эта проблема устраняется посредством нанесения защитного покрытия 17, увеличивающего коэффициент черноты, которое обеспечивает использование одинакового или по существу одинакового способа нагревания заготовок функциональным покрытием и без него.In the past, heating blanks (substrates) with a working coating has led to difficulties due to heat reflection by the functional coating 16, which led to uneven heating of the coated and uncoated sides of the blank. U.S. Patent Application No. 09/512852 discloses a method for resolving this problem by modifying a method of heating RPR by supplying heat first in the direction of the surface of a workpiece without a functional coating. In the present invention, this problem is eliminated by applying a protective coating 17 that increases the coefficient of blackness, which ensures the use of the same or essentially the same method of heating the workpieces with a functional coating and without it.

Как показано на фиг.2, первую заготовку 80 с покрывающим пакетом (например, функциональным покрытием 16 и защитным покрытием 17) и вторую заготовку 82 без функционального покрытия можно по отдельности нагревать, формовать и охлаждать перед ламинированием. Под «отдельным нагреванием» понимается, что заготовки не устанавливаются друг над другом во время нагревания. В одном варианте выполнения первую заготовку помещают на конвейер 34 печи с защитным покрытием 17, направленным вниз, т.е. в контакте с роликами 36 печного конвейера, во время процесса нагревания. Присутствие защитного покрытия 17 с более высоким коэффициентом черноты уменьшает проблему отражения тепла металлическими слоями функционального покрытия 16 и способствует более равномерному нагреванию покрытой и непокрытой сторон первой заготовки 80. Это помогает предотвращать скручивание первой заготовки 80, которое обычно происходило в прежних процессах нагревания. В одном примере выполнения заготовки нагревали до температуры около 640°С-704°С в течение промежутка времени от около 10 минут до около 30 минут.As shown in FIG. 2, the first blank 80 with a coating bag (e.g., functional coating 16 and protective coating 17) and the second blank 82 without functional coating can be individually heated, molded and cooled before lamination. By “separate heating” is meant that blanks are not stacked on top of each other during heating. In one embodiment, the first preform is placed on the conveyor 34 of the furnace with a protective coating 17 directed downward, i.e. in contact with the rollers 36 of the furnace conveyor, during the heating process. The presence of the protective coating 17 with a higher black factor reduces the problem of heat reflection by the metal layers of the functional coating 16 and contributes to a more even heating of the coated and uncoated sides of the first preform 80. This helps to prevent the first preform 80 from twisting, which usually happened in previous heating processes. In one embodiment, the preforms were heated to a temperature of about 640 ° C.-704 ° C. over a period of time from about 10 minutes to about 30 minutes.

В конце печи 32 размягченные стеклянные заготовки (как покрытая заготовка 80, так и непокрытая заготовка 82) перемещаются из печи 32 на участок 50 формования и на нижнюю форму 51. Нижняя форма 51 перемещается верх, поднимая стеклянную заготовку для прижимания размягченной теплом стеклянной заготовки к формовочной поверхности 60 верхней формы 58 с целью придания стеклянной заготовке формы, например кривизны, формовочной поверхности 60. Верхняя поверхность стеклянной заготовки приходит в контакт с формовочной поверхностью 60 верхней формы 58 и удерживается вакуумом на месте.At the end of the furnace 32, softened glass preforms (both coated preform 80 and uncoated preform 82) are transferred from the furnace 32 to the molding portion 50 and to the lower mold 51. The lower mold 51 moves upward, raising the glass preform to press the heat-softened glass preform to the molding the surface 60 of the upper mold 58 in order to shape the glass preform, for example curvature, to the molding surface 60. The upper surface of the glass blank comes into contact with the molding surface 60 of the upper mold 58 and holds vacuum in place.

Челночная система 61 приводится в действие для перемещения верхней вакуумной формы 58 с участка 50 формования на участок 62 передачи, где вакуум нарушается для отпускания формованной стеклянной заготовки на изогнутые передаточные ролики 64. Передаточные ролики 64 перемещают формованную стеклянную заготовку на ролики 72 и на участок 70 охлаждения для закалки или повышения прочности нагревом с помощью обычного способа. На участке 70 охлаждения воздух направляется снизу и сверху на формованную стеклянную заготовку для закалки или повышения прочности нагревом с образованием первого и второго слоев 12 и 20. Присутствие защитного покрытия 17 с большим коэффициентом черноты также способствует более равномерному охлаждению покрытой заготовки 80 на участке 70 охлаждения.The shuttle system 61 is driven to move the upper vacuum mold 58 from the molding portion 50 to the transfer portion 62, where the vacuum is broken to release the molded glass blank onto the curved transfer rollers 64. The transfer rollers 64 move the molded glass blank to the rollers 72 and to the cooling section 70 for hardening or increasing strength by heating using a conventional method. In the cooling section 70, air is directed from above and below to the molded glass preform to temper or increase the strength by heating to form the first and second layers 12 and 20. The presence of a protective coating 17 with a high black factor also contributes to a more uniform cooling of the coated preform 80 in the cooling section 70.

В другом варианте выполнения покрытую и непокрытую заготовки можно нагревать и/или формовать в виде дублетов. В одном варианте выполнения покрытую и непокрытую заготовки можно располагать так, что функциональное покрытие 16 с защитным покрытием 17 расположено между двумя заготовками. Затем заготовки можно нагревать и/или формовать любым обычным способом. Считается, что защитное покрытие 17 действует в качестве кислородного барьера для уменьшения или исключения прохождения кислорода в функциональное покрытие 16, где кислород может вступать в реакцию с компонентами функционального покрытия 16, такими как, например, металлы (например, серебро), что приводит к деградации функционального покрытия 16. В одном обычном способе дублет можно помещать на опору и нагревать до достаточной температуры для изгибания или формования заготовок в желаемую конечную форму. При отсутствии защитного покрытия 17 заготовки с функциональным покрытием обычно не могут выдерживать нагревательный цикл с нагреванием свыше приблизительно 1100°F (593°С) в течение более 2 минут (при нагревании свыше 900°F (482°С) в течение более 6 минут во время нагревательного цикла) без деградации функционального покрытия 16. Такая деградация может выражаться в замутнении или появлении желтизны с уменьшением пропускания видимого света на 10% и более. Металлические слои в функциональном покрытии 16, такие как слои серебра, могут вступать в реакцию с кислородом, диффундирующим в функциональное покрытие 16, или с кислородом, присутствующим в функциональном покрытии. Однако можно считать, что использование защитного покрытия 17 обеспечивает выдерживание покрытой заготовкой нагревательного цикла с нагреванием до температуры 1100°F (593°С) или выше в течение 5-15 минут, например, 5-10 минут или, например, 5-6 минут (при нагревании свыше 900°F (482°С) в течение 10-20 минут или, например, 10-15 минут, 10-12 минут) без значительной деградации функционального покрытия 16, например, с менее 5% потерей пропускания видимого света, например, менее 3% потерей, например, менее 2% потерей, например, менее 1% потерей, например, без потери пропускания видимого света.In another embodiment, the coated and uncoated preforms can be heated and / or molded in the form of doublets. In one embodiment, the coated and uncovered preforms can be positioned so that the functional coating 16 with the protective coating 17 is located between the two preforms. The preforms can then be heated and / or molded in any conventional manner. It is believed that the protective coating 17 acts as an oxygen barrier to reduce or eliminate the passage of oxygen to the functional coating 16, where oxygen can react with the components of the functional coating 16, such as, for example, metals (e.g. silver), which leads to degradation functional coating 16. In one conventional method, a doublet can be placed on a support and heated to a sufficient temperature to bend or mold the blanks into the desired final shape. In the absence of a protective coating 17, preforms with a functional coating usually cannot withstand a heating cycle with heating above about 1100 ° F (593 ° C) for more than 2 minutes (when heated above 900 ° F (482 ° C) for more than 6 minutes heating cycle time) without degradation of the functional coating 16. Such degradation may result in clouding or the appearance of yellowness with a decrease in the transmittance of visible light by 10% or more. Metal layers in the functional coating 16, such as silver layers, may react with oxygen diffusing into the functional coating 16, or with oxygen present in the functional coating. However, it can be considered that the use of a protective coating 17 ensures that the coated preform maintains the heating cycle with heating to a temperature of 1100 ° F (593 ° C) or higher for 5-15 minutes, for example, 5-10 minutes or, for example, 5-6 minutes (when heated above 900 ° F (482 ° C) for 10-20 minutes or, for example, 10-15 minutes, 10-12 minutes) without significant degradation of the functional coating 16, for example, with less than 5% loss of visible light transmission, for example, less than 3% loss, for example, less than 2% loss, for example, less than 1% loss, for example, without loss of pass niya visible light.

