RU2277632C1 - Oil field recovery increase method - Google Patents

Oil field recovery increase method Download PDF

Info

Publication number
RU2277632C1
RU2277632C1 RU2005105983/03A RU2005105983A RU2277632C1 RU 2277632 C1 RU2277632 C1 RU 2277632C1 RU 2005105983/03 A RU2005105983/03 A RU 2005105983/03A RU 2005105983 A RU2005105983 A RU 2005105983A RU 2277632 C1 RU2277632 C1 RU 2277632C1
Authority
RU
Russia
Prior art keywords
oil
formation
water
oxygen
gas
Prior art date
Application number
RU2005105983/03A
Other languages
Russian (ru)
Inventor
Вадим Николаевич Хлебников (RU)
Вадим Николаевич Хлебников
Александр Иосифович Волошин (RU)
Александр Иосифович Волошин
Алексей Герольдович Телин (RU)
Алексей Герольдович Телин
Аркадий Анатольевич Боксерман (RU)
Аркадий Анатольевич Боксерман
Original Assignee
Общество с ограниченной ответственностью "Объединенный центр исследований и разработок "ООО"ЮРД-Центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Объединенный центр исследований и разработок "ООО"ЮРД-Центр" filed Critical Общество с ограниченной ответственностью "Объединенный центр исследований и разработок "ООО"ЮРД-Центр"
Priority to RU2005105983/03A priority Critical patent/RU2277632C1/en
Application granted granted Critical
Publication of RU2277632C1 publication Critical patent/RU2277632C1/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

FIELD: oil production industry, particularly to increase oil field recovery with the use of heat and gas treatment methods.
SUBSTANCE: method involves applying heat-and-gas action on formation by serially injecting oxygen-containing gas and water in formation of oil field having formation temperature of 90-200°C; injecting alkali bicarbonate solution of 20-80 g/l concentration into formation; injecting water. The alkali bicarbonate is sodium bicarbonate or potassium bicarbonate or mixture thereof.
EFFECT: increased oil recovery, increased efficiency of heat and gas action to oil fields at later or final development stage.
2 cl, 6 ex, 6 tbl

Description

Изобретение относится к нефтедобывающей промышленности, в частности к способу повышения нефтеотдачи месторождения с использованием тепловых и газовых методов.The invention relates to the oil industry, in particular to a method for increasing oil recovery using thermal and gas methods.

Уровень техникиState of the art

Сущность метода термогазового воздействия (ТГВ) заключается в низкотемпературном окислении нефти в пласте путем закачивания в нагнетательные скважины кислородсодержащих газов. В результате окисления нефти происходит выделение большого количества тепла, образование углекислого газа, образование и испарение из остаточной нефти углеводородных газов и легких жидких углеводородов. Формирующиеся в результате процесса окисления тепловая и нефтевытесняющая (углекислый газ+смесь газообразных и легких жидких углеводородов) оторочки способны значительно увеличить степень вытеснения нефти из пласта. Перспективность метода ТГВ связана с высокой доступностью основного реагента - воздуха. Поэтому данный метод воздействия особенно подходит для применения на удаленных месторождениях.The essence of the method of thermogas exposure (TGV) is the low-temperature oxidation of oil in the reservoir by pumping oxygen-containing gases into injection wells. As a result of oil oxidation, a large amount of heat is released, carbon dioxide is formed, hydrocarbon gases and light liquid hydrocarbons are formed and evaporated from the residual oil. Thermal and oil displacing (carbon dioxide + mixture of gaseous and light liquid hydrocarbons) formed as a result of the oxidation process can significantly increase the degree of oil displacement from the reservoir. The prospects of the DVT method are associated with the high availability of the main reagent - air. Therefore, this method of exposure is particularly suitable for use in remote fields.

Большинство крупных месторождений России вступают или находятся на поздней или заключительной стадиях разработки, которые характеризуются высокой обводненностью добываемой нефти. При этом степень извлечения нефти обычно не превышает 30-40% геологических запасов. В настоящее время, существует проблема разработки новых и совершенствования известных методов увеличения нефтеотдачи месторождений, находящихся на поздней и заключительной стадиях разработки.Most of Russia's large fields are entering or are in the late or final stages of development, which are characterized by high water cut of the produced oil. Moreover, the degree of oil recovery usually does not exceed 30-40% of geological reserves. Currently, there is the problem of developing new and improving well-known methods for increasing oil recovery at the late and final stages of development.

Известен способ осуществления ТГВ, включающий создание в пласте тепловой оторочки с целью нагрева призабойной зоны пласта до температуры окисления нефти с последующей закачкой смеси воздуха и воды (А.с. СССР №329306, 1972). Недостатком данного способа является неэффективность в условиях месторождений, находящихся на поздней стадии разработки.A known method for the implementation of DVT, including the creation of a thermal rim in the formation with the aim of heating the bottom-hole zone of the formation to the temperature of oil oxidation, followed by injection of a mixture of air and water (AS USSR No. 329306, 1972). The disadvantage of this method is the inefficiency in the conditions of deposits at a late stage of development.

Известен способ осуществления ТГВ, включающий закачку в пласт нагретой воды и воздуха с водовоздушным отношением 0,006-0,015 м3/нм3, причем температуру продуктивного пласта доводят до 70-200°С (А.с. СССР №1241748, 1996). Недостатком данного способа является неэффективность в условиях месторождений, находящихся на поздней стадии разработки.A known method for the implementation of DVT, including the injection into the formation of heated water and air with a water-air ratio of 0.006-0.015 m 3 / nm 3 , the temperature of the reservoir being brought to 70-200 ° C (AS USSR No. 1241748, 1996). The disadvantage of this method is the inefficiency in the conditions of deposits at a late stage of development.

