RU2268102C1 - Способ изготовления многослойной конструкции - Google Patents

Способ изготовления многослойной конструкции Download PDF

Info

Publication number
RU2268102C1
RU2268102C1 RU2004123258/02A RU2004123258A RU2268102C1 RU 2268102 C1 RU2268102 C1 RU 2268102C1 RU 2004123258/02 A RU2004123258/02 A RU 2004123258/02A RU 2004123258 A RU2004123258 A RU 2004123258A RU 2268102 C1 RU2268102 C1 RU 2268102C1
Authority
RU
Russia
Prior art keywords
filler
blanks
molding
sheet
sheet blanks
Prior art date
Application number
RU2004123258/02A
Other languages
English (en)
Inventor
Оскар Акрамович Кайбышев (RU)
Оскар Акрамович Кайбышев
Алексей Анатольевич Круглов (RU)
Алексей Анатольевич КРУГЛОВ
Рамиль Яватович Лутфуллин (RU)
Рамиль Яватович ЛУТФУЛЛИН
Original Assignee
Институт проблем сверхпластичности металлов РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт проблем сверхпластичности металлов РАН filed Critical Институт проблем сверхпластичности металлов РАН
Priority to RU2004123258/02A priority Critical patent/RU2268102C1/ru
Application granted granted Critical
Publication of RU2268102C1 publication Critical patent/RU2268102C1/ru

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Изобретение может быть использовано при изготовлении конструкций из способных к сверхпластической деформации материалов. Листовые заготовки наполнителя из титанового сплава соединяют контактной сваркой сварными швами по заданному рисунку. Герметизируют полость между ними и размещают их между листовыми заготовками обшивки. Производят формовку рабочей средой под регулируемым давлением, по крайней мере, листовых заготовок наполнителя и твердофазное соединение наполнителя с обшивками. Параметры контактной сварки выбирают из условия образования ширины зоны соединения заготовок наполнителя в пластическом состоянии, препятствующей возникновению предельного радиуса формовки в заготовках наполнителя вблизи шва до окончания процесса формовки. Способ обеспечивает снижение уровня концентрации напряжений в готовой конструкции и исключает брак при формовке. 7 ил., 1 табл.

