RU2262047C1 - Воздушная турбохолодильная установка - Google Patents

Воздушная турбохолодильная установка Download PDF

Info

Publication number
RU2262047C1
RU2262047C1 RU2004100052/06A RU2004100052A RU2262047C1 RU 2262047 C1 RU2262047 C1 RU 2262047C1 RU 2004100052/06 A RU2004100052/06 A RU 2004100052/06A RU 2004100052 A RU2004100052 A RU 2004100052A RU 2262047 C1 RU2262047 C1 RU 2262047C1
Authority
RU
Russia
Prior art keywords
pressure
turbocompressor
heat exchanger
outlet
chamber
Prior art date
Application number
RU2004100052/06A
Other languages
English (en)
Other versions
RU2004100052A (ru
Inventor
А.Н. Токаев (RU)
А.Н. Токаев
А.А. Быковский (RU)
А.А. Быковский
Original Assignee
Открытое акционерное общество "Специальное констукторско-технологическое бюро радиооборудования" (ОАО "СКТБР")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Специальное констукторско-технологическое бюро радиооборудования" (ОАО "СКТБР") filed Critical Открытое акционерное общество "Специальное констукторско-технологическое бюро радиооборудования" (ОАО "СКТБР")
Priority to RU2004100052/06A priority Critical patent/RU2262047C1/ru
Publication of RU2004100052A publication Critical patent/RU2004100052A/ru
Application granted granted Critical
Publication of RU2262047C1 publication Critical patent/RU2262047C1/ru

Links

Images

Landscapes

  • Separation By Low-Temperature Treatments (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к холодильной технике и может найти применение при создании турбодетандерных машин, работающих в широком интервале температур охлаждения. Воздушная турбохолодильная установка содержит турбодетандер, многокамерный динамический теплообменник, потребитель холода, источник энергии и центробежный турбокомпрессор. Центробежный турбокомпрессор разделен на каскады низкого и высокого давления центробежного типа. Каскад низкого давления механически связан с источником энергии, а каскад высокого давления механически связан с турбодетандером. Теплообменник выполнен трехкамерным. Вход в первую камеру теплообменника связан каналом с выходом потребителя холода, выход - с атмосферой, вход во вторую камеру теплообменника - с выходом каскада низкого давления турбокомпрессора, выход - с входом каскада высокого давления турбокомпрессора, вход в третью камеру теплообменника - с выходом каскада высокого давления турбокомпрессора, выход - с входом в турбодетандер. Использование изобретения позволит увеличить холодопроизводительность установки, повысить надежность запуска, упростить конструкцию, повысить надежность и экономичность работы. 2 ил.

