RU2276700C1 - Футеровка катодной части алюминиевого электролизера - Google Patents

Футеровка катодной части алюминиевого электролизера Download PDF

Info

Publication number
RU2276700C1
RU2276700C1 RU2004131353/02A RU2004131353A RU2276700C1 RU 2276700 C1 RU2276700 C1 RU 2276700C1 RU 2004131353/02 A RU2004131353/02 A RU 2004131353/02A RU 2004131353 A RU2004131353 A RU 2004131353A RU 2276700 C1 RU2276700 C1 RU 2276700C1
Authority
RU
Russia
Prior art keywords
aluminum
lining
cathode
powder
refractory
Prior art date
Application number
RU2004131353/02A
Other languages
English (en)
Other versions
RU2004131353A (ru
Inventor
Александр Владимирович Прошкин (RU)
Александр Владимирович Прошкин
Дмитрий Аскольдович Бекетов (RU)
Дмитрий Аскольдович Бекетов
Виталий Валерьевич Пингин (RU)
Виталий Валерьевич Пингин
Иван Александрович Ярош (RU)
Иван Александрович Ярош
Original Assignee
Общество с ограниченной ответственностью "Инженерно-технологический центр"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Инженерно-технологический центр" filed Critical Общество с ограниченной ответственностью "Инженерно-технологический центр"
Priority to RU2004131353/02A priority Critical patent/RU2276700C1/ru
Publication of RU2004131353A publication Critical patent/RU2004131353A/ru
Application granted granted Critical
Publication of RU2276700C1 publication Critical patent/RU2276700C1/ru

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, и может быть использовано при монтаже катодного узла алюминиевого электролизера. Техническим результатом изобретения является устранение попадания паров натрия, других компонентов фторсолей и расплавленного алюминия в теплоизоляционные слои катодной футеровки. Футеровка катодной части алюминиевого электролизера включает подовые секции и огнеупорный, выполненный из порошка, и теплоизоляционный слои. Согласно изобретению огнеупорный слой состоит из порошка алюмосиликатного состава с содержанием окиси алюминия 27-35%, имеющего плотность не менее 79-80% от величины истинной плотности и содержащего следующие фракции (мас.%): 3-1 мм - 38,0÷38,4; 1-0,5 мм - 23,5÷23,7; 0,5-0,1 мм - 14,5÷14,7; менее 0,1 мм - 23,4÷23,6. 3 ил., 1 табл.