Description

Изобретение относится к области обработки металлов давлением и сварки давлением. Предназначено для изготовления многослойных конструкций из материалов, способных к сверхпластической (СП) деформации, преимущественно, титановых сплавов. Данный способ позволяет получать конструкции ответственного назначения: крыльевые и корпусные узлы, перегородки, стенки, люки, ребра, балки, сложные оболочки. Изделия, получаемые по данному способу, находят применение в таких отраслях машиностроения как аэрокосмическая, автомобилестроение, нефтехимическая, судостроение, транспорт, строительство и т.д.
Известен способ изготовления многослойной конструкции из материала, способного к сверхпластической деформации, в том числе из титанового сплава [1]. По данному способу две листовые заготовки наполнителя соединяют между собой прерывистыми или непрерывными сварными швами контактной сваркой по заданному рисунку, полость между заготовками герметизируют с установкой трубопроводов подачи рабочей среды и размещают в штампе между листовыми заготовками обшивки. После нагрева штампа до температуры 927°С осуществляют формовку подачей рабочей среды в полость между листовыми заготовками наполнителя. Условия сверхпластичности соблюдаются за счет осуществления формовки при определенной температуре и скорости деформации, обеспечиваемой регулируемым давлением Р=f(τ), где τ - время формовки. Под воздействием давления рабочей среды из листовых заготовок наполнителя образуются ячейки, форма которых определяется рисунком сварных швов и расстоянием между листовыми заготовками обшивки. В процессе формовки ячейки, вступая в контакт друг с другом и с листовыми заготовками обшивки, образуют твердофазное соединение, что приводит к получению монолитной конструкции.
Таким образом, процесс образования твердофазного соединения совмещается с процессом сверхпластической формовки. При этом температуру формовки выбирают из условия обеспечения стандартной диффузионной сварки, составляющей 0.6...0.8Тпл используемого титанового сплава, где Тпл - температура плавления сплава в градусах по Кельвину. Давление рабочей среды (газа) по окончании формовки доводят до значений, требуемых для образования твердофазного соединения, и осуществляют выдержку под давлением при температуре процесса в течение длительного времени.
Известен также способ [2], который отличается от [1] тем, что осуществляют формовку листовых заготовок обшивки. После того как они примут форму штампа, проводят, как и в первом случае, формовку листовых заготовок наполнителя.
Общий недостаток обоих способов связан с использованием контактной шовной сварки для соединения листовых заготовок, образующих наполнитель. Контактная сварка обеспечивает высокую производительность и возможностью выполнять рисунок соединения практически любой конфигурации. В то же время практика показывает, что при формовке листовых заготовок наполнителя вблизи сварного шва, выполненного по стандартным режимам, происходит разрыв формуемой заготовки (фиг.6). Кроме того, стенка ячейки в готовой конструкции из-за резких перепадов сечения, связанных с наличием сварного шва, не лишена концентраторов напряжений.
Известно, что при контактной сварке соединение состоит из нескольких зон: литого ядра, зоны, где соединение произошло в пластическом состоянии (без расплавления), и зоны схватывания, где соединение достигло только уровня физического контакта [3]. Пластические свойства этих зон и прочность соединения в них изменяются по градиенту в зависимости от удаления от центра литого ядра.
Для исключения брака при формовке в способе [1] делались попытки ограничить ширину шва. Данный способ принят за прототип заявляемого технического решения.
Эти попытки оказались безрезультатными, поскольку не были выявлены истинные причины возникновения разрывов формуемой заготовки.
Задача изобретения - повышение выхода годного при изготовлении многослойных конструкций. Задачей также является снижение уровня концентрации напряжений в готовой конструкции.
Поставленная задача решается способом изготовления многослойной конструкции из способных к сверхпластической деформации материалов, включающим соединение листовых заготовок наполнителя, выполненных из титанового сплава, сварными швами по заданному рисунку с помощью контактной сварки и герметизацию полости между ними, размещение их между листовыми заготовками обшивки, формовку рабочей средой под регулируемым давлением, по крайней мере, листовых заготовок наполнителя, а также твердофазное соединение наполнителя с обшивками, отличающимся тем, что параметры контактной сварки выбирают обеспечивающими образование зоны соединения заготовок наполнителя в пластическом состоянии такой ширины, которая препятствует возникновению предельного радиуса формовки в заготовках наполнителя вблизи шва до окончания процесса формовки.
Для объяснения сущности изобретения рассмотрим следующие варианты выполнения сварного соединения контактной сваркой.
1. Предположим, что зона соединения заготовок наполнителя в пластическом состоянии отсутствует. В этом случае литое ядро можно рассматривать как место жесткой заделки листовой заготовки наполнителя. Под воздействием давления рабочей среды в заготовке в месте заделки сразу же образуется предельный радиус. Образование предельного радиуса в лучшем случае останавливает равномерную пластическую деформацию заготовки вблизи шва и приводит к резкому перепаду по сечению стенки ячейки. Кроме того, в местах, где листовые заготовки наполнителя, соприкасаясь друг с другом, образуют стенку ячейки деформация затормаживается. В результате воздействия двух этих факторов деформация локализуется в листовой заготовке вблизи шва, что приводит в худшем случае к разрыву заготовки в процессе формовки.
2. Предположим, что ширина зоны соединения заготовок наполнителя в пластическом состоянии не ограничена. В силу наличия отмеченного выше градиента по пластическим свойствам и прочности соединения заготовок сварной шов при формовке будет вначале раскрываться в зоне схватывания, затем пластически растягиваться, не приходя к состоянию жесткой заделки. При этом, когда ячейки будут отформованы, в стенке между ячейками останется двухсторонний выступ, конструктивно не предусмотренный. Для уменьшения выступа, из-за которого происходит предполагаемое растяжение формуемой заготовки в этом месте, приводящее к разрыву, и предусмотрен прием, заключающийся в уменьшении ширины сварного шва в [1]. Однако анализ причин разрывов показывает, что заготовка наоборот должна растягиваться, но без локализации деформации, вызываемой возникновением предельного радиуса формовки.
3. Предположим, что литая зона уменьшена и в пределе отсутствует. В этом случае не обеспечивается требуемая прочность соединения.