Description

Изобретение относится к области холодильной техники и может найти применение при создании турбодетандерных машин, работающих в широком интервале температур охлаждения.
Известна воздушная турбохолодильная установка, содержащая турбодетандер, теплообменник, потребитель холода, источник энергии и центробежный турбокомпрессор (см. МПК F 25 В 11/00, RU 2206028 C1, 10.06.2003 г. Воздушная турбохолодильная установка.).
Разделение турбокомпрессора на каскад низкого давления и каскад высокого давления обеспечивает вращение каскадов с разным числом оборотов, а их связь посредством канала повышает число оборотов каскада высокого давления по сравнению с оборотами каскада низкого давления, причем каскад высокого давления приводится во вращение электродвигателем. Однако промышленность не выпускает электродвигателей с высокой частотой вращения (20000 и более об/мин), что ограничивает эффективность установки в целом, а использование мультипликатора между электродвигателем и компрессором каскада высокого давления усложняет ее конструкцию.
Компрессор каскада низкого давления, пропускающий больший объемный расход по сравнению с каскадом высокого давления, по своим габаритным размерам больше компрессорной ступени высокого давления. Поэтому для максимального облегчения высокооборотного ротора турбодетандера целесообразнее объединить последний с компрессором каскада высокого давления с целью его перевода на газовую смазку.
Известная установка имеет еще ряд существенных недостатков:
- конструктивная сложность установки из-за присутствия, кроме основного теплообменника, еще дополнительного теплообменника, охладителя и радиатора;
- значительные габаритные размеры и масса турбокомпрессора из-за использования в качестве каскада низкого давления турбокомпрессора каскада осевого типа;
- невозможность использования установки для охлаждения и заморозки продуктов питания из-за возможности попадания в пищевые продукты, промежуточного хладоносителя - тосола, как сильнодействующего ядовитого вещества.
Наиболее близкой к заявленной воздушной турбохолодильной установке является установка, содержащая турбодетандер, многокамерный динамический теплообменник, потребитель холода, источник энергии и центробежный турбокомпрессор (Способ получения холода. RU, Патент 2054146 С1, М6 Кл. F 25 B 9/00. Опубл. 1996.02.10).
Для эффективной работы такой турбохолодильной установки одноступенчатый компрессор должен обеспечивать степень повышения давления не менее двух, что ограничивается высокой частотой вращения электродвигателя и в установке предусмотрен мультипликатор, который имеет сложную конструкцию и большую стоимость. Ротор установки имеет значительную массу, не может быть переведен на газовую смазку и требует системы смазки и охлаждения маслом его подшипников и шестерен мультипликатора.
При одноступенчатом компрессоре воздух нагревается до значительных температур (выше 100 град. по Цельсию) и подается на теплообменник, на который же подается воздух после потребителя холода с минусовой температурой (ниже минус пятидесяти град. по Цельсию).
При вращении теплообменника его конструктивные материалы работают в условиях переменной температуры, ее значительного градиента, конденсации и испарения влаги и имеют различные коэффициенты линейного расширения. Под воздействием центробежной силы и вышеуказанных факторов происходит расслоение гофрированных лент и образование трещин в полимерном составе насадки теплообменника. Кроме того, известная установка имеет еще ряд существенных недостатков:
- низкая надежность запуска установки в работу, обусловленная необходимостью вращения одновременно турбокомпрессора и турбодетандера;
- сложная конструкция, обусловленная необходимостью использования противопомпажных средств при повышении давления газа или воздуха в турбокомпрессоре.
Целью изобретения является создание воздушной турбохолодильной установки, обладающей высокой холодопроизводительностью и надежностью запуска и работы установки при упрощении конструкции.
Решение задачи достигается тем, что воздушная турбохолодильная установка, содержащая турбодетандер, многокамерный динамический теплообменник, потребитель холода, источник энергии и центробежный турбокомпрессор, разделенный на каскады низкого и высокого давления центробежного типа, причем каскад низкого давления механически связан с источником энергии, а каскад высокого давления механически связан с турбодетандером, и теплообменник выполнен трехкамерным, причем вход в первую камеру теплообменника связан каналом с выходом потребителя холода, выход - с атмосферой, вход во вторую камеру теплообменника - с выходом каскада низкого давления турбокомпрессора, выход - с входом каскада высокого давления турбокомпрессора, вход в третью камеру теплообменника - с выходом каскада высокого давления турбокомпрессора, выход - с входом в турбодетандер.
Предложенное решение имеет существенные отличия от прототипа:
- турбокомпрессор разделен на каскад низкого и каскад высокого давления;
- каскад высокого давления центробежного типа механически связан с турбодетандером;
- каскад низкого давления центробежного типа механически связан с источником энергии;
- теплообменник выполнен трехкамерным;
- вход во вторую камеру теплообменника связан каналом с выходом каскада низкого давления турбокомпрессора;
- выход из второй камеры теплообменника связан каналом с входом каскада высокого давления турбокомпрессора;