Description

Изобретение относится к цветной металлургии, в частности к электролитическому производству алюминия, и может быть использовано при монтаже катодного узла алюминиевого электролизера.
Известна футеровка катодного устройства алюминиевого электролизера (Патент РФ №2149923, МПК С 25 С 3/08), содержащая блочную подовую и боковую угольную футеровку, выполненную внутри кирпичной кладки из огнеупорного кирпича. Кирпичи уложены с перевязкой швов по горизонтали и вертикали на величину 0,25-0,5 длины кирпича. Швы между кирпичами заполнены материалом на основе окислов материалов, например глинозема и/или окиси кремния, крупностью 20-30 мкм. Такое решение, по мнению авторов, затрудняет проникновение расплава металла и электролита, ведущего к разрушению катодного устройства, и увеличивает срок службы электролизеров.
Недостатком известной футеровки катодной части является невозможность полного предотвращения проникновения электролита и криолит-глиноземного расплава в теплоизоляционный цоколь. В известном техническом решении неуплотненный материал в швах между кирпичами хорошо пропитывается компонентами электролита вследствие капиллярных эффектов. Особенно ярко это проявляется для каналов, заполненных глиноземом. Оксид кремния, вступая в реакцию с агрессивными компонентами электролизной ванны (парами натрия, электролитом и фтористым натрием), может формировать вязкие слои, которые препятствуют проникновению агрессивных компонентов в нижнюю часть цоколя. Однако с течением времени вследствие растворимости продуктов реакции во вновь поступающих порциях электролита эффективность герметизации швов снижается. Таким образом, наличие швов является принципиальным недостатком известной катодной футеровки, приводящим к снижению срока ее службы.
Известна футеровка катодной части алюминиевого электролизера (Патент РФ №2221087, МПК С 25 С 3/08), включающая подовые секции, огнеупорный слой, выполненный из демонтированной огнеупорной футеровки электролизеров в виде порошка фракций 2-20 мм, так называемый барьерный материал и теплоизоляционный слой. Теплоизоляционный слой сформирован из высокопористого графита или пенококса со скоростью коррозии в расплаве алюминия и криолит-глиноземном расплаве не более 0,03 и 0,05 мм/сутки соответственно. Подовые секции выполнены из углеродных блоков.
По назначению, наличию существенных сходных признаков приведенное решение выбрано в качестве прототипа.
В известном решении в составе демонтированной огнеупорной футеровки содержится до 40% фторсолей, которые переходят в жидкое состояние с соответствующим ростом коэффициента теплопроводности. Кроме того, такое большое количество фторсолей в барьерном материале способствует проникновению их компонентов в нижнюю часть цоколя электролизера, где располагаются слои теплоизоляции. Теплоизоляционные слои, обладая повышенной пористостью, весьма уязвимы к действию агрессивных компонентов (паров натрия, электролита и фтористого натрия). В результате чего падает общее тепловое сопротивление цоколя и изотерма солидус сначала перемещается вниз (по мере взаимодействия проникающих фторсолей с барьерным материалом огнеупорного слоя и незначительным снижением общего теплового сопротивления), а затем, по мере деградации теплоизоляции, поднимается вверх, в результате чего происходит формирование столбчатых солевых линз и вспучивание подины.
Кроме того, дисперсный состав в виде порошка фракций 2-20 мм не обеспечивает плотной упаковки такой смеси, и, следовательно, в процессе достижения температуры ликвидус происходит усадка барьерного материала огнеупорного слоя. В результате этого под подовыми блоками в центральной части подины формируются пустоты, повышающие опасность разрушения подовых блоков.
Кроме того, демонтированная огнеупорная футеровка, используемая в качестве барьерного материала огнеупорного слоя, не имеет постоянного химико-минералогического состава. И поэтому данная футеровка катодной части не обеспечивает в полной мере защиту от проникновения агрессивных компонентов электролизной ванны, т.е. сохранность футеровки, и снижает показатели работы электролизера.
Задачей предлагаемого технического решения является увеличение срока службы футеровки катодного устройства и улучшение показателей работы электролизера.
Техническим результатом изобретения является устранение попадания паров натрия, других компонентов фторсолей и расплавленного алюминия в теплоизоляционные слои катодной футеровки.
Поставленная задача решается тем, что в футеровке катодной части алюминиевого электролизера, включающей подовые секции, огнеупорный, выполненный в виде порошка, и теплоизоляционный слои, согласно заявляемому решению огнеупорный слой состоит из порошка алюмосиликатного состава с содержанием окиси алюминия 27 - 35%, имеющего плотность не менее 79-80% от величины истинной плотности и содержащего следующие фракции (мас.%):
3-1 мм 38,0÷38,4
1-0,5 мм 23,5÷23,7
0,5-0,1 мм 14,5÷14,7
менее 0,1 мм 23,4÷23,6
Сопоставительный анализ признаков заявляемого решения и признаков аналога и прототипа свидетельствует о соответствии решения критерию «новизна».
Концентрация алюминийсодержащих компонентов (в пересчете на оксиды) в количестве 27-35% является оптимальной. Взаимодействие между чисто глиноземными огнеупорами и фтористым натрием протекает по реакции образования β-глинозема с изменением плотности и объемными расширениями:
Figure 00000002
При добавлении в огнеупор SiO2 (и соответствующем уменьшении концентрации Al2О3 до 35% в дополнение к реакции (1)) будет происходить реакция образования нефелина (2):
Figure 00000003
Образующийся вязкий слой замедляет инфильтрацию компонентов электролита.
Figure 00000004
Если будет избыток огнеупорного материала и недостаток NaF, то нефелин реагирует с диоксидом кремния с образованием альбита NaAlSi3O8, который будет находиться в вязком стеклообразном расплавленном состоянии:
Figure 00000005
Дальнейшее увеличение содержания SiO2 в алюмосиликатном огнеупорном материале и уменьшении содержания Al2О3 (менее 27%) из-за недостатка Al2О3 будет затруднено образование нефелина, а следовательно, и альбита.
Таким образом, повышение вязкости расплава из-за наличия альбита в зоне реакции между алюмосиликатной огнеупорной футеровкой и расплавленным криолитом уменьшает вероятность проникновения фторсолей в нижние теплоизоляционные слои цоколя.