Для формирования слоистого изделия 10 согласно изобретению покрытый стеклянный слой 12 располагают покрытой внутренней главной поверхностью 14 в направлении по существу дополняющей внутренней главной поверхности 22 непокрытого слоя 20 с разделением их полимерным слоем 18. Часть функционального покрытия 16 и/или защитного покрытия 17 (например, полосу шириной около 2 мм) можно удалить по периметру первого слоя 12 перед ламинированием. На одном или обоих слоях 12 или 20, например на наружной поверхности 13 первого слоя 12, может быть предусмотрена керамическая полоса 90 для сокрытия непокрытой периферийной краевой зоны слоистого бокового стекла и/или для обеспечения дополнительного затенения пассажиров внутри автомобиля. Первый слой 12, полимерный слой 18 и второй слой 20 можно ламинировать вместе любым обычным способом, например, так, как раскрыто в патентах US 3281296, 3769133 и 5250146, для формирования бокового стекла 10. На кромку бокового стекла 10 можно наносить кромочный герметик, как показано на фиг.1.In order to form the laminate product 10 according to the invention, the coated glass layer 12 is provided with a coated inner main surface 14 in a direction substantially complementary to the inner main surface 22 of the uncoated layer 20, separated by a polymer layer 18. Part of the functional coating 16 and / or protective coating 17 (for example, a strip about 2 mm wide) can be removed around the perimeter of the first layer 12 before lamination. On one or both layers 12 or 20, for example, on the outer surface 13 of the first layer 12, a ceramic strip 90 may be provided to hide the uncovered peripheral edge zone of the laminated side window and / or to provide additional shading for passengers inside the car. The first layer 12, the polymer layer 18 and the second layer 20 can be laminated together in any conventional manner, for example, as disclosed in US Pat. Nos. 3281296, 3769133 and 5250146, to form the side window 10. An edge sealant can be applied to the edge of the side window 10 as shown in figure 1.

Хотя в указанном выше способе формирования слоистого бокового стекла 10 согласно изобретению используются устройство и способ RPR, боковое стекло 10 согласно данному изобретению можно формировать с помощью других способов, таких как способы изгибания посредством горизонтального прессования, раскрытых, например, в патентах US 4661139, 4197108, 4272274, 4265650, 4508556, 4830650, 3459526, 3476540, 3527589 и 4579577.Although the above method for forming laminated side glass 10 according to the invention uses an RPR device and method, the side glass 10 according to this invention can be formed using other methods, such as bending methods by horizontal pressing, disclosed, for example, in patents US 4661139, 4197108, 4272274, 4265650, 4508556, 4830650, 3459526, 3476540, 3527589 and 4579577.

На фиг.3 показано монолитное изделие 100, в частности монолитный прозрачный элемент автомобиля, имеющий признаки данного изобретения. Изделие 100 включает подложку или слой 102, имеющий первую главную поверхность 104 и вторую главную поверхность 106. Защитное покрытие 110 может быть образовано, по меньшей мере, на части, такой как основная часть, или на всей площади поверхности функционального покрытия 108. Функциональное покрытие 108 и защитное покрытие 110 можно формировать любым желаемым способом, например, таким, как указано выше. Функциональное покрытие 108 и защитное покрытие 110 образуют покрывающий пакет 112. Покрывающий пакет 112 может включать другие покрывающие слои или пленки, такие как обычный слой подавления цвета или барьерный слой диффузии ионов натрия, но не ограничиваясь этим. Необязательный полимерный слой 113, такой как содержащий один или более полимерных материалов, указанных выше, может быть нанесен сверх защитного покрытия 110 любым желаемым образом.Figure 3 shows a monolithic product 100, in particular a monolithic transparent element of a car, having the features of the present invention. The article 100 includes a substrate or layer 102 having a first major surface 104 and a second major surface 106. The protective coating 110 may be formed at least in part, such as a main part, or on the entire surface area of the functional coating 108. Functional coating 108 and the protective coating 110 can be formed by any desired method, for example, as described above. The functional coating 108 and the protective coating 110 form a coating bag 112. The coating package 112 may include other coating layers or films, such as, but not limited to, a sodium ion diffusion barrier layer. An optional polymer layer 113, such as containing one or more of the polymeric materials mentioned above, can be applied in addition to the protective coating 110 in any way desired.

Слой 102 может быть из любого желаемого материала, таких как описаны выше для слоев 12, 20, и может иметь любую желаемую толщину. В одном не ограничивающем изобретение варианте выполнения для использования в качестве монолитного автомобильного бокового стекла слой 102 может иметь толщину, равную или менее 20 мм, например, приблизительно, менее 10 мм, такую как от около 2 до около 8 мм, например, от около 2,6 до около 6 мм.Layer 102 may be of any desired material, such as those described above for layers 12, 20, and may have any desired thickness. In one non-limiting embodiment, for use as a monolithic automotive side glass, the layer 102 may have a thickness equal to or less than 20 mm, for example, about less than 10 mm, such as from about 2 to about 8 mm, for example, from about 2 , 6 to about 6 mm.

Функциональное покрытие 108 может быть любого желаемого типа и иметь любую желаемую толщину, такую как указана выше для функционального покрытия 16. В одном варианте выполнения функциональное покрытие 108 является регулирующим прохождение солнечной энергии покрытием, имеющим толщину от около 600 Å до около 2400 Å.Functional coating 108 may be of any desired type and have any desired thickness, such as that described above for functional coating 16. In one embodiment, functional coating 108 is a solar energy-controlling coating having a thickness of from about 600 Å to about 2400 Å.