Известен способ разработки залежи нефти (патент РФ №1464555,1996), сущность которого заключается в последовательной закачке в пласт фракции легких углеводородов в качестве растворителя и паровоздушной смеси в качестве окислителя. Недостатком данного способа является малая эффективность в условиях месторождений, находящихся на поздней стадии разработки.A known method for the development of oil deposits (RF patent No. 1464555,1996), the essence of which is the sequential injection into the formation of a fraction of light hydrocarbons as a solvent and a vapor-air mixture as an oxidizing agent. The disadvantage of this method is its low efficiency in the conditions of deposits at a late stage of development.

Для эффективного и безопасного осуществления метода ТГВ необходимо, чтобы нефтяной пласт в районе добывающей скважины содержал достаточное количество нефти, что имеет место в том случае, если месторождение находится на начальных этапах разработки. В истощенных месторождениях пласты в районе нагнетательных скважин содержат только остаточную нефть. Поэтому в результате протекания процессов окисления не может развиться высокая температура и, как следствие, образоваться большое количество активных продуктов реакции - углекислого газа и низкомолекулярных углеводородов. Следствием этого является низкая эффективность известных технических решений в условиях месторождений, находящихся на поздней и заключительной стадиях разработки.For the effective and safe implementation of the DVT method, it is necessary that the oil reservoir in the area of the producing well contain a sufficient amount of oil, which is the case if the field is at the initial stages of development. In depleted fields, formations in the area of injection wells contain only residual oil. Therefore, as a result of oxidation processes, a high temperature cannot develop and, as a result, a large number of active reaction products — carbon dioxide and low molecular weight hydrocarbons — are formed. The consequence of this is the low efficiency of the known technical solutions in the conditions of deposits located in the late and final stages of development.

Наиболее близким по технической сущности является способ разработки нефтяного месторождения, включающий закачку в пласт через нагнетательную скважину кислородсодержащей газовой смеси и воды (патент РФ №2139421, 1999 - известный способ). Этот способ является недостаточно эффективен в условиях месторождений, находящихся на поздней и заключительной стадиях разработки.The closest in technical essence is a method of developing an oil field, including the injection into the reservoir through an injection well of an oxygen-containing gas mixture and water (RF patent No. 2139421, 1999 - a known method). This method is not effective enough in the conditions of deposits located in the late and final stages of development.

Таким образом, существует проблема увеличения эффективности термогазового метода повышения нефтеотдачи, что позволит использовать ТГВ в условиях нефтяных месторождений, находящихся на поздней и заключительной стадиях разработки.Thus, there is a problem of increasing the efficiency of the thermogas method of increasing oil recovery, which will allow the use of hot water in conditions of oil fields that are in the late and final stages of development.

Сущность изобретенияSUMMARY OF THE INVENTION

Технический результат - повышение нефтеотдачи, обеспечение эффективного осуществления ТГВ на месторождениях, находящихся на поздней и заключительной стадиях разработки.The technical result is an increase in oil recovery, ensuring the effective implementation of DVT in fields located in the late and final stages of development.

В способе повышения нефтеотдачи месторождения, включающем термогазовое воздействие на пласт посредством последовательного закачивания в пласт кислородсодержащего газа и воды, при его использовании на месторождениях с пластовой температурой 90-2000С после закачивания кислородсодержащего газа и перед закачиванием воды закачивают в пласт раствор бикарбоната щелочного металла с концентрацией 20 - 80 г/л. In a method of increasing oil recovery of a field, including thermogas treatment of the formation by successively injecting oxygen-containing gas and water into the formation, when using it in fields with a formation temperature of 90-200 0 C, after injecting oxygen-containing gas and before injecting water, an alkali metal bicarbonate solution is injected into the formation with concentration of 20 - 80 g / l.

В качестве бикарбоната щелочного металла используют бикарбонат натрия или калия или их смеси.As the alkali metal bicarbonate, sodium or potassium bicarbonate or mixtures thereof are used.

В качестве кислородсодержащего газа используют воздух или смеси воздуха и кислорода с другими газами.As oxygen-containing gas, air or mixtures of air and oxygen with other gases are used.

Для приготовления растворов бикарбонатов используют техническую пресную воду, воды нефтяных месторождений или их смесь.For the preparation of bicarbonate solutions use industrial fresh water, water from oil fields, or a mixture thereof.

Способ осуществляют путем последовательного закачивания в пласт через нагнетательные скважины оторочек кислородсодержащих газов, водного раствора бикарбонатов и воды.The method is carried out by sequential injection into the formation through injection wells of rims of oxygen-containing gases, an aqueous solution of bicarbonates and water.

Осуществление изобретенияThe implementation of the invention

В результате внутрипластового окисления нефти происходит образование значительного количества кислородсодержащих продуктов реакции (спиртов, карбонильных соединений, кислот) и оксидов углерода, а также выделение тепла. Среди продуктов внутрипластовой трансформации кислородсодержащего газа наиболее ценен углекислый газ, который является высокоэффективным нефтевытесняющим реагентом. Основная причина недостаточной эффективности известных технических решений и известного способа заключается в низком выходе (в расчете на поглощенный кислород) наиболее эффективного продукта окисления нефти - углекислого газа. В известных технических решениях и известном способе также не используются другие (кроме углекислого газа и легких углеводородов) продукты реакции окисления нефти.As a result of in-situ oxidation of oil, a significant amount of oxygen-containing reaction products (alcohols, carbonyl compounds, acids) and carbon oxides is formed, as well as heat. Among the products of in-situ transformation of an oxygen-containing gas, carbon dioxide is the most valuable, which is a highly effective oil-displacing reagent. The main reason for the lack of effectiveness of the known technical solutions and the known method is the low yield (calculated on absorbed oxygen) of the most effective oil oxidation product - carbon dioxide. In the known technical solutions and the known method, other products (except carbon dioxide and light hydrocarbons) of the oil oxidation reaction are also not used.