Необходимая плотность упаковки частиц порошка огнеупорного слоя достигается только при заявляемом распределении частиц по размерам. С расширением диапазона применяемых частиц (за счет увеличения максимальных размеров частиц) возрастает вероятность расфракционирования смеси. Это повышает опасность проникновения расплавленных фторсолей в барьерный материал. С другой стороны, использование слишком мелких частиц приводит к снижению плотности слоя из за большого количества контактов между частицами. При этом эффективность барьера огнеупорного слоя снижается, так как в первую очередь падает количество материала в единице объема барьерной смеси. Таким образом, оптимальными являются приведенные величина максимальных размеров частиц и их распределение по размерам.
При максимальном размере частиц более 3 мм, несмотря на приведенный подбор гранулометрического состава частиц, не удается существенно увеличить плотность упаковки. Причиной этого является наличие внутренних пор в крупных частицах размером более чем заявленная. Размер и количество мелкой фракции влияют не только на плотность укладки, но и на физико-химические процессы при работе слоя, прежде всего на спекание и процессы усадки.
Использование барьерного материала огнеупорного слоя с содержанием фракций менее четырех приводит к высокой степени нестабильности ввиду существенного колебания содержания зерен различного размера внутри этих фракций.
Использование фракций более четырех существенно усложняет производство футеровки катодной части.
Сущность изобретения поясняется графическим материалом, где на фиг.1 изображена схема катодной футеровки алюминиевого электролизера; на фиг.2 - результаты исследований на криолитоустойчивость одного и того же материала, но с различной степенью уплотнения; на фиг.3 показано изменение плотности упаковки от величины максимального размера частиц в смеси с распределением частиц по идеальной кривой Андреасена.
Футеровка катодной части алюминиевого электролизера состоит из выравнивающей подушки 1, двух слоев теплоизоляционного материала 2, огнеупорного слоя из барьерного материала 3, выполненного в виде порошка. Порошок имеет алюмосиликатный состав, в техническом решении используется шамот с содержанием окиси алюминия от 27 до 32%. Он обладает высокой реакционной способностью к компонентам электролита, проникающим через подовые секции, состоящие из угольных катодных блоков 4, уложенных на барьерный материал 3. Анод 5 помещен в электролизную ванну. Подовая масса 6 заполняет пространство между бортовой футеровкой 7 и угольными блоками 4. Катодный стержень 8 через уплотнение 9 соединен с угольным блоком 4. В нижней части электролизной ванны установлен компенсатор 10.
Техническая сущность предлагаемого решения заключается в следующем.
Как показывает опыт работы электролизеров и результаты тестовых испытаний на криолитоустойчивость одного и того же материала, но с различной плотностью упаковки (Фиг.2), величина криолитоустойчивости прямо пропорциональна плотности вещества. С увеличением плотности вещества происходят следующие положительные явления:
- уменьшается проницаемость по отношению как к жидкой, так и газовой фазе компонентов электролита, т. е. реакции идут не в объеме, а по поверхности раздела фаз;
- увеличивается количество огнеупорного материала, реагирующего с вышеуказанными компонентами, что напрямую связано со сроком службы электролизеров.
Соотношение крупной и мелкой фракций барьерного материала - шамота находили опытным путем для шамота Магнитогорского огнеупорного комбината по закону Фиббоначи.
Исследование двухфракционных систем показало, что рациональные зерновые составы порошковых огнеупоров содержит 61,8% фракции 3-0,1 мм и 38,2% фракции менее 0,1 мм или 52,8% фракции 3-0,5 мм и 47,2% фракции менее 0,5 мм.
Из экспериментальных данных замечено, что получение порошковых огнеупоров из двух фракций приводит к высокой степени их нестабильности ввиду существенного колебания содержания зерен различного размера внутри этих фракций.
Поэтому условно вводим три степени стабильности изделий по исходному зерновому составу огнеупоров: минимальная стабильность из 2-х фракций; средняя стабильность из 4-х фракций и максимальная стабильность из 8-ми фракций. Первая степень стабильности обуславливает получение наименее стабильных составов, а третья степень - максимально стабильных составов. В таблице приведены исследуемые составы вариантов зернового состава барьерной смеси.
Таблица
Степени стабильности
I II III
фракции, мм мас.% фракции, мм мас. % фракции, мм мас.%
3-0,1 61,8 3-1 38,2 3-2 23,6
2-1 14,6
1-0,5 23,6 1-0,5 14,6
0,5-0,1 9,0
менее 0,1 38,2 0,5-0,1 14,6 0,1-0,088 5,6
0,088-0,063 9,0
менее 0,1 23,6 0,063-0,004 9,0
менее 0,004 14,6
Достижение третьей степени наибольшей стабильности шамотной смеси существенно усложняет ее производство. Поэтому для практики производства сухого барьерного материала на огнеупорных заводах на основании приведенного зернового состава (таблица) рекомендуется оптимальный фракционный состав (мас.%), обеспечивающий наиболее плотную укладку зерен: 3-1 мм - 38,2%; 1-0,5 мм - 23,6%; 0,5-0,1 мм - 14,6%; менее 0,1 мм - 23,6%.
При увеличении количества средней фракции происходит раздвижка крупных зерен, что приводит к разрыхлению упаковки. Поэтому содержание ее было неизменным. Средние фракции исполняют роль пробки, препятствуя перетоку мелких фракций. Пористость упаковок снижается с увеличением содержания тонкомолотого компонента, проходя через минимум при 38,2% для исследованных масс (с максимальным размером зерна 3 мм). При оптимальном содержании тонкомолотой фракции пористость образца преимущественно обусловлена пористостью самых крупных зерен.
По результатам зернового анализа шамотного порошка при увеличении тонкомолотой фракции (менее 0,1 мм) до 38,2 мас.% было получено максимальное значение плотности шамота после трамбовки 2,096 г/см3.
Как показали результаты исследований на криолитоустойчивость данной смеси, это позволяет сформировать верхний высокореакционный слой и замедлить продвижение фронта реагирования в его нижнюю часть. Испытания указанной смеси на криолитоустойчивость показали, что она обладает высокой криолитоустойчивостью.
Предлагаемая футеровка алюминиевого электролизера с барьерной смесью по сравнению с прототипом позволяет повысить срок службы за счет замедления скорости проникновения компонентов криолитглиноземного расплава в теплоизоляционную часть цоколя и сохранения теплофизических свойств последней.
Использование вышеописанной катодной футеровки позволит увеличить в среднем срок службы каждого алюминиевого электролизера на 1,5 года, что приведет к увеличению выпуска алюминия примерно на 600 тонн. При этом достигается снижение удельного расхода электроэнергии на 125 тыс.кВт·ч.