Защитное покрытие 110 может быть из любого желаемого материала и иметь любую желаемую структуру, такие как указаны выше для защитного покрытия 17. Защитное покрытие 110 согласно изобретению можно формировать с толщиной, достаточной для увеличения, в частности значительного, коэффициента черноты покрывающего пакета 112 по сравнению с коэффициентом черноты одного функционального покрытия 108. В одном примере выполнения монолитного изделия защитное покрытие 110 может иметь толщину, равную или более 1 микрона, например, в диапазоне от 1 до 5 микрон. В одном варианте выполнения защитное покрытие 110 увеличивает коэффициент черноты покрывающего пакета в 2 раза по сравнению с коэффициентом черноты одного функционального покрытия 108 (т.е., если коэффициент черноты функционального покрытия 108 равен 0,05, то добавление защитного покрытия 110 увеличивает коэффициент черноты полученного покрывающего пакета 112, по меньшей мере, до 0,1). В другом варианте выполнения защитное покрытие 110 увеличивает коэффициент черноты, по меньшей мере, в 5 раз, например, в 10 раз или более. В другом варианте выполнения защитное покрытие 110 увеличивает коэффициент черноты покрывающего пакета 112 до 0,5 или более, например, до более 0,6, например, в диапазоне от около 0,5 до около 0,8.The protective coating 110 may be of any desired material and have any desired structure, such as those described above for the protective coating 17. The protective coating 110 according to the invention can be formed with a thickness sufficient to increase, in particular, a significant black factor of the coating bag 112 compared to the blackness coefficient of one functional coating 108. In one embodiment of a monolithic product, the protective coating 110 may have a thickness equal to or more than 1 micron, for example, in the range from 1 to 5 microns. In one embodiment, the protective coating 110 increases the black factor of the overpack by 2 times compared to the black factor of one functional coating 108 (i.e., if the black coefficient of the functional coating 108 is 0.05, then adding a protective coating 110 increases the black factor of the resulting coating bag 112, at least up to 0.1). In another embodiment, the protective coating 110 increases the black factor by at least 5 times, for example, 10 times or more. In another embodiment, the protective coating 110 increases the black factor of the coating bag 112 to 0.5 or more, for example, to more than 0.6, for example, in the range of from about 0.5 to about 0.8.

Увеличение коэффициента черноты покрывающего пакета 112 сохраняет отражение функциональным покрытием 108 солнечной энергии (например, отражение электромагнитного излучения в диапазоне от 700 до 2100 нм), но уменьшает способность функционального покрытия 108 отражать тепловую энергию (например, отражение электромагнитного излучения в диапазоне от 5000 нм до 25 000 нм). Увеличение коэффициента черноты функционального покрытия 108 за счет формирования защитного покрытия 110 также улучшает характеристики нагревания и охлаждения покрытой подложки во время обработки, как указывалось выше применительно к слоистому изделию. Защитное покрытие 110 защищает также функциональное покрытие 108 от механического и химического воздействия во время обращения, транспортировки, хранения и обработки.An increase in the black factor of the coating packet 112 retains the reflection of the solar energy functional coating 108 (e.g., the reflection of electromagnetic radiation in the range from 700 to 2100 nm), but reduces the ability of the functional coating 108 to reflect thermal energy (e.g., the reflection of electromagnetic radiation in the range from 5000 nm to 25 000 nm). An increase in the black factor of the functional coating 108 by forming the protective coating 110 also improves the heating and cooling characteristics of the coated substrate during processing, as mentioned above with respect to the laminate. The protective coating 110 also protects the functional coating 108 from mechanical and chemical influences during handling, transportation, storage and processing.

Защитное покрытие 110 может иметь показатель преломления, который равен или по существу равен показателю преломления слоя 102, на который он нанесен. Например, если слой 102 является стеклом, имеющим показатель преломления 1,5, то защитное покрытие 110 может иметь показатель преломления менее 2, такой как 1,3-1,8, такой как 1,4-1,8, например, 1,5±0,2. В качестве альтернативного решения или дополнительно к этому защитное покрытие 110 может иметь показатель преломления, который является по существу одинаковым с показателем преломления полимерного слоя 113.The protective coating 110 may have a refractive index that is equal to or substantially equal to the refractive index of the layer 102 on which it is applied. For example, if the layer 102 is glass having a refractive index of 1.5, then the protective coating 110 may have a refractive index of less than 2, such as 1.3-1.8, such as 1.4-1.8, for example 1, 5 ± 0.2. Alternatively, or in addition to this, the protective coating 110 may have a refractive index that is substantially the same as that of the polymer layer 113.

Защитное покрытие 110 может иметь любую толщину. В одном монолитном варианте выполнения защитное покрытие 110 может иметь толщину 1 микрон или более для уменьшения или исключения изменения цвета изделия 100. Защитное покрытие 110 может иметь толщину менее 5 микрон, такую как в диапазоне от 1 до 3 микрон. В одном варианте выполнения защитное покрытие 110 может быть достаточно толстым для прохождения обычного испытания ANSI/SAE 26.1-1996 с потерей глянца менее 2% при более 1000 циклах для использования в качестве прозрачного элемента автомобиля. Защитное покрытие 110 не должно иметь равномерную толщину на поверхности функционального покрытия 108, а может иметь высокие или низкие точки и зоны.The protective coating 110 may have any thickness. In one monolithic embodiment, the protective coating 110 may have a thickness of 1 micron or more to reduce or eliminate the color change of the product 100. The protective coating 110 may have a thickness of less than 5 microns, such as in the range from 1 to 3 microns. In one embodiment, the protective coating 110 may be thick enough to pass the usual ANSI / SAE 26.1-1996 test with a gloss loss of less than 2% for more than 1000 cycles for use as a transparent vehicle element. The protective coating 110 should not have a uniform thickness on the surface of the functional coating 108, but may have high or low points and zones.

Защитное покрытие 110 может быть единственным слоем, содержащим один или более материалов с оксидами металлов. В качестве альтернативного решения защитное покрытие 110 может быть многослойным покрытием, имеющим два или более слоев покрытия, как указывалось выше. Каждый слой покрытия может содержать один или более материалов с оксидами металлов. Например, в одном варианте выполнения защитное покрытие 110 может содержать слой, содержащий оксид алюминия, и второй слой, содержащий оксид кремния. Отдельные слои покрытия могут иметь любую желаемую толщину, указанную выше.The protective coating 110 may be a single layer containing one or more materials with metal oxides. Alternatively, the protective coating 110 may be a multilayer coating having two or more coating layers, as described above. Each coating layer may contain one or more materials with metal oxides. For example, in one embodiment, the protective coating 110 may include a layer containing alumina and a second layer containing silica. The individual coating layers may have any desired thickness indicated above.

Подложку с покрывающим пакетом 112 можно нагревать и/или формовать любым желаемым способом, такими, как описаны выше для нагревания покрытой заготовки слоистого изделия.The substrate with the coating bag 112 can be heated and / or molded in any desired manner, such as those described above for heating the coated preform of the laminate.

Необязательный полимерный слой 113 может включать один или более полимерных компонентов, таких как описаны выше для полимерного слоя 18. Полимерный слой 113 может иметь толщину более 100 Å, такую как более 500 Å, такую как более 1000 Å, такую как более 1 мм, такую как более 10 мм, такую как в диапазоне от 100 Å до 10 мм. Полимерный слой 113 может быть постоянным слоем (т.е. не предназначенным для удаления) или же может быть временным слоем. Под «временным слоем» понимается слой, предназначенный для удаления, такой как, например, слой для удаления с помощью сжигания или смывания растворителем в последующей стадии обработки. Полимерный слой 113 можно формировать с помощью любого обычного способа.The optional polymer layer 113 may include one or more polymer components, such as those described above for polymer layer 18. The polymer layer 113 may have a thickness of more than 100 Å, such as more than 500 Å, such as more than 1000 Å, such as more than 1 mm, such more than 10 mm, such as in the range from 100 Å to 10 mm. The polymer layer 113 may be a permanent layer (i.e., not intended to be removed) or may be a temporary layer. By “temporary layer” is meant a layer to be removed, such as, for example, a layer to be removed by burning or rinsing with a solvent in a subsequent processing step. The polymer layer 113 can be formed using any conventional method.