В способе, предложенном в изобретении, в результате последовательного закачивания в пласт кислородсодержащего газа и раствора бикарбоната щелочного металла происходят следующие процессы:In the method proposed in the invention, as a result of sequential injection into the reservoir of oxygen-containing gas and a solution of alkali metal bicarbonate, the following processes occur:

1) Внутрипластовое окисление нефти приводит к образованию большого числа кислородсодержащих продуктов, в частности углекислого газа, органических кислот, а также выделению тепла.1) Intra-layer oxidation of oil leads to the formation of a large number of oxygen-containing products, in particular carbon dioxide, organic acids, as well as heat.

2) Бикарбонаты щелочных металлов являются термически неустойчивыми соединениями, при нагреве распадающимися по эндотермической реакции с образованием карбонатов и оксида углерода (TV):2) Alkali metal bicarbonates are thermally unstable compounds, when heated, decomposing by the endothermic reaction with the formation of carbonates and carbon monoxide (TV):

Figure 00000001
Figure 00000001

где Me - ион щелочного металла, Q - тепловой эффект реакции. Реакция 1 идет с поглощением тепла, т.е. происходит более полная утилизация тепла, образовавшегося в процессе окисления нефти.where Me is an alkali metal ion, Q is the thermal effect of the reaction. Reaction 1 proceeds with heat absorption, i.e. more complete utilization of heat generated during the oxidation of oil.

3) Взаимодействие бикарбонатов и карбонатов щелочных металлов с органическими кислотами и сложными эфирами (продуктами окисления нефти) приводит к образованию солей карбоновых кислот, являющихся эффективными поверхностно-активными веществами (ПАВ), а также углекислого газа:3) The interaction of bicarbonates and carbonates of alkali metals with organic acids and esters (products of oil oxidation) leads to the formation of salts of carboxylic acids, which are effective surface-active substances (surfactants), as well as carbon dioxide:

Figure 00000002
Figure 00000002

Figure 00000003
Figure 00000003

2·R1COOR11+Me2CO3+H2O=2·R1COOMe+CO2↑+2·R11OH (4)2R 1 COOR 11 + Me 2 CO 3 + H 2 O = 2 R 1 COOMe + CO 2 ↑ + 2 R 11 OH (4)

В реакциях 2-3 также происходит выделение значительного количества тепла.In reactions 2-3, a significant amount of heat is also released.

Таким образом, в результате фильтрации раствора бикарбонатов щелочных металлов через зону окисленной нефти происходит образование высокоэффективных нефтевытесняющих агентов - углекислого газа и ПАВ, выделение тепла в ходе экзотермических реакций, а также более полная утилизация тепла реакции окисления.Thus, the filtration of a solution of alkali metal bicarbonates through an oxidized oil zone results in the formation of highly effective oil-displacing agents - carbon dioxide and surfactants, heat generation during exothermic reactions, as well as more complete utilization of the heat of the oxidation reaction.

К углекислому газу, образовавшемуся в результате внутрипластового окисления нефти, добавляется углекислый газ, образовавшийся из бикарбоната. Увеличение количества углекислого газа в пласте и концентрации его в газовой фазе будет способствовать переходу к так называемому смешивающемуся режиму вытеснения и, как следствие, росту нефтевытесняющей способности и эффективности ТГВ.Carbon dioxide formed from bicarbonate is added to carbon dioxide formed as a result of in-situ oxidation of oil. An increase in the amount of carbon dioxide in the formation and its concentration in the gas phase will facilitate the transition to the so-called miscible displacement mode and, as a result, the growth of oil-displacing ability and the effectiveness of DVT.

Образующиеся в пласте ПАВ можно разделить на два типа: водорастворимые (образованные из низкомолекулярных кислот) и маслорастворимые (образованные из высокомолекулярных кислот). Водорастворимые ПАВ переходят в водную фазу, снижая межфазное натяжение на границе с нефтью, что способствует более полному вытеснению нефти из пласта. Смесь маслорастворимых ПАВ с другими кислородсодержащими продуктами окисления (спиртами, карбонильными соединениями, сложными эфирами), а также смолами является эффективным стабилизатором пены и обратных эмульсий. Образование в зоне окисленной нефти пены (из закаченных газов и выделившегося углекислого газа) или обратной эмульсии (из окисленной нефти и воды) приводит к снижению проницаемости участков пласта, подвергнувшихся ТГВ. Учитывая то, что кислородсодержащий газ фильтруется в наиболее проницаемые участки пласта, снижение их проницаемости приводит к перераспределению фильтрационных потоков в пласте и вытеснению нефти из плохо дренированных участков и пропластков.Surfactants formed in the reservoir can be divided into two types: water soluble (formed from low molecular weight acids) and oil soluble (formed from high molecular weight acids). Water-soluble surfactants pass into the aqueous phase, reducing interfacial tension at the border with oil, which contributes to a more complete displacement of oil from the reservoir. A mixture of oil-soluble surfactants with other oxygen-containing oxidation products (alcohols, carbonyl compounds, esters), as well as resins, is an effective stabilizer of foam and inverse emulsions. The formation in the zone of oxidized oil of foam (from injected gases and released carbon dioxide) or reverse emulsion (from oxidized oil and water) leads to a decrease in the permeability of the formation areas subjected to DVT. Considering that oxygen-containing gas is filtered into the most permeable sections of the formation, a decrease in their permeability leads to a redistribution of filtration flows in the formation and the displacement of oil from poorly drained sections and layers.