Для изготовления реальной конструкции, заданной чертежом, необходимо и достаточно экспериментальным путем установить ширину зоны соединения заготовок наполнителя в пластическом состоянии, способную раскрываться и пластически растягиваться при формовке, тем самым, препятствуя возникновению предельного радиуса в заготовках наполнителя вблизи шва при формовке. В этом случае при наличии литой зоны, обеспечивающей прочность соединения, имеет место плавный переход по сечению стенки ячейки (фиг.4). Экспериментальный путь состоит в сварке опытных образцов по различным режимам. Режим контактной сварки определяют следующие параметры: величина сварочного тока, плотность тока, длительность включения тока, усилие сжатия, размеры электрода и т.д. Варьируя, по крайней мере, одним из этих параметров можно изменять указанную ширину в широких пределах [3].
Таким образом, определяющим фактором, исключающим разрывы заготовок наполнителя при формовке, является наличие зоны соединения заготовок наполнителя в пластическом состоянии определенной ширины.
Изобретение поясняется графическими материалами.
На фиг.1 показана схема соединения контактной сваркой листовых заготовок наполнителя.
На фиг.2 показана схема формообразования участка стенки, включающего шов, в конструкции, изготовленной по предлагаемому способу.
На фиг.3 показана многослойная конструкция, изготовленная по предлагаемому способу.
На фиг.4 показан участок стенки, включающий шов, в конструкции, изготовленной по предлагаемому способу.
На фиг.5 показана микроструктура сварного шва, соответствующая фиг.4.
На фиг.6 показано место разрыва формуемой заготовки при выполнении сварного шва контактной сваркой по стандартному режиму.
На фиг.7 показана микроструктура сварного шва, соответствующая фиг.6.
Сварное соединение 1 листовых заготовок наполнителя 2 и 3 (фиг.1) включает литую зону 4, зону соединения заготовок в пластическом состоянии 5, зону схватывания 6. В процессе формовки листовые заготовки наполнителя 2 и 3 соединяются с заготовками обшивок 7 и 8 и формируют стенку 9, а вблизи сварного шва 10 каждая заготовка наполнителя образует участок 11 (фиг.2). Именно на участке 11 в листовой заготовке наполнителя возникает предельный радиус формовки при выполнении контактной сварки по стандартному режиму.
Возможность осуществления изобретения поясняется примером. Данный пример не исчерпывает возможностей способа в отношении типоразмеров изготавливаемых многослойных конструкций.
Изготавливают модель пустотелой лопатки с замковой частью четырехслойной конструкции с продольными ребрами жесткости. Максимальная высота пера 10 мм, высота замковой части 20 мм. Материал листовых заготовок титановый сплав ВТ6 (Ti-6Al-4V). Толщина листовых заготовок 0,8 мм. Размер зерен в листовых заготовках 3 мкм. Предельный радиус формовки 0,5 мм. Наполнитель состоит из двух листовых заготовок, которые соединяют контактной шовной сваркой. Для этого предварительно изготавливают экспериментальные образцы из заготовок 100×70 мм. Высоту экспериментальных образцов выбирают равной максимальной высоте замковой части конструкции - 20 мм.
Листовые заготовки в образце №1 соединяют контактной сваркой по стандартному режиму. При сварке заготовок в образцах №2-4 изменяют в сторону уменьшения величину сварочного тока и длительность его включения, при этом другие параметры постоянны. Сваренные по разным режимам образцы герметизируют по контуру и к каждому приваривают штуцер для подачи рабочей среды. Для формовки образец помещают в экспериментальный штамп с рабочим пространством высотой 20 мм. Рабочая среда - аргон. Сборку нагревают до температуры 900°С и подают газ в полость между листовыми заготовками, обеспечивая скорость деформации не выше 10-4 с-1. Максимальное давление газа 2,5 МПа. Результаты измерения ширины различных зон в сварных соединениях образцов и результаты их формовки приведены в таблице.
Ширина зоны схватывания заготовок, мм Ширина зоны соединения заготовок в пластическом состоянии, мм Размер литой зоны соединения заготовок, мм Радиус формовки в заготовке вблизи шва, мм Результат формовки
1 0,395 0,121 2,748 0,5 разрыв
2 0,396 0,207 2,278 0,5 разрыв
3 0,476 0,251 1,511 1,2 без разрыва
4 0,768 0,371 отсутствует без формовки
Разрыв листовой заготовки в образце №1 произошел в начальный момент образования соседними ячейками стенки вблизи сварного шва. Разрыв листовой заготовки в образце №2 произошел в момент окончания формообразования стенки соседними ячейками, также вблизи шва. Разрыв в образце №1 произошел раньше, поскольку ширина зоны соединения заготовок в пластическом состоянии в образце №1 меньше, чем в образце №2. При этом радиус формовки в заготовке вблизи шва в образцах №1 и 2 достиг предельного значения. Образец №4 не подвергался формовке из-за низкой прочности сварного соединения, обусловленной отсутствием литой зоны.
Для сварки наполнителя конструкции выбирают режим контактной сварки образца №3. Две листовые заготовки наполнителя сваривают продольными швами с шагом 28 мм. Наполнитель собирают с листовыми заготовками обшивки в пакет и герметизируют по контуру сварным швом. С помощью сварки устанавливают трубопровод подачи рабочей среды в полость между листовыми заготовками наполнителя и трубопровод подачи рабочей среды в полость между листовыми заготовками обшивки и наполнителя. Пакет листовых заготовок помещают в штамп между фигурными полуматрицами и зажимают с помощью клиновых соединений. Сборку нагревают до температуры 900°С и подают газ в полость между листовыми заготовками наполнителя и обшивок, обеспечивая скорость деформации листовых заготовок обшивки 10-4...10-1. Максимальное давление газа 2 МПа. Листовые заготовки обшивки принимают форму рабочих полостей полуматриц. Далее газ подают полость между листовыми заготовками наполнителя, обеспечивая скорость деформации листовых заготовок не выше 10-4с-1. Максимальное давление газа 2,5 МПа. После выдержки под давлением 2,5 МПа в течение 120 мин сборку охлаждают и извлекают готовую конструкцию, показанную на фиг.3.
Участок стенки, включающей шов, в конструкции, изготовленной по предлагаемому способу, показан на фиг.4. На фиг.6 показано место разрыва формуемой заготовки при выполнении сварного шва контактной сваркой по стандартному режиму. На фотографиях микроструктуры сварных швов (фиг.5 и 7), соответствующих фиг.4 и 6, представлены две зоны: слева зона литого ядра с грубой пластинчатой структурой и справа зона соединения заготовок в пластическом состоянии с размером зерен 5-10 мкм. При этом ширина зоны соединения заготовок в пластическом состоянии на фиг 7 существенно меньше, чем на фиг.5, что объясняет причину разрыва заготовки при формовке.
Источники информации
1. Патент США №4217397, В 23 К 31/02, 1980.
2. Vaccari Y.A. Form-Bonding titanium in one-shot. American Machinist 1983, vol.127, №10б pp.91-94.
3. Гуревич С.М. Справочник по сварке цветных металлов. Киев: Наук. думка, 1981, 608 с.