Монолитное изделие 100 является, в частности, пригодным в качестве автомобильного прозрачного элемента. Используемое в данном случае понятие «автомобильный прозрачный элемент» относится к автомобильному боковому стеклу, заднему стеклу, прозрачной крыше, раздвигающейся крыше и т.п. «Прозрачный элемент» может иметь пропускание видимого света любого желаемой величины, например, от 0 до 100%. Для зон обзора пропускание видимого света предпочтительно составляет более 70%. Для остальных зон пропускание видимого света может быть менее 70%.The monolithic article 100 is particularly suitable as an automotive transparent element. Used in this case, the term "automotive transparent element" refers to automotive side glass, rear window, transparent roof, sliding roof, etc. A “transparent element” can have visible light transmission of any desired magnitude, for example, from 0 to 100%. For viewing areas, visible light transmission is preferably greater than 70%. For other areas, visible light transmission may be less than 70%.

Если в качестве автомобильного прозрачного элемента, такого как боковое стекло, используется слой 102 лишь с функциональным покрытием 108, то низкий коэффициент черноты рабочего покрытия 108 может уменьшать величину солнечной энергии, проходящей в автомобиль, но может также способствовать возникновению парникового эффекта, удерживая тепловую энергию внутри автомобиля. Защитное покрытие 110 согласно изобретению устраняет эту проблему посредством создания покрывающего пакета 112, имеющего функциональное покрытие 108 с низким коэффициентом черноты (например, 0,1 или менее) на одной стороне покрывающего пакета 112 и защитное покрытие 110 с высоким коэффициентом черноты (например, 0,5 или более) на другой стороне. Отражающие солнечную энергию металлические слои в функциональном покрытии 108 уменьшают прохождение солнечной энергии внутрь автомобиля, а защитное покрытие 110 с высоким коэффициентом черноты уменьшает парниковый эффект и обеспечивает удаление тепловой энергии из автомобиля. Дополнительно к этому слой 110 (или слой 17) может поглощать солнечную энергию в одном или более диапазонов ультрафиолетового, инфракрасного и/или видимого излучения электромагнитного спектра.If only a functional coating 108 is used as an automotive transparent element, such as side glass, a low coating coefficient 108 of the working coating 108 can reduce the amount of solar energy passing into the car, but can also contribute to the greenhouse effect by retaining thermal energy inside a car. The protective coating 110 according to the invention eliminates this problem by creating a coating bag 112 having a functional coating 108 with a low black coefficient (e.g., 0.1 or less) on one side of the coating bag 112 and a protective coating 110 with a high black coefficient (e.g. 0, 5 or more) on the other side. Solar-reflecting metal layers in the functional coating 108 reduce the passage of solar energy into the vehicle, and the high-black coating 110 reduces the greenhouse effect and removes thermal energy from the vehicle. Additionally, layer 110 (or layer 17) can absorb solar energy in one or more of the ranges of ultraviolet, infrared, and / or visible radiation of the electromagnetic spectrum.

Как показано на фиг.3, изделие 100 можно располагать в автомобиле защитным покрытием в направлении первой стороны 114 автомобиля, а слоем 102 - в направлении второй стороны 116 автомобиля. Если первая сторона 114 обращена наружу автомобиля, то покрывающий пакет 112 будет отражать солнечную энергию благодаря отражательным слоям, присутствующим в функциональном покрытии 108. Однако за счет большого коэффициента черноты, например, более 0,5, покрывающий пакет будет поглощать, по меньшей мере, часть тепловой энергии. Чем больше коэффициент черноты покрывающего пакета 112, тем больше поглощается тепловой энергии. Защитное покрытие 110 дополнительно к обеспечению увеличенного коэффициента черноты покрывающего пакета 112 также защищает менее стойкое функциональное покрытие 108 от механических и химических повреждений. Необязательный полимерный слой 113 также обеспечивает механическую и химическую стойкость.As shown in figure 3, the product 100 can be placed in the car with a protective coating in the direction of the first side 114 of the car, and the layer 102 in the direction of the second side 116 of the car. If the first side 114 is facing the outside of the car, then the coating bag 112 will reflect solar energy due to the reflection layers present in the functional coating 108. However, due to the large black factor, for example, greater than 0.5, the coating bag will absorb at least a portion thermal energy. The higher the black factor of the overburden 112, the more thermal energy is absorbed. The protective coating 110 in addition to providing an increased black factor of the coating bag 112 also protects the less stable functional coating 108 from mechanical and chemical damage. The optional polymer layer 113 also provides mechanical and chemical resistance.

В качестве альтернативного решения, если первая сторона 114 направлена внутрь автомобиля, то изделие 100 все еще обеспечивает отражение солнечной энергии за счет металлических слоев в функциональном покрытии 108. Однако присутствие защитного покрытия 110 уменьшает отражение тепловой энергии посредством поглощения тепловой энергии для исключения нагревания внутреннего пространства автомобиля тепловой энергией до повышенных температур и уменьшает парниковый эффект. Тепловая энергия из внутреннего пространства автомобиля поглощается защитным покрытием 110, а не отражается обратно во внутреннее пространство автомобиля.Alternatively, if the first side 114 is directed inside the car, then the product 100 still provides reflection of solar energy through metal layers in the functional coating 108. However, the presence of a protective coating 110 reduces the reflection of thermal energy by absorbing thermal energy to prevent heating of the interior of the car thermal energy to elevated temperatures and reduces the greenhouse effect. Thermal energy from the interior of the vehicle is absorbed by the protective coating 110, and not reflected back into the interior of the vehicle.

Хотя покрывающий пакет согласно изобретению является особенно полезным для прозрачных частей автомобиля, он не ограничивается применением только в автомобилях. Например, покрывающий пакет можно применять в обычном изоляционном стеклянном блоке, например, он может быть предусмотрен на внутренней или наружной поверхности одного из стеклянных листов, образующих блок изоляционного стекла. При расположении на внутренней поверхности в воздушном пространстве покрывающее покрытие не должно иметь той механической и/или химической стойкости, которую оно должно иметь при расположении на наружной поверхности. Дополнительно к этому покрывающий пакет можно использовать в сезонно регулируемых окнах, таких как раскрыты в патенте US 4081934. При расположении на наружной поверхности окна защитное покрытие должно быть достаточно толстым для защиты функционального покрытия от механических и/или химических повреждений. Изобретение можно применять также в качестве монолитного окна.Although the coating bag according to the invention is particularly useful for transparent parts of an automobile, it is not limited to being used only in automobiles. For example, the coating bag can be used in a conventional insulating glass block, for example, it can be provided on the inner or outer surface of one of the glass sheets forming the insulating glass block. When located on the inner surface in airspace, the covering coating should not have the mechanical and / or chemical resistance that it should have when placed on the outer surface. Additionally, the overpack can be used in seasonally adjustable windows, such as those disclosed in US Pat. No. 4,081,934. When located on the outside of the window, the protective coating must be thick enough to protect the functional coating from mechanical and / or chemical damage. The invention can also be used as a monolithic window.

Для иллюстрации изобретения ниже приводится описание следующих примеров, которые, однако, не следует рассматривать как ограничивающие изобретение. Все части и процентные доли в приведенных ниже примерах, а также во всем описании указаны в процентах массы, если не указано другое.To illustrate the invention, the following examples are described below, which, however, should not be construed as limiting the invention. All parts and percentages in the examples below, as well as in the entire description are indicated in percent by weight, unless otherwise indicated.