В известном способе и известных технических решениях большая часть продуктов окисления не участвует в процессах вытеснения нефти, а значительная часть тепла непроизводительно теряется. В предложенном способе решается задача изобретения - повышение эффективности метода ТГВ, за счет использования для повышения нефтеотдачи большинства продуктов внутрипластового окисления нефти и более полной утилизации тепла.In the known method and known technical solutions, most of the oxidation products are not involved in the processes of oil displacement, and a significant part of the heat is lost unproductive. In the proposed method, the task of the invention is solved - increasing the efficiency of the DVT method by using most of the products of in-situ oxidation of oil and more complete utilization of heat to increase oil recovery.

Пример 1Example 1

Для исследования состава продуктов окисления нефти используется монометрическая установка на базе автоклава, например, производства фирмы PARR (США), модель 4842. Автоклав оснащен стеклянным вкладышем для предотвращения контакта реакционной массы с металлической поверхностью автоклава, имеет минимум нетермостатируемых объемов, защитные чехлы (покрытия) из инертных материалов (стекла или тефлона) для кармана термопары, измеряющей температуру реакционной массы, и перемешивающего устройства.To study the composition of oil oxidation products, a monometric installation based on an autoclave, for example, manufactured by PARR (USA), model 4842 is used. The autoclave is equipped with a glass liner to prevent contact of the reaction mixture with the metal surface of the autoclave, has a minimum of non-thermostatically controlled volumes, protective covers (coatings) made of inert materials (glass or Teflon) for a thermocouple pocket measuring the temperature of the reaction mass, and a mixing device.

Характеристики установки на базе автоклава следующие:The characteristics of the autoclave-based plant are as follows:

объем реактора (по паспорту) - 1 л;reactor volume (according to the passport) - 1 l;

свободный объем реактора - 1,08 л,the free volume of the reactor is 1.08 l,

максимальное рабочее давление 1900 фунтов/дюйм2 (14 МПа);a maximum working pressure of 1900 lbs / in2 (14 MPa);

максимальная рабочая температура - 350°С.maximum working temperature - 350 ° C.

Монометрическая установка включает также насос высокого давления и систему линии подачи с запорными вентилями, позволяющими в ходе опыта подавать в реактор с окисленной нефтью водный раствор бикарбоната щелочного металла.The monometric installation also includes a high-pressure pump and a supply line system with shut-off valves, allowing during the experiment to supply an aqueous solution of alkali metal bicarbonate to the reactor with oxidized oil.

Пробы пластовых флюидов (нефти и воды) месторождения подготавливают к экспериментам по общепринятым методикам, используемым в физико-химических и фильтрационных экспериментах. Характеристика воды и нефти приведена в Таблице 1. В конце опыта из автоклава отбирают пробу газа в пробоотборник высокого давления и анализируют на содержание компонентов с использованием газового хроматографа.Samples of reservoir fluids (oil and water) of the field are prepared for experiments using generally accepted methods used in physicochemical and filtration experiments. The characteristics of water and oil are shown in Table 1. At the end of the experiment, a gas sample is taken from the autoclave into a high pressure sampler and analyzed for the content of components using a gas chromatograph.

Таблица 1Table 1 Характеристика образцов дегазированной нефти и попутной воды месторожденияCharacterization of degassed oil and associated water samples ФлюидFluid Плотность, кг/м3 Density, kg / m 3 Вязкость при 20°С, мПа·сViscosity at 20 ° С, MPa · s НефтьOil 862862 7,57.5 ВодаWater 10201020 1,021,02

Для хроматографического анализа газовой пробы на содержание основных газов (азота, кислорода, оксидов углерода) используют хроматографические колонки длиной 3 м, диаметром 3,2 мм HayeSep Q (азот, кислород и СО) и длиной 2 м, диаметром 3,2 мм MolSieve 5A (углекислый газ). Режим анализа: газ носитель - гелий, температура анализа 40°С, детектор по теплопроводности. Для анализа углеводородных газов используют последовательно соединенные следующие хроматографические колонки:For chromatographic analysis of a gas sample for the content of basic gases (nitrogen, oxygen, carbon oxides), chromatographic columns of 3 m in length, 3.2 mm in diameter HayeSep Q (nitrogen, oxygen and CO) and 2 m in length, 3.2 mm in diameter are used MolSieve 5A (carbon dioxide). Analysis mode: carrier gas - helium, analysis temperature 40 ° С, thermal conductivity detector. The following chromatographic columns are used in series for the analysis of hydrocarbon gases:

1. 25% н-бутилмалеиновой кислоты на хромосорбе Р AW(60-80 меш.), диаметр 3,2 мм и длина 8 м;1. 25% n-butyl maleic acid on chromosorb P AW (60-80 mesh), diameter 3.2 mm and length 8 m;

2. 25% дипропионитрила на хромосорбе Р AW(60-80 меш.), диаметр 3,2 мм и длина 3 м.2.25% dipropionitrile on P AW chromosorb (60-80 mesh), diameter 3.2 mm and length 3 m.

Условия анализа углеводородных газов: газ-носитель - гелий, температура 40°С, пламенно-ионизационный детектор.Conditions for the analysis of hydrocarbon gases: carrier gas - helium, temperature 40 ° C, flame ionization detector.

Возможно использование других типов хроматографов и хроматографических колонок, обеспечивающих возможность анализа газовой фазы на содержание углекислого газа и кислорода.It is possible to use other types of chromatographs and chromatographic columns, which make it possible to analyze the gas phase for the content of carbon dioxide and oxygen.

В автоклав загружают нефть и воду, герметизируют, заполняют кислородсодержащим газом (воздухом) до требуемого давления и проверяют герметичность автоклава. Затем при перемешивании реакционную массу нагревают до температуры реакции и выдерживают необходимое время. Начальные условия и результаты экспериментов приведены в Таблице 2.Oil and water are loaded into the autoclave, sealed, filled with oxygen-containing gas (air) to the required pressure, and the autoclave is checked for leaks. Then, with stirring, the reaction mass is heated to the reaction temperature and maintained for the required time. The initial conditions and experimental results are shown in Table 2.