Claims (1)

  1. Футеровка катодной части алюминиевого электролизера, включающая подовые секции, огнеупорный, выполненный из порошка, и теплоизоляционный слои, отличающаяся тем, что огнеупорный слой состоит из порошка алюмосиликатного состава с содержанием окиси алюминия 27-35%, имеющего плотность не менее 79-80% от величины истинной плотности и содержащего следующие фракции, мас.%:
    3-1 мм 38,0÷38,4 1-0,5 мм 23,5÷23,7 0,5-0,1 мм 14,5÷14,7 Менее 0,1 мм 23,4÷23,6
RU2004131353/02A 2004-10-26 2004-10-26 Футеровка катодной части алюминиевого электролизера RU2276700C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004131353/02A RU2276700C1 (ru) 2004-10-26 2004-10-26 Футеровка катодной части алюминиевого электролизера

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004131353/02A RU2276700C1 (ru) 2004-10-26 2004-10-26 Футеровка катодной части алюминиевого электролизера

Publications (2)

Publication Number Publication Date
RU2004131353A RU2004131353A (ru) 2006-04-10
RU2276700C1 true RU2276700C1 (ru) 2006-05-20

Family

ID=36458629

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004131353/02A RU2276700C1 (ru) 2004-10-26 2004-10-26 Футеровка катодной части алюминиевого электролизера

Country Status (1)