Пример 1Example 1

Было изготовлено несколько образцов функционального покрытия с различными защитными покрытиями согласно изобретению и испытано на стойкость, рассеивающую свет матовость, возникающую после истирания по Таберу, и коэффициент черноты. Функциональные покрытия не были оптимизированы по механическим или химическим свойствам, а использовались лишь для иллюстрации относительных свойств, например, стойкости, коэффициента черноты и/или матовости снабженной функциональным покрытием подложки, имеющей защитное покрытие согласно изобретению. Способы подготовки таких функциональных покрытий описаны, например, в патентах US 4898789 и 6010602, которые, однако, не следует понимать как ограничение изобретения.Several functional coating samples were prepared with various protective coatings according to the invention and tested for resistance to light scattering, dullness occurring after Taber abrasion, and blackness coefficient. Functional coatings were not optimized for mechanical or chemical properties, but were used only to illustrate the relative properties, for example, durability, blackness and / or dullness, of a functional coated substrate having a protective coating according to the invention. Methods for preparing such functional coatings are described, for example, in patents US 4898789 and 6010602, which, however, should not be construed as limiting the invention.

Испытываемые образцы были изготовлены посредством нанесения различных функциональных покрытий указанным ниже образом (на обычное прозрачное натриево-кальциево-силикатное стекло) с защитным покрытием из оксида алюминия, включающего признаки изобретения и имеющего толщину в диапазоне от 300 Å до 1,5 микрон. Использованные для испытаний защитные покрытия имеют высокую отражательную способность для инфракрасной части солнечного света и характерный небольшой коэффициент черноты и состоят из многослойных интерференционных тонких пленок, образуемых путем попеременного нанесения слоев станната цинка и серебра с помощью магнетронного напыления осаждением из паровой фазы (MSVD). Для обсуждаемых ниже образцов в функциональном покрытии обычно присутствуют два слоя серебра и три слоя станната цинка. В функциональных покрытиях использовались также тонкие грунтовочные металлические слои из титана поверх слоев серебра для защиты слоев серебра от окисления во время нанесения способом MSVD оксидных слоев станната цинка и для выдерживания нагревания для изгибания стеклянной подложки. Два функциональных покрытия, использованных в последующих примерах, отличаются в основном самым наружным тонким слоем многослойного покрытия, при этом один из них состоит из металлического Ti, а другой - из оксида TiO2. Толщина наружного слоя как из Ti, так и TiO2 находится в диапазоне от 10 Å до 100 Å. Альтернативные примеры, которые также применимы, но которые не были приготовлены, включают функциональные покрытия без тонкого наружного слоя Ti или TiO2 или других металлических или оксидных наружных слоев. Функциональные покрытия, использованные для примеров и имеющие тонкий наружный слой из титана, имеют синий отраженный цвет после нагревания, а наружный слой из оксида титана имеет после нагревания зеленый отраженный цвет. Другие отраженные цвета функциональных покрытий после нагревания, которые могут защищаться защитным покрытием, согласно изобретению можно получать посредством изменения толщины отдельных слоев серебра и станната цинка в функциональном покрытии.The test samples were made by applying various functional coatings in the following manner (to ordinary transparent sodium-calcium-silicate glass) with a protective coating of aluminum oxide, incorporating the features of the invention and having a thickness in the range from 300 Å to 1.5 microns. The protective coatings used for the tests have a high reflectivity for the infrared part of sunlight and a characteristic small black coefficient and consist of multilayer interference thin films formed by alternately applying zinc and silver stannate layers using magnetron sputtering by vapor deposition (MSVD). For the samples discussed below, two layers of silver and three layers of zinc stannate are usually present in the functional coating. Functional coatings also used thin primer metal layers of titanium over silver layers to protect the silver layers from oxidation during MSVD deposition of zinc layers of zinc stannate and to withstand heat to bend the glass substrate. The two functional coatings used in the following examples differ mainly in the outermost thin layer of the multilayer coating, one of which consists of Ti metal and the other of TiO 2 oxide. The thickness of the outer layer of both Ti and TiO 2 is in the range from 10 Å to 100 Å. Alternative examples that are also applicable, but which have not been prepared, include functional coatings without a thin outer layer of Ti or TiO 2 or other metal or oxide outer layers. The functional coatings used for the examples and having a thin outer layer of titanium have a blue reflected color after heating, and the outer layer of titanium oxide has a green reflected color after heating. Other reflected colors of functional coatings after heating, which can be protected by a protective coating, according to the invention can be obtained by changing the thickness of the individual layers of silver and zinc stannate in the functional coating.

Для последующих примеров были нанесены тонкие или толстые защитные покрытия из оксида алюминия с помощью среднечастотного, биполярного, двухимпульсного магнетронного реактивного распыления алюминия в устройстве Airco ILS 1600, специально модифицированного для питания двух или трех мишеней. Электропитание обеспечивалось источником питания Advanced Energie (AE) Pinnacle® Dual DC и переключательного оборудования Astral®, которое преобразует подаваемое питание постоянного тока в биполярное импульсное питание. Стеклянные подложки с функциональным покрытием помещали в устройство Airco ILS 1600 для нанесения покрытия способом MSVD, имеющее окислительную реактивную атмосферу из кислорода/аргона. Распыляли два алюминиевых катода в течение разного времени для получения покрытий из оксида алюминия различной толщины на функциональных покрытиях.For the following examples, thin or thick alumina protective coatings were applied using mid-frequency, bipolar, double-pulse magnetron reactive sputtering of aluminum in an Airco ILS 1600 device specially modified to power two or three targets. Power was supplied by an Advanced Energie (AE) Pinnacle® Dual DC power supply and Astral® switching equipment that converts the supplied DC power to bipolar switching power. The functional coated glass substrates were placed in an Airco ILS 1600 MSVD coating apparatus having an oxidizing reactive atmosphere of oxygen / argon. Two aluminum cathodes were sprayed at different times to obtain alumina coatings of various thicknesses on functional coatings.

Были изготовлены и испытаны три следующих пробных образца (образцы А-С):The following three test samples were made and tested (samples A-C):

Образец А - куски 4 на 4 дюйма (10 на 10 см) толщиной 2 мм прозрачного флоат-стекла, предлагаемого на рынке фирмой PPG Industries, Inc., of Pittsburgh, Пенсильвания.Sample A — 4 by 4 inch (10 by 10 cm) pieces of 2 mm thick clear float glass commercially available from PPG Industries, Inc., of Pittsburgh, PA.

Образец В - куски 4 на 4 дюйма (10 на 10 см) толщиной 2 мм прозрачного флоат-стекла, имеющие экспериментальное функциональное покрытие с низким коэффициентом черноты с толщиной, примерно, 1600 Å с зеленым отраженным цветом, изготовленное с помощью способа MSVD (смотри выше), и без защитного покрытия из оксида алюминия, используемые в качестве контрольного образца.Sample B - 4 by 4 inch (10 by 10 cm) pieces of 2 mm thick clear float glass having an experimental functional coating with a low black factor with a thickness of approximately 1600 Å with green reflected color, made using the MSVD method (see above ), and without a protective coating of alumina, used as a control sample.

Образец С - куски 4 на 4 дюйма (10 на 10 см) толщиной 2 мм прозрачного флоат-стекла, имеющие экспериментальное рабочее покрытие с низким коэффициентом черноты с толщиной, примерно, 1600 Å с синим отраженным цветом, изготовленное с помощью способа MSVD, но имеющие дополнительно защитное покрытие из оксида алюминия (Al2О3), согласно изобретению, толщиной 1,53 микрон, нанесенное на функциональное покрытие.Sample C - pieces 4 by 4 inches (10 by 10 cm) 2 mm thick clear float glass having an experimental coating with a low black factor with a thickness of about 1600 Å with blue reflected color, made using the MSVD method, but having additionally a protective coating of aluminum oxide (Al 2 About 3 ), according to the invention, with a thickness of 1.53 microns deposited on the functional coating.