В опытах 1 и 2 моделируют процесс образования углекислого газа по известному способу. В качестве кислородсодержащего газа используют воздух. Выход углекислого газа на поглощенный кислород увеличивается с ростом глубины окисления (количества молей поглощенного кислорода на 1 литр нефти) и составляет 26,4 - 31,8% при глубинах окисления 2,52-5,03 моль/л.In experiments 1 and 2 simulate the process of formation of carbon dioxide by a known method. Air is used as an oxygen-containing gas. The yield of carbon dioxide to absorbed oxygen increases with increasing oxidation depth (the number of moles of absorbed oxygen per 1 liter of oil) and amounts to 26.4 - 31.8% at oxidation depths of 2.52-5.03 mol / l.

Таким образом, несмотря на значительную глубину окисления нефти и высокую температуру процесса (параметров, благоприятствующих росту выхода углекислого газа) эффективность трансформации кислорода в углекислый газ не велика. Thus, despite the considerable depth of oil oxidation and the high temperature of the process (parameters conducive to an increase in the yield of carbon dioxide), the efficiency of the transformation of oxygen into carbon dioxide is not great.

Пример 2Example 2

В автоклав загружают нефть, воду и опыт ведут по методике, описанной в Примере 1. После 5 часов окисления (что достаточно для практически полного поглощения кислорода из воздуха) в автоклав насосом высокого давления закачивают 50 мл раствора бикарбоната натрия с концентрацией 20 г/л (опыт 3 в Таблице 2). Скорость закачивания 5 мл/мин, время закачивания 10 минут. Затем реакционную массу термостатируют при перемешивании в течение 2 часов 50 минут.Oil is loaded into the autoclave, water and the experiment is carried out according to the procedure described in Example 1. After 5 hours of oxidation (which is sufficient for almost complete absorption of oxygen from the air), 50 ml of sodium bicarbonate solution with a concentration of 20 g / l is pumped into the autoclave with a high pressure pump ( experiment 3 in Table 2). The injection rate of 5 ml / min, the injection time of 10 minutes. Then the reaction mass is thermostated with stirring for 2 hours 50 minutes.

Данные Таблицы 2 показывают, что в опыте 3 выход углекислого газа на поглощенный кислород в 1,36 раза выше, чем в известном способе (опыт 1). Определение рН водной фазы оксидата показало, что он равен 4,5 (кислая среда). В опыте 3 произошло полное превращение бикарбоната натрия в углекислый газ и соли органических кислот. Таким образом, даже неполная конверсия кислотных компонентов оксидата нефти позволяет значительно увеличить выход углекислого газа и, как следствие, содержание его в газовой фазе после завершения окисления.The data of Table 2 show that in experiment 3, the carbon dioxide output to the absorbed oxygen is 1.36 times higher than in the known method (experiment 1). Determination of the pH of the aqueous phase of the oxidate showed that it is 4.5 (acidic medium). In experiment 3, there was a complete conversion of sodium bicarbonate to carbon dioxide and salts of organic acids. Thus, even the incomplete conversion of the acid components of oil oxidate can significantly increase the yield of carbon dioxide and, as a consequence, its content in the gas phase after the completion of oxidation.

Пример 3Example 3

В автоклав загружают нефть, воду и опыт ведут по методике, описанной в Примере 1. После 5 часов окисления (что достаточно для практически полного поглощения кислорода из воздуха) в автоклав насосом высокого давления закачивают 50 мл раствора бикарбоната натрия с концентрацией 80 г/л (опыт 4 в Таблице 2). Скорость закачивания 5 мл/мин, время закачивания 10 минут. Затем реакционную массу термостатируют при перемешивании в течение 2 часов 50 минут.Oil is loaded into the autoclave, water and the experiment is carried out according to the procedure described in Example 1. After 5 hours of oxidation (which is sufficient for almost complete absorption of oxygen from the air), 50 ml of sodium bicarbonate solution with a concentration of 80 g / l is pumped into the autoclave with a high pressure pump ( experiment 4 in Table 2). The injection rate of 5 ml / min, the injection time of 10 minutes. Then the reaction mass is thermostated with stirring for 2 hours 50 minutes.

Данные Таблицы 2 показывают, что в опыте 4 выход углекислого газа на поглощенный кислород в 1,66 раза выше, чем в известном способе (опыт 2).The data of Table 2 show that in experiment 4, the yield of carbon dioxide to absorbed oxygen is 1.66 times higher than in the known method (experiment 2).

Определение рН водной фазы оксидата показало, что он равен 7 (нейтральная среда). В опыте 4 произошло полное превращение органических кислот оксидата нефти в углекислый газ и натриевые соли карбоновых кислот. Таким образом, полная конверсия кислотных компонентов оксидата нефти позволяет значительно увеличить выход углекислого газа и, как следствие, концентрацию его в газовой фазе после завершения окисления.Determination of the pH of the aqueous phase of the oxidate showed that it is equal to 7 (neutral medium). In experiment 4, there was a complete conversion of organic acids of oil oxidate to carbon dioxide and sodium salts of carboxylic acids. Thus, the complete conversion of the acidic components of oil oxidate can significantly increase the yield of carbon dioxide and, as a consequence, its concentration in the gas phase after oxidation is complete.