- вход в третью камеру теплообменника связан каналом с выходом каскада высокого давления турбокомпрессора;
- выход из третьей камеры теплообменника связан каналом входом в турбодетандер.
Следовательно, предложенное решение соответствует критерию «новизна».
Введение дополнительных центробежной компрессорной ступени и камеры теплообменника, их взаимное соединение обеспечивают двухступенчатое охлаждение сжатого воздуха.
Каскад турбокомпрессора низкого давления соединен каналом через вторую камеру теплообменника с каскадом турбокомпрессора высокого давления, при этом происходит уменьшение температуры сжатого воздуха, что приводит к уменьшению пиковых положительных температур воздуха, охлаждаемого в теплообменнике, к снижению потребной мощности источника энергии и увеличению холодильного коэффициента. Уменьшение пиковых положительных температур воздуха, охлаждаемого в теплообменнике, ведет к повышению долговечности и надежности работы теплообменника.
Разделение турбокомпрессора на каскад низкого давления и каскад высокого давления обеспечит вращение каскадов с разным числом оборотов, что дает увеличение напорности газа или воздуха на ступенях турбокомпрессора, а также позволит использовать для вращения каскада высокого давления энергию турбодетандера, при этом уменьшая затраты энергии от источника энергии (электродвигателя) на запуск, что приводит к улучшению пусковой характеристики и увеличению холодильного коэффициента, а вместе с ним и холодопроизводительности установки. Такой же технический результат обеспечивает механическая связь турбодетандера с каскадом высокого давления, а связь каскадов низкого и высокого давлений посредством канала повышает число оборотов каскада высокого давления по сравнению с оборотами каскада низкого давления, что позволяет отказаться от дорогостоящего мультипликатора, требующего смазки и охлаждения, и максимально облегчить ротор турбодетандера и перейти на газовую смазку и охлаждение его подшипников. Кроме этого, разделение турбокомпрессора на каскады низкого и высокого давления позволит не применять противопомпажные средства при степенях повышения давления в турбокомпрессоре > 4.
В предложенном решении все отличительные признаки взаимосвязаны и в сочетании с другими признаками позволяют получить новый технический результат: увеличить холодопроизводительность установки, повысить надежность запуска и работы установки при упрощении конструкции.
Следовательно, предложенное решение соответствует критерию «изобретательский уровень».
Изобретение поясняется чертежами, где на фиг.1 представлена конструктивная схема установки; на фиг.2 - вид сбоку на трехкамерный динамический теплообменник.
Воздушная турбохолодильная установка содержит (фиг.1) турбодетандер 1, трехкамерный динамический теплообменник 2, потребитель холода 3, источник энергии (электродвигатель) 4, каскады низкого 5 и высокого давления 6 центробежного типа, причем каскад низкого давления 5 механически связан с источником энергии 4, а каскад высокого давления 6 механически связан с турбодетандером 1, причем вход в первую камеру 7 теплообменника 2 (фиг.2) связан каналом 8 с выходом потребителя холода 3, выход - с атмосферой, вход во вторую камеру 9 теплообменника 2 связан каналом 10 с выходом каскада низкого давления 5 турбокомпрессора, выход связан каналом 11 с входом каскада высокого давления 6 турбокомпрессора, вход в третью камеру 12 теплообменника 2 связан каналом 13 с выходом каскада высокого давления 6 турбокомпрессора, выход связан каналом 14 с входом в турбодетандер 1, выходной диффузор которого трубопроводом 15 соединен с потребителем холода 3.
Воздушная турбохолодильная установка работает следующим образом. Газ или воздух из окружающей атмосферы поступает в каскад низкого давления 5, приводимый во вращение электродвигателем 4, где сжимается до определенного (заданного) давления. Сжатие газа или воздуха в каскаде низкого давления 5 реализует процесс вращения ротора турбодетандера с повышенными оборотами и повышенными степенями давления. Затем сжатый газ или воздух через канал 10, проходя вторую камеру 9 теплообменника 2, охлаждается за счет контакта с повернувшейся охлажденной частью теплообменника 2 и попадает в каскад высокого давления 6, приводимый во вращение за счет аккумуляции механической энергии турбодетандера. Происходит последующее сжатие газа или воздуха, который по каналу 13 поступает на вход в третью камеру 12 теплообменника 2, охлаждается за счет контакта с повернувшейся охлажденной частью теплообменника 2 и поступает через трубопровод 14 в турбодетандер 1, где расширяется, снижая температуру до заданной, после чего поступает по трубопроводу 15 к потребителю холода - холодильной камере 3. Нагретый газ или воздух поступает в полость низкого давления - первую камеру 7 теплообменника 2, где воздух далее нагревается за счет передачи тепла от повернувшихся и нагретых областей высокого давления - второй и третьей камер 9 и 12 вращающегося теплообменника 2 с последующим выдуванием наружу.
Применение изобретения позволит увеличить холодопроизводительность установки, повысить надежность запуска, упростить конструкцию, повысить надежность и экономичность работы.
Эксплуатационные испытания установки, проведенные ОАО «СКТБР», показали конкурентоспособность опытных образцов, их повышенную надежность в системе холодоснабжения рефрижераторных установок.