Аналогичные образцы А-С затем испытывали в соответствии со стандартным испытанием на истирание по Таберу (ANSI/SAE 26.1 - 1996), а результаты показаны на фиг.4. Измерения склерометрической твердости (SD) по Таберу для заданного числа циклов были проведены посредством измерения с помощью микроскопа полной длины всех царапин на площади в один квадратный микрон с использованием программного обеспечения для оцифровывания и анализа изображения. Пробные образцы С (с защитным покрытием) показали меньшую склерометрическую твердость, чем пробные образцы В (с функциональным покрытием). Образцы С имеют почти одинаковую стойкость со стеклянными образцами А без покрытия. Результаты измерения по Таберу были получены для защитного покрытия в состоянии нанесения, что означает, что стеклянные образцы с покрытием не подвергали затем нагреванию после нанесения защитного покрытия с помощью способа MSVD. Ожидается, что результаты измерения склерометрической твердости должны улучшиться (т.е. склерометрическая твердость для меньшего количества циклов Табера должна уменьшиться) после нагревания покрытой подложки за счет увеличения плотности нагретого покрывающего пакета. Например, покрытые подложки можно нагревать от температуры окружения до максимальной температуры в диапазоне от 640 до 704°С и охлаждать в течение времени от около 10 минут до около 30 минут.Similar AC samples were then tested in accordance with the Taber standard abrasion test (ANSI / SAE 26.1-1996), and the results are shown in FIG. 4. Taber sclerometric hardness (SD) measurements for a given number of cycles were carried out by measuring with a microscope the total length of all scratches over an area of one square micron using digitalization and image analysis software. Test samples C (with a protective coating) showed lower sclerometric hardness than test samples B (with a functional coating). Samples C have almost the same resistance with uncoated glass samples A. Taber measurement results were obtained for the protective coating in the application state, which means that the coated glass samples were not subsequently heated after the protective coating was applied using the MSVD method. It is expected that the results of measuring sclerometric hardness should improve (i.e., sclerometric hardness for fewer Taber cycles should decrease) after heating the coated substrate by increasing the density of the heated coating packet. For example, coated substrates can be heated from ambient temperature to a maximum temperature in the range of 640 to 704 ° C. and cooled over a period of time from about 10 minutes to about 30 minutes.

На фиг.5 показана средняя матовость рассеяния света в зависимости от числа циклов Табера (в соответствии с ANSI/SAE 26.1 - 1996) для аналогичных образцов А и С, указанных выше. Образец А является непокрытым стеклом, используемым в качестве контрольного образца. Результаты показывают, что матовость, образующаяся в образце С после 1000 циклов, близка к 2%, т.е. к минимуму, допустимому согласно ANSI для защиты автомобильных стекол. Ожидается, что небольшое улучшение стойкости защитного покрытия приведет к уменьшению матовости после 1000 циклов Табера до менее 2%, что превысит требования ANSI к защите автомобильных стекол.Figure 5 shows the average haze of light scattering depending on the number of Taber cycles (in accordance with ANSI / SAE 26.1 - 1996) for similar samples A and C above. Sample A is uncoated glass used as a control sample. The results show that the haze formed in sample C after 1000 cycles is close to 2%, i.e. to the minimum permitted by ANSI for the protection of automotive windows. It is expected that a slight improvement in the durability of the protective coating will lead to a reduction in haze after 1000 Taber cycles to less than 2%, which will exceed ANSI requirements for the protection of automotive windows.

На фиг.6 показано воздействие защитного покрытия, согласно изобретению нанесенного с помощью способа MSVD с различными давлениями разряжения на два разных функциональных покрытия. Показанные на фиг.6 образцы состоят из прозрачного флоат-стекла толщиной 2 мм с нанесенными на них следующими покрытиями:Figure 6 shows the effect of the protective coating according to the invention applied using the MSVD method with different discharge pressures on two different functional coatings. The samples shown in Fig.6 consist of a transparent float glass 2 mm thick with the following coatings applied on them:

Образец D - контрольный образец; синее отражательное функциональное покрытие с номинальной толщиной 1600 Å, не имеющее защитного покрытия.Sample D - control sample; blue reflective functional coating with a nominal thickness of 1600 Å, not having a protective coating.

Образец Е - контрольный образец; зеленое отражательное функциональное покрытие с номинальной толщиной 1600 Å, не имеющее защитного покрытия.Sample E is a control sample; green reflective functional coating with a nominal thickness of 1600 Å, not having a protective coating.

Образец F(HP) - функциональное покрытие образца D плюс защитное покрытие из оксида алюминия, нанесенное распылением с помощью способа MSVD при давлении разряжения кислорода и аргона 8 микрон.Sample F (HP) —functional coating of sample D plus a protective alumina coating sprayed by the MSVD method at an oxygen and argon discharge pressure of 8 microns.

Образец F(LP) - функциональное покрытие образца D плюс защитное покрытие из оксида алюминия, нанесенное распылением с помощью способа MSVD при давлении разряжения кислорода и аргона 4 микрон.Sample F (LP) is the functional coating of sample D plus a protective alumina coating sprayed by the MSVD method at an oxygen and argon discharge pressure of 4 microns.

Образец G(HP) - функциональное покрытие образца Б плюс защитное покрытие из оксида алюминия, нанесенное распылением с помощью способа MSVD при давлении разряжения кислорода и аргона 8 микрон.Sample G (HP) —functional coating of sample B plus a protective alumina coating sprayed using the MSVD method at an oxygen and argon discharge pressure of 8 microns.

Образец G(LP) - функциональное покрытие образца Е плюс защитное покрытие из оксида алюминия, нанесенное распылением с помощью способа MSVD при давлении разряжения кислорода и аргона 4 микрон.Sample G (LP) is the functional coating of sample E plus a protective alumina coating sprayed by the MSVD method at an oxygen and argon discharge pressure of 4 microns.

Как показано на фиг.6, при увеличении толщины защитного покрытия увеличивается также коэффициент черноты покрывающего пакета. При толщине защитного покрытия около 1,5 мкм покрывающий пакет имеет коэффициент черноты, приблизительно, более 0,5.As shown in FIG. 6, as the thickness of the protective coating increases, the black factor of the overpack also increases. With a protective coating thickness of about 1.5 μm, the coating bag has a black factor of approximately more than 0.5.

На фиг.7 показаны результаты измерения склерометрической твердости после 10 циклов истирания по Таберу для образцов F(HP), F(LP), G(HP) и G(LP), указанных выше. Контрольные образцы D и Е с функциональным покрытием, но без защитного покрытия имеют начальную склерометрическую твердость порядка от около 45 мм-1 до 50 мм-1. Как показано на фиг.7, нанесение защитного покрытия согласно изобретению (даже с толщиной порядка менее 800 Å) улучшает стойкость полученного покрывающего пакета.7 shows the results of measuring sclerometric hardness after 10 cycles of abrasion according to Taber for samples F (HP), F (LP), G (HP) and G (LP) indicated above. Control samples D and E with a functional coating, but without a protective coating, have an initial sclerometric hardness of the order of about 45 mm -1 to 50 mm -1 . As shown in FIG. 7, applying a protective coating according to the invention (even with a thickness of the order of less than 800 Å) improves the durability of the resulting coating bag.

На фиг.8 показаны результаты измерения склерометрической твердости после 10 циклов истирания по Таберу для следующих образцов синих или зеленых отражательных функциональных покрытий с защитными покрытиями из оксида алюминия с толщиной 300 Å, 500 Å и 700 Å:On Fig shows the results of measuring sclerometric hardness after 10 cycles of abrasion according to Taber for the following samples of blue or green reflective functional coatings with protective coatings of aluminum oxide with a thickness of 300 Å, 500 Å and 700 Å:

Образец Н - функциональное покрытие образца D плюс защитное покрытие из оксида алюминия, нанесенное распылением с помощью указанного выше способа MSVD.Sample H is the functional coating of sample D plus an alumina protective coating sprayed using the above MSVD method.