Таблица 2table 2 Начальные условия и результаты опытов по окислению нефтиInitial conditions and results of oil oxidation experiments Температура, °СTemperature ° C № опытаExperience number Исходная загрузка в автоклав, млThe initial load in the autoclave, ml Объем газовой фазы, млVolume of gas phase, ml Начальное давление*, МПаInitial pressure *, MPa Время выдержки, часHolding time, hour Конверсия кислорода, %The conversion of oxygen,% Глубина окисления, моль/лDepth of oxidation, mol / l Концентрация бикарбо ната натрия, г/лThe concentration of sodium bicarbo nata, g / l Объем раствора бикарбоната натрия, млThe volume of sodium bicarbonate solution, ml Выход СО2 на поглощенный кислород, %The output of CO 2 absorbed oxygen,% нефтьoil водаwater до начала закачивания раствора бикарбоната натрияbefore starting to pump sodium bicarbonate solution после начала закачивания раствора бикарбонатаafter starting the injection of the bicarbonate solution 200200 1one 50fifty 100one hundred 830830 2,02.0 5,55.5 00 100one hundred 2,522,52 -- -- 26,426,4 200200 22 25,125.1 125125 830830 2,02.0 77 00 99,899.8 5,035.03 -- -- 31,831.8 200200 33 50,150.1 100one hundred 830830 2,02.0 55 33 99,999.9 2,522,52 20twenty 50fifty 35,935.9 200200 4four 25,125.1 125125 830830 2,02.0 55 33 100one hundred 5,035.03 8080 50fifty 59,659.6

Пример 4Example 4

Определение нефтевытесняющей эффективности газовой смеси, образованной в результате внутрипластового окисления нефти по известному способу, проводят с помощью фильтрационной установки. В качестве объекта исследований используют образцы породы юрских пластов.Determination of oil-displacing efficiency of the gas mixture formed as a result of in-situ oxidation of oil by a known method, is carried out using a filtration unit. As an object of research, samples of Jurassic strata are used.

В исследовании испытывают нефтевытесняющую способность смеси СО2 и ШФЛУ, состав которой смоделирован на основе представлений о механизме ТГВ, осуществленном по известному способу (Таблица 3).The study tested the oil-displacing ability of a mixture of CO 2 and BFLH, the composition of which was modeled on the basis of ideas about the DVT mechanism carried out by a known method (Table 3).

Таблица 3Table 3 Состав модельного газового вытесняющего агентаThe composition of the model gas displacing agent Способ осуществления ТГВThe way to implement DVT Объемная доля компонентов,%Volume fraction of components,% АзотNitrogen CO2 CO 2 С3Н8 C 3 H 8 С4Н10 C 4 H 10 С5Н12 C 5 H 12 ИзвестныйFamous 50fifty 2525 55 1010 1010 ПредложенныйProposed 8,58.5 41,541.5 55 1010 1010

Для воспроизведения реальных геолого-физических условий залежи и процессов, происходящих при закачке воды и продуктов окисления нефти, в фильтрационном эксперименте в опытах соблюдали следующее:To reproduce the real geological and physical conditions of the reservoir and the processes occurring during the injection of water and oil oxidation products, the following were observed in the filtration experiment in experiments:

1. линейная модель пласта представлена образцами песчаника продуктивных пластов. Проницаемость модели по керосину со связанной водой 0,01 мкм2.1. a linear model of the reservoir is represented by samples of sandstone in productive formations. The permeability of the model for kerosene with bound water of 0.01 μm 2 .

2. в образцах песчаника, слагающих модель пласта, создают связанную воду в количестве 25-29%, что соответствует значениям этого параметра в пласте;2. in the sandstone samples composing the reservoir model, create bound water in an amount of 25-29%, which corresponds to the values of this parameter in the reservoir;

3. в опытах используют рекомбинированную модель нефти, которая по своим физико-химическим свойствам не отличается от пластовой нефти (Таблица 4);3. in the experiments they use a recombined oil model, which in its physicochemical properties does not differ from reservoir oil (Table 4);

4. в качестве вытесняющих агентов используют воду из системы поддержания пластового давления месторождения (ρ=0,979 г/см3, μ=0,365 мПа·с при 90°С) и модельную газовую смесь (Табл.3);4. as displacing agents, water from the reservoir pressure maintenance system is used (ρ = 0.979 g / cm 3 , μ = 0.365 MPa · s at 90 ° C) and a model gas mixture (Table 3);

5. при проведении опыта соблюдают термобарические условия месторождения (температура 90°С, давление 26 МПа).5. during the experiment, the thermobaric conditions of the deposit are observed (temperature 90 ° C, pressure 26 MPa).

Подготовку модели к опытам проводят по общепринятым методикам. Параметры линейной модели пласта, используемой в опыте, представлены в Таблице 5 (опыт 1).The preparation of the model for the experiments is carried out according to generally accepted methods. The parameters of the linear reservoir model used in the experiment are presented in Table 5 (experiment 1).

Рекомбинированную пробу нефти готовят из безводной нефти, отобранной на месторождении, путем растворения в ней соответствующих индивидуальных компонентов углеводородного газа.A recombined oil sample is prepared from anhydrous oil taken from the field by dissolving the corresponding individual hydrocarbon gas components therein.

Таблица 4Table 4 Физические свойства пластовой нефти и рекомбинированной пробы нефтиPhysical properties of reservoir oil and recombined oil samples ПараметрыOptions Ед. измеренияUnits measuring Пластовая нефть, пласт Ю1°, диапазон измеренияReservoir oil, reservoir Yu 1 °, measuring range Рекомбинированная модель нефтиRecombined Oil Model Пластовое давлениеReservoir pressure МПаMPa 2626 2626 Пластовая температураFormation temperature °С° C 9090 9090 Давление насыщенияSaturation pressure МПаMPa 3,8-7,63.8-7.6 5,85.8 Плотность при пластовом давлении (Рпл.)Density at reservoir pressure (R pl. ) г/см3 g / cm 3 0,743-0,7860.743-0.786 0,7780.778 Вязкость при Рпл. Viscosity at R pl. мПа·сMPa · s 0,63-1,110.63-1.11 1,01,0 Объемный коэффициент от Рпл. Volumetric coefficient of R pl. д.ед.grandfather. 1,113-1,1551,113-1,155 1,1141,114 ГазосодержаниеGas content м/тm / t 48,748.7 43,543.5 Таблица 5Table 5 Исходные параметры линейных моделей пластаInitial parameters of linear reservoir models Номер фильтрационного опыта)Filtration Experience Number) Количество образцов, штNumber of samples Длина, смLength cm Диаметр, смDiameter cm Пористость, %Porosity,% Проницаемость по керосину, мкм2 Kerosene permeability, μm 2 Связанная вода, %Bound water,% 1one 2222 88,788.7 2,942.94 17,017.0 0,010.01 27,4527.45 22 2222 88,788.7 2,942.94 17,017.0 0,010.01 27,1527.15