Claims (1)

  1. Способ изготовления многослойной конструкции из способных к сверхпластической деформации материалов, включающий соединение листовых заготовок наполнителя, выполненных из титанового сплава, сварными швами по заданному рисунку с помощью контактной сварки и герметизацию полости между ними, размещение их между листовыми заготовками обшивки, формовку рабочей средой под регулируемым давлением, по крайней мере, листовых заготовок наполнителя, а также твердофазное соединение наполнителя с обшивками, отличающийся тем, что параметры контактной сварки выбирают обеспечивающими образование зоны соединения заготовок наполнителя в пластическом состоянии такой ширины, которая препятствует возникновению предельного радиуса формовки в заготовках наполнителя вблизи шва до окончания процесса формовки.
RU2004123258/02A 2004-07-08 2004-07-08 Способ изготовления многослойной конструкции RU2268102C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004123258/02A RU2268102C1 (ru) 2004-07-08 2004-07-08 Способ изготовления многослойной конструкции

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004123258/02A RU2268102C1 (ru) 2004-07-08 2004-07-08 Способ изготовления многослойной конструкции

Publications (1)

Publication Number Publication Date
RU2268102C1 true RU2268102C1 (ru) 2006-01-20

Family

ID=35873407

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004123258/02A RU2268102C1 (ru) 2004-07-08 2004-07-08 Способ изготовления многослойной конструкции

Country Status (1)

Country Link
RU (1) RU2268102C1 (ru)

Similar Documents

Publication Publication Date Title
US7946468B2 (en) Friction welded structural assembly and preform and method for same
US6337471B1 (en) Combined superplastic forming and adhesive bonding
JP3090324B2 (ja) 多孔構造物およびその製作方法
US20060210821A1 (en) Method and apparatus for forming complex contour structural assemblies
CA2520463C (en) Method of forming and blank therefor
JP7134271B2 (ja) 二重壁式チタニウム管材及びその管材を製造する方法
Kasaei et al. A review on mechanical and metallurgical joining by plastic deformation
RU2268102C1 (ru) Способ изготовления многослойной конструкции
EP3446805A1 (en) Superplastic forming and diffusion bonding process
RU2170636C2 (ru) Способ изготовления многослойной ячеистой конструкции
US10850317B2 (en) Superplastic forming and diffusion bonding process
US10821541B2 (en) Superplastic forming and diffusion bonding process
Lee Application of Solid State Welding and Superplastic Forming to Aerospace Vehicles
EP3446804A1 (en) Superplastic forming and diffusion bonding process
Agrawal et al. Friction stir processing of AA6063-T6 tubes and end forming characterization at varying tool pin profiles
RU2047408C1 (ru) Способ изготовления оболочек из листовых заготовок
US6299963B1 (en) Superplastically formed panel
US6704981B2 (en) Superplastic forming method
Huang et al. Friction Stir-Based Remanufacturing
Allazadeh et al. Manufacture of a four-sheet complex component from different titanium alloys by superplastic forming
GB2565790A (en) Superplastic forming and diffusion bonding process
GB2565791A (en) Superplastic forming and diffusion bonding process
Wang et al. Superplastic bulging capability of Ti-6Al-4V butt-welded plate by high energy beam welding
WILLIAMS et al. The cost effective use of sheet material

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150709