Образец I - функциональное покрытие образца Е плюс защитное покрытие из оксида алюминия, нанесенное распылением с помощью указанного выше способа MSVD.Sample I is a functional coating of sample E plus a protective coating of aluminum oxide, spray applied using the above MSVD method.

Как показано в правой части на фиг.8, нагревание покрывающего пакета согласно изобретению улучшает стойкость покрывающего пакета. Покрытия в правой части на фиг.8 нагревали посредством помещения в печь с температурой 1300°F (704°С) на 3 минуты, затем извлечения и помещения в печь с температурой 400°F (204°С) на 5 минут, после чего образцы с покрытием извлекали и оставляли для охлаждения в окружающих условиях.As shown in the right part of FIG. 8, heating the coating bag according to the invention improves the durability of the coating bag. The coatings on the right side of FIG. 8 were heated by being placed in a 1300 ° F (704 ° C) oven for 3 minutes, then removed and placed in a 400 ° F (204 ° C) oven for 5 minutes, after which the samples coated coated and left to cool under ambient conditions.

Пример 2Example 2

Этот пример иллюстрирует воздействие защитного покрытия согласно изобретению на пропускание видимого света покрытой подложкой после нагревания.This example illustrates the effect of the protective coating of the invention on the transmission of visible light to a coated substrate after heating.

Был подготовлен кусок стекла (образец J), имеющий обычное регулирующее отражение инфракрасной части солнечной энергии покрытие без защитного покрытия согласно изобретению, и был подготовлен другой кусок стекла (образец К), имеющий то же обычное регулирующее отражение инфракрасной части солнечной энергии покрытие, но с защитным покрытием согласно изобретению. Защитное покрытие в данном примере было смесью диоксида кремния и оксида алюминия (70 мас.% оксида алюминия и 30 мас.% диоксида кремния при толщине от 600 Å до 700 Å). Два образца нагревали в обычной печи и измеряли процент пропускания видимого света (Lta) двух образцов для разных процентов нагревания. Величины «процента нагревания» на фиг.9 представляют тепловой бюджет нагретых подложек на основе опорной величины (0%). Под «тепловым бюджетом» понимается достигаемая наивысшая температура и общее время нагревания. Чем выше процент нагревания, тем горячее были нагреты образцы. Как следует из кривой В на фиг.9, при нагревании образца J, не имеющего защитного покрытия, свыше опорной величины, пропускание видимого света уменьшается и падает ниже 75% при проценте нагревания около 20%. Как понятно для специалистов в области автомобильной техники, пропускание видимого света, приблизительно, ниже 75% является нежелательным для применения в большинстве ветровых стекол. Однако, как также следует из фиг.9, образец К с защитным покрытием при тех же условиях нагревания сохраняет пропускание видимого света свыше 75% даже при проценте нагревания 40% (кривая А). Таким образом, защитное покрытие согласно изобретению позволяет нагревать подложку с функциональным покрытием до более высоких температур и/или на более длительное время без отрицательного воздействия на пропускание видимого света. Этот признак является предпочтительным для операций, таких как глубокий прогиб, или аналогичных операций, в которых желательно длительное нагревание.A piece of glass (sample J) having the usual infrared regulating reflection of the solar energy coating without a protective coating according to the invention was prepared, and another piece of glass (sample K) having the same conventional reflecting infrared of the solar energy coating, but with a protective coating was prepared coating according to the invention. The protective coating in this example was a mixture of silica and alumina (70 wt.% Alumina and 30 wt.% Silica with a thickness of 600 Å to 700 Å). Two samples were heated in a conventional oven and the visible light transmittance (Lta) of the two samples was measured for different percent heating. The “percent heating” values in FIG. 9 represent the thermal budget of heated substrates based on a reference value (0%). By “heat budget” is meant the highest temperature achieved and the total heating time. The higher the percentage of heating, the hotter the samples were heated. As follows from curve B in Fig. 9, when a sample J without a protective coating is heated above a reference value, the transmission of visible light decreases and falls below 75% with a heating percentage of about 20%. As understood by those skilled in the automotive art, transmittance of visible light below about 75% is undesirable for most windscreens. However, as also follows from Fig. 9, a sample K with a protective coating under the same heating conditions preserves the transmission of visible light in excess of 75% even with a heating percentage of 40% (curve A). Thus, the protective coating according to the invention allows the substrate with the functional coating to be heated to higher temperatures and / or for a longer time without adversely affecting the transmission of visible light. This feature is preferred for operations such as deep deflection, or similar operations in which prolonged heating is desired.

Для специалистов в данной области техники понятно, что возможны модификации изобретения без отхода от идей, раскрытых в приведенном выше описании. Например, хотя в предпочтительном варианте выполнения слоистого изделия лишь один слой включает функциональное покрытие, понятно, что изобретение можно реализовать на практике также с обоими слоями, имеющими функциональное покрытие, или с одним слоем, имеющим функциональное покрытие, и с другим слоем, имеющим нерабочее покрытие, например фотокаталитическое покрытие. Кроме того, для специалистов в данной области техники понятно, что указанные выше предпочтительные рабочие параметры можно при необходимости регулировать для различных материалов и/или толщины подложки. В соответствии с этим описанные подробно варианты выполнения имеют лишь иллюстративный характер и не ограничивают объем изобретения, который определяется прилагаемой формулой изобретения и всеми и любыми ее эквивалентами.For specialists in the art it is clear that it is possible to modify the invention without departing from the ideas disclosed in the above description. For example, although in the preferred embodiment of the laminated product, only one layer includes a functional coating, it is understood that the invention can be practiced with both layers having a functional coating, or with one layer having a functional coating and with another layer having an inoperative coating. e.g. photocatalytic coating. In addition, it will be understood by those skilled in the art that the aforementioned preferred operating parameters can, if necessary, be adjusted for various materials and / or thicknesses of the substrate. Accordingly, the embodiments described in detail are for illustrative purposes only and do not limit the scope of the invention, which is determined by the appended claims and all and any equivalents thereof.

Claims (10)