При постановке опыта 1 технологические операции осуществляют в следующей последовательности:When setting experiment 1, technological operations are carried out in the following sequence:

1. фильтруют через модель пласта воду до 100% обводненности;1. filter water through the reservoir model to 100% water cut;

2. в модель пласта закачивают оторочку модельной газовой смеси по известному способу осуществления ТГВ;2. the rim of the model gas mixture is pumped into the reservoir model by a known method of DVT implementation;

3. фильтруют через модель воду до 100% обводненности продукции на выходе. Результаты проведенного фильтрационного эксперимента с моделированием известного способа приведены в Таблице 6.3. filter water through the model to 100% of the water cut of the output. The results of the filtration experiment with the simulation of a known method are shown in Table 6.

Газовая смесь, образованная в результате осуществления известного способа,The gas mixture formed as a result of the implementation of the known method,

позволяет увеличить коэффициент вытеснения нефти с 52% до 66%, т.е. на 14%.allows to increase the oil displacement coefficient from 52% to 66%, i.e. by 14%.

Таблица 6Table 6 Результаты фильтрационных опытовThe results of filtration experiments Номер фильтрационного опытаFiltration Experience Number Закачиваемый агентUploaded Agent Объем закачки в объемах пор модели пластаInjection volume in pore volumes of the reservoir model Коэффициент вытеснения нефти, %The coefficient of oil displacement,% Прирост коэффициента вытеснения нефти, %The growth rate of oil displacement,% 1one ВодаWater 0,620.62 5252 -- Газовая смесь по известному способуThe gas mixture according to a known method 0,310.31 5252 00 ВодаWater 1,321.32 6666 14fourteen 22 ВодаWater 0,640.64 5151 -- Газовая смесь по предложенному опытуThe gas mixture according to the proposed experience 0,300.30 8181 00 Раствор бикарбоната натрия с концентрацией 20 г/лSodium bicarbonate solution with a concentration of 20 g / l 0,100.10 5252 1one ВодаWater 1,211.21 8282 3131

Пример 5Example 5

Определение нефтевытесняющей эффективности газовой смеси, образованной в результате внутрипластового окисления нефти по предложенному способу проводят с помощью фильтрационной установки.The determination of oil-displacing efficiency of a gas mixture formed as a result of in-situ oxidation of oil by the proposed method is carried out using a filtration unit.

В исследовании испытывают нефтевытесняющую способность смеси СО2 и ШФЛУ, состав которой смоделирован на основе представлений о механизме ТГВ, осуществленного по предложенному способу (Таблица 3).The study tested the oil-displacing ability of a mixture of CO 2 and BFLH, the composition of which is modeled on the basis of ideas about the DVT mechanism carried out by the proposed method (Table 3).

В опыте 2 используют ту же модель пласта, что и в опыте 1 (Пример 4). Перед вторичным использованием образцы породы экстрагируют спиртобензольной смесью, промывают водой и высушивают. Подготовку модели пласта к опыту 2 проводят так же, как в опыте 1. Свойства модели полностью восстанавливают (Таблица 3).In experiment 2, the same reservoir model is used as in experiment 1 (Example 4). Before reuse, the rock samples are extracted with a benzene mixture, washed with water and dried. Preparation of the reservoir model for experiment 2 is carried out in the same way as in experiment 1. The properties of the model are completely restored (Table 3).

При постановке опыта 2 технологические операции осуществляют в следующей последовательности:When setting experiment 2, technological operations are carried out in the following sequence:

1. фильтруют через модель пласта воду до 100% обводненности;1. filter water through the reservoir model to 100% water cut;

2. в модель пласта закачивают оторочку модельной газовой смеси по предложенному способу осуществления ТГВ;2. the rim of the model gas mixture is pumped into the reservoir model according to the proposed method for the implementation of DVT;

3. раствор бикарбоната натрия,3. sodium bicarbonate solution,

4. фильтруют через модель воду до 100% обводненности продукции на выходе.4. filter through the model water up to 100% water cut of the output.

Результаты проведенного фильтрационного эксперимента с моделированием известного способа приведены в Таблице 6.The results of the filtration experiment with the simulation of a known method are shown in Table 6.

Газовая смесь, образованная в результате осуществления предложенного способа, позволяет увеличить коэффициент вытеснения нефти на 31%.The gas mixture formed as a result of the implementation of the proposed method allows to increase the coefficient of oil displacement by 31%.

Таким образом, нефтевытесняющая эффективность предложенного способа более чем в 2 раза выше, чем у известного способа.Thus, the oil-displacing efficiency of the proposed method is more than 2 times higher than that of the known method.

Промышленная применимость.Industrial applicability.

Предложенный способ повышения нефтеотдачи может быть применен для повышения степени вытеснения нефти из месторождений, находящихся на средней и поздней стадиях разработки.The proposed method of increasing oil recovery can be applied to increase the degree of oil displacement from fields located in the middle and late stages of development.