Country Link
RU (1) RU2276700C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072464A (zh) * 2016-02-09 2018-12-21 俄铝工程技术中心有限责任公司 一种对生产原铝的电解槽的阴极进行衬里的方法
WO2020048972A1 (en) * 2018-09-04 2020-03-12 Norsk Hydro Asa Method for providing a cathode lining barrier layer in an electrolysis cell and a material for same
EP3816323A4 (en) * 2018-06-07 2022-03-02 Obshchestvo S Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenerno-Tekhnologicheskiy Tsentr" CATHODE DEVICE FOR AN ALUMINUM ELECTROLYTIC CELL

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072464A (zh) * 2016-02-09 2018-12-21 俄铝工程技术中心有限责任公司 一种对生产原铝的电解槽的阴极进行衬里的方法
EP3415663A4 (en) * 2016-02-09 2019-10-30 (Obshchestvo S Ogranichennoy Otvetstvennost'Yu "Obedinennaya Kompaniya Rusal Inzhen-Erno- Tekhnologicheskiy Tsentr) METHOD FOR APPLYING CATHODE COATING OF ELECTROLYSER TO PRODUCE PRIMARY ALUMINUM
CN109072464B (zh) * 2016-02-09 2021-08-10 俄铝工程技术中心有限责任公司 一种对生产原铝的电解槽的阴极进行衬里的方法
EP3816323A4 (en) * 2018-06-07 2022-03-02 Obshchestvo S Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenerno-Tekhnologicheskiy Tsentr" CATHODE DEVICE FOR AN ALUMINUM ELECTROLYTIC CELL
WO2020048972A1 (en) * 2018-09-04 2020-03-12 Norsk Hydro Asa Method for providing a cathode lining barrier layer in an electrolysis cell and a material for same
US11466377B2 (en) 2018-09-04 2022-10-11 Norsk Hydro Asa Method for providing a cathode lining barrier layer in an electrolysis cell and a material for same

Also Published As

Publication number Publication date
RU2004131353A (ru) 2006-04-10

Similar Documents

Publication Publication Date Title
US4338177A (en) Electrolytic cell for the production of aluminum
US6139704A (en) Application of refractory borides to protect carbon-containing components of aluminum production cells
CA2137816C (en) The application of refractory borides to protect carbon-containing components of aluminium production cells
US5028301A (en) Supersaturation plating of aluminum wettable cathode coatings during aluminum smelting in drained cathode cells
CA1273895A (en) Linings for aluminium reduction cells
RU2276700C1 (ru) Футеровка катодной части алюминиевого электролизера
US5322826A (en) Refractory material
US6001236A (en) Application of refractory borides to protect carbon-containing components of aluminium production cells
RU2266983C1 (ru) Катодная футеровка алюминиевого электролизера
EP0102361B1 (en) Diffusion barrier for alluminium electrolysis furnaces
RU2318921C1 (ru) Футеровка катодного устройства электролизера для производства первичного алюминия
EP1366214B1 (en) Aluminium-wettable porous ceramic material
CN101437982B (zh) 用于获得铝的电解槽
AU682855B2 (en) Conditioning of cell components for aluminium production
CN111996551A (zh) 铝电解槽阴极槽底保温层结构
Krohn et al. Penetration of sodium and bath constituents into cathode carbon materials used in industrial cells
Hop Sodium expansion and creep of cathode carbon
RU2716569C1 (ru) Способ электролиза криолитоглиноземных расплавов с применением твердых катодов
SU1183564A1 (ru) Футеровка катодного устройства алюминиевого электролизера
JPH05263285A (ja) アルミニウム電解用電極
RU2294403C1 (ru) Способ футеровки катодного устройства алюминиевого электролизера
RU2299277C2 (ru) Катодное устройство электролизера для производства алюминия
US11466377B2 (en) Method for providing a cathode lining barrier layer in an electrolysis cell and a material for same
US3855086A (en) Carbon anode protection in aluminum smelting cells
WO2017018911A1 (ru) Способ футеровки катодного устройства электролизера для получения первичного алюминия (варианты)

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091027

PC41 Official registration of the transfer of exclusive right

Effective date: 20131024

MM4A The patent is invalid due to non-payment of fees

Effective date: 20201027