1. Изделие, содержащее подложку и покрывающий пакет, содержащий функциональное покрытие, нанесенное, по меньшей мере, на часть подложки, и защитное покрытие, нанесенное, по меньшей мере, на часть функционального покрытия, обеспечивающее покрывающему пакету коэффициент излучения, превышающий коэффициент излучения функционального покрытия, и имеющее коэффициент отражения от 1,4 до 2 при толщине от более 100 Å до менее 10 мкм, при этом защитное покрытие содержит первый слой, сформированный, по меньшей мере, на части функционального покрытия, и второй слой, сформированный, по меньшей мере, на части первого слоя, при этом первый слой содержит от 50 до 99 мас.% оксида алюминия и от 50 до 1 мас.% диоксида кремния, а второй слой содержит от 50 до 99 мас.% диоксида кремния и от 50 до 1 мас.% оксида алюминия.1. An article comprising a substrate and a coating bag containing a functional coating applied to at least a portion of the substrate and a protective coating applied to at least a portion of the functional coating providing an emissivity of the coating package in excess of the emissivity of the functional coating and having a reflection coefficient of 1.4 to 2 and a thickness of more than 100 Å to less than 10 μm, the protective coating comprising a first layer formed at least on a part of the functional coating, and secondly a swarm layer formed at least on a part of the first layer, the first layer containing from 50 to 99 wt.% alumina and from 50 to 1 wt.% silica, and the second layer containing from 50 to 99 wt.% silicon dioxide and from 50 to 1 wt.% alumina. 2. Изделие по п.1, которое является прозрачным элементом транспортного средства с двигателем.2. The product according to claim 1, which is a transparent element of a vehicle with an engine. 3. Изделие по п.1, в котором первый слой защитного покрытия содержит от 70 до 99 мас.% оксида алюминия и от 30 до 1 мас.% диоксида кремния.3. The product according to claim 1, in which the first layer of the protective coating contains from 70 to 99 wt.% Alumina and from 30 to 1 wt.% Silicon dioxide. 4. Изделие по п.1, в котором первый слой защитного покрытия имеет толщину от 50 Å до 1 мкм.4. The product according to claim 1, in which the first layer of the protective coating has a thickness of from 50 Å to 1 μm. 5. Изделие по п.1, в котором первый слой защитного покрытия имеет толщину от 100 до 250 Å.5. The product according to claim 1, in which the first layer of the protective coating has a thickness of from 100 to 250 Å. 6. Изделие по п.1, в котором второй слой защитного покрытия содержит от 70 до 99 мас.% диоксида кремния и от 30 до 1 мас.% оксида алюминия.6. The product according to claim 1, in which the second layer of the protective coating contains from 70 to 99 wt.% Silicon dioxide and from 30 to 1 wt.% Alumina. 7. Изделие по п.1, в котором второй слой защитного покрытия имеет толщину от 50 до 2000 Å.7. The product according to claim 1, in which the second layer of the protective coating has a thickness of from 50 to 2000 Å. 8. Изделие по п.1, в котором второй слой имеет толщину от 300 до 500 Å.8. The product according to claim 1, in which the second layer has a thickness of from 300 to 500 Å. 9. Монолитный прозрачный элемент, содержащий стеклянную подложку и покрывающий пакет, содержащий функциональное покрытие, нанесенное, по меньшей мере, на часть подложки, и защитное покрытие, нанесенное, по меньшей мере, на часть функционального покрытия, при этом защитное покрытие имеет толщину от 1 до 10 мкм и содержит первый слой, сформированный, по меньшей мере, на части функционального покрытия, и второй слой, сформированный, по меньшей мере, на части первого слоя, при этом первый слой содержит от 50 до 99 мас.% оксида алюминия и от 50 до 1 мас.% диоксида кремния, а второй слой содержит от 50 до 99 мас.% диоксида кремния и от 50 до 1 мас.% оксида алюминия.9. A monolithic transparent element containing a glass substrate and a coating bag containing a functional coating applied to at least a portion of the substrate and a protective coating applied to at least a portion of the functional coating, the protective coating having a thickness of 1 up to 10 μm and contains a first layer formed at least on part of the functional coating, and a second layer formed on at least part of the first layer, while the first layer contains from 50 to 99 wt.% aluminum oxide and from 50 to 1 wt.% D silicon oxide and the second layer comprises from 50 to 99 wt.% silica and 50 to 1 wt.% alumina. 10. Изделие, содержащее подложку, по меньшей мере, одно отражающее инфракрасную часть солнечной энергии диэлектрическое функциональное покрытие, нанесенное, по меньшей мере, на часть подложки, и защитное покрытие, нанесенное, по меньшей мере, на часть функционального покрытия, при этом защитное покрытие имеет показатель преломления от 1,4 до 1,8 и толщину от более 100 Å до менее 10 мкм и содержит первый слой, сформированный, по меньшей мере, на части функционального покрытия, и второй слой, сформированный, по меньшей мере, на части первого слоя, при этом первый слой содержит от 50 до 99 мас.% оксида алюминия и от 50 до 1 мас.% диоксида кремния, а второй слой содержит от 50 до 99 мас.% диоксида кремния и от 50 до 1 мас.% оксида алюминия.10. An article comprising a substrate, at least one reflecting infrared portion of solar energy, a dielectric functional coating applied to at least a portion of the substrate, and a protective coating applied to at least a portion of the functional coating, wherein the protective coating has a refractive index of 1.4 to 1.8 and a thickness of more than 100 Å to less than 10 μm and contains a first layer formed at least in part of the functional coating and a second layer formed in at least part of the first layer at this first layer contains from 50 to 99 wt.% alumina and from 50 to 1 wt.% silicon dioxide, and the second layer contains from 50 to 99 wt.% silicon dioxide and from 50 to 1 wt.% alumina.
RU2004134350/02A 2002-04-25 2003-04-24 Transparent article with protecting coating RU2287433C2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US10/133,805 2002-04-25
US10/133,805 US20020172775A1 (en) 2000-10-24 2002-04-25 Method of making coated articles and coated articles made thereby
US37909302P 2002-05-09 2002-05-09
US60/379,093 2002-05-09
US10/397,001 2003-03-25
US10/422,094 2003-04-24
US10/422,094 US6916542B2 (en) 2001-10-22 2003-04-24 Coated articles having a protective coating and cathode targets for making the coated articles

Publications (2)

Publication Number Publication Date
RU2004134350A RU2004134350A (en) 2006-03-10
RU2287433C2 true RU2287433C2 (en) 2006-11-20

Family

ID=36116025

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004134350/02A RU2287433C2 (en) 2002-04-25 2003-04-24 Transparent article with protecting coating

Country Status (1)

Country Link
RU (1) RU2287433C2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2459886C2 (en) * 2007-04-16 2012-08-27 Улвак, Инк. Polyurea film and method of making said film
RU2572099C1 (en) * 2014-07-15 2015-12-27 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук Method for local removal of electroconductive oxide layer from dielectric substrate
RU2608858C2 (en) * 2015-06-17 2017-01-25 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" (ОАО "РКК "Энергия") Glass with optically transparent protective coating and method of its production
RU2807400C1 (en) * 2023-08-25 2023-11-14 Общество с ограниченной ответственностью "Специальные материалы и технологии" Method for making mirror and mirror made using this method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2459886C2 (en) * 2007-04-16 2012-08-27 Улвак, Инк. Polyurea film and method of making said film
RU2572099C1 (en) * 2014-07-15 2015-12-27 Федеральное государственное бюджетное учреждение науки Физический институт им. П.Н. Лебедева Российской академии наук Method for local removal of electroconductive oxide layer from dielectric substrate
RU2608858C2 (en) * 2015-06-17 2017-01-25 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" (ОАО "РКК "Энергия") Glass with optically transparent protective coating and method of its production
RU2807400C1 (en) * 2023-08-25 2023-11-14 Общество с ограниченной ответственностью "Специальные материалы и технологии" Method for making mirror and mirror made using this method

Also Published As

Publication number Publication date
RU2004134350A (en) 2006-03-10

Similar Documents

Publication Publication Date Title
JP4111922B2 (en) Coated article having a protective coating and cathode target for producing the coated article
RU2359928C2 (en) Method of manufacturing products with coating and products with coating produced by this method
US6962759B2 (en) Method of making coated articles having an oxygen barrier coating and coated articles made thereby
US8790796B2 (en) Methods of changing the visible light transmittance of coated articles and coated articles made thereby
JP4532826B2 (en) Method for producing coated article and coated article produced thereby
EP1499567B1 (en) Methods of changing the visible light transmittance of coated articles and coated articles made thereby
RU2287433C2 (en) Transparent article with protecting coating
RU2286964C2 (en) The method of manufacture of the products with the coating and the product with the coating

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20170803

PC41 Official registration of the transfer of exclusive right

Effective date: 20191003