Пример 6 Example 6

На участке нефтяного месторождения, включающем 1 нагнетательную скважину и 3 добывающие скважины с исходной пластовой температурой 118°С, в нагнетательную скважину закачивают воздух со средней скоростью 0,006 нм3/мин в течение 60 суток. Затем в нагнетательную скважину закачивают 1000 м3 раствора бикарбоната натрия с концентрацией 50 г/л и далее закачивают воду. В результате закачки воздуха в пласте происходит автовытеснение нефти с подъемом температуры до 150-200°С. В результате окисления нефти образуется первичная оторочка, содержащая N2, CO2 и пары углеводородов. Вторая оторочка, содержащая практически чистый СО2, образуется в результате взаимодействия закаченного раствора бикарбоната натрия NaHCO3 с окисленной нефтью, находящейся в призабойной зоне пласта.At a section of an oil field, including 1 injection well and 3 production wells with an initial formation temperature of 118 ° C, air is pumped into the injection well at an average rate of 0.006 nm 3 / min for 60 days. Then, 1000 m 3 of sodium bicarbonate solution with a concentration of 50 g / l is pumped into the injection well, and then water is pumped. As a result of air injection in the reservoir, auto-displacement of oil occurs with a rise in temperature to 150-200 ° C. As a result of oil oxidation, a primary rim is formed containing N 2 , CO 2 and hydrocarbon vapors. The second rim, containing almost pure CO 2 , is formed as a result of the interaction of the injected sodium bicarbonate NaHCO 3 solution with oxidized oil located in the bottomhole formation zone.

В результате указанных действий нефтеотдача участка месторождения увеличилась на 3,4 %.As a result of these actions, oil recovery in the field increased by 3.4%.

Claims (2)

1. Способ повышения нефтеотдачи месторождения, включающий термогазовое воздействие на пласт посредством последовательного закачивания в пласт кислородсодержащего газа и воды, отличающийся тем, что при его использовании на месторождениях с пластовой температурой 90-200°С после закачивания кислородсодержащего газа и перед закачиванием воды закачивают в пласт раствор бикарбоната щелочного металла с концентрацией 20 - 80 г/л.1. A method of increasing oil recovery of a field, including thermogas treatment of the formation by sequential injection of oxygen-containing gas and water into the formation, characterized in that when it is used in fields with formation temperature of 90-200 ° C, after the injection of oxygen-containing gas and before the injection of water, it is pumped into the formation alkali metal bicarbonate solution with a concentration of 20 - 80 g / l. 2. Способ по п.1, отличающийся тем, что в качестве бикарбоната щелочного металла используют бикарбонат натрия или калия или их смеси.2. The method according to claim 1, characterized in that as the alkali metal bicarbonate, sodium or potassium bicarbonate or mixtures thereof are used.
RU2005105983/03A 2005-03-04 2005-03-04 Oil field recovery increase method RU2277632C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2005105983/03A RU2277632C1 (en) 2005-03-04 2005-03-04 Oil field recovery increase method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2005105983/03A RU2277632C1 (en) 2005-03-04 2005-03-04 Oil field recovery increase method

Publications (1)

Publication Number Publication Date
RU2277632C1 true RU2277632C1 (en) 2006-06-10

Family

ID=36712925

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2005105983/03A RU2277632C1 (en) 2005-03-04 2005-03-04 Oil field recovery increase method

Country Status (1)

Country Link
RU (1) RU2277632C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA039711B1 (en) * 2021-03-10 2022-03-03 Научно-Исследовательский И Проектный Институт Нефти И Газа (Нипинг) Method for oil reservoir development

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA039711B1 (en) * 2021-03-10 2022-03-03 Научно-Исследовательский И Проектный Институт Нефти И Газа (Нипинг) Method for oil reservoir development

Similar Documents

Publication Publication Date Title
CA2641948C (en) System for improving coalbed gas production
US6325147B1 (en) Enhanced oil recovery process with combined injection of an aqueous phase and of at least partially water-miscible gas
US3135326A (en) Secondary oil recovery method
Føyen et al. CO2 mobility reduction using foam stabilized by CO2-and water-soluble surfactants
WO2011090921A1 (en) Systems and methods for producing oil and/or gas
Wang et al. Development of in situ CO2 generation formulations for enhanced oil recovery
EA009260B1 (en) Method and composition for enhanced hydrocarbons recovery
EA029752B1 (en) Oil recovery method
Zhao et al. Profile improvement during CO 2 flooding in ultra-low permeability reservoirs
US20220381122A1 (en) Methods and systems for greenhouse gas capture and sequestration
Asadi et al. Synergistic effects of sodium iodide and sodium dodecyl sulfate at low concentrations on promoting gas hydrate nucleation
CN113051843A (en) Sandstone-type uranium ore CO2+O2Reaction migration numerical simulation method for in-situ leaching uranium mining
Ding et al. Potential to enhance CO2 flooding in low permeability reservoirs by alcohol and surfactant as co-solvents
Dong et al. A laboratory study on near-miscible CO2 injection in Steelman reservoir
RU2277632C1 (en) Oil field recovery increase method
Zhang et al. From laboratory to field: Simulation of a surfactant huff-n-puff pilot in the Eagle Ford
Sari et al. Carbonated waterflooding in carbonate reservoirs: Experimental evaluation and geochemical interpretation
RU2456444C2 (en) Acid treatment method of bottom-hole oil formation zone
US3353597A (en) Formation flooding by sulphur dioxide for recovering oil and gas
RU2669949C1 (en) Method of development of low-permeable oil deposits
RU2140531C1 (en) Method of treating bottom zone of oil formation
Rabaev et al. Results of experimental studies of integrated physico-chemical impact in carbonate reservoirs
CA3168626A1 (en) Application of enzyme-based green solvents for the recovery of subsurface fluids
RU2106484C1 (en) Method for reagent treatment of well
RU2693983C2 (en) Natural gas extraction method from gas hydrate deposit

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100305

NF4A Reinstatement of patent

Effective date: 20120320

QA4A Patent open for licensing

Effective date: 20170425

MM4A The patent is invalid due to non-payment of fees

Effective date: 20190305