Claims (1)

  1. Воздушная турбохолодильная установка, содержащая турбодетандер, многокамерный динамический теплообменник, потребитель холода, источник энергии и центробежный турбокомпрессор, отличающаяся тем, что центробежный турбокомпрессор разделен на каскады низкого и высокого давления центробежного типа, причем каскад низкого давления механически связан с источником энергии, а каскад высокого давления механически связан с турбодетандером, и теплообменник выполнен трехкамерным, причем вход в первую камеру теплообменника связан каналом с выходом потребителя холода, выход - с атмосферой, вход во вторую камеру теплообменника - с выходом каскада низкого давления турбокомпрессора, выход - с входом каскада высокого давления турбокомпрессора, вход в третью камеру теплообменника - с выходом каскада высокого давления турбокомпрессора, выход - с входом в турбодетандер.
RU2004100052/06A 2004-01-05 2004-01-05 Воздушная турбохолодильная установка RU2262047C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2004100052/06A RU2262047C1 (ru) 2004-01-05 2004-01-05 Воздушная турбохолодильная установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2004100052/06A RU2262047C1 (ru) 2004-01-05 2004-01-05 Воздушная турбохолодильная установка

Publications (2)

Publication Number Publication Date
RU2004100052A RU2004100052A (ru) 2005-06-10
RU2262047C1 true RU2262047C1 (ru) 2005-10-10

Family

ID=35834131

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2004100052/06A RU2262047C1 (ru) 2004-01-05 2004-01-05 Воздушная турбохолодильная установка

Country Status (1)

Country Link
RU (1) RU2262047C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2563564C2 (ru) * 2013-12-30 2015-09-20 Акционерное общество "Сибирский химический комбинат"(АО"СХК") Способ охлаждения газовой смеси

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2563564C2 (ru) * 2013-12-30 2015-09-20 Акционерное общество "Сибирский химический комбинат"(АО"СХК") Способ охлаждения газовой смеси

Also Published As

Publication number Publication date
RU2004100052A (ru) 2005-06-10

Similar Documents

Publication Publication Date Title
EP2035711B1 (en) Multistage compressor device
US6484533B1 (en) Method and apparatus for the production of a liquid cryogen
US7168235B2 (en) Highly supercharged regenerative gas turbine
JP7431302B2 (ja) 1つの遠心圧縮機を含む圧縮トレインおよびlngプラント
US7959710B2 (en) System and method for removing water and siloxanes from gas
AU2009338633B9 (en) Improvements in multi-stage centrifugal compressors
CN103649496B (zh) 热气发动机
WO2004011788A1 (en) Single rotor turbine
CN101027468A (zh) 组合式兰金与蒸汽压缩循环
EP2880266B1 (en) Dual-end drive gas turbine
EP1243878B1 (en) Cold air refrigerating system and turboexpander turbine for this system
EP2673511B1 (en) Compressor system including gear integrated screw expander
WO2015024071A1 (en) Waste heat utilization in gas compressors
US8544256B2 (en) Gas turbine engine and integrated heat exchange system
RU2262047C1 (ru) Воздушная турбохолодильная установка
US4196773A (en) Heating and air cooling system employing a gas turbine
RU2206028C1 (ru) Воздушная турбохолодильная установка
CN110506155B (zh) 与特别是用于机动车辆的内燃机相关联的用于闭合回路、特别是朗肯循环型闭合回路的涡轮泵组件
KR200319628Y1 (ko) 저압형 터보 냉동기 및 난방기
JP2002155896A (ja) ターボ形圧縮機及びそれを備えた冷凍装置
RU2084780C1 (ru) Способ получения потоков холодного воздуха и турбохолодильная установка
KR20040099213A (ko) 공기 싸이클 터보 냉각 냉동 장치
UA61913C2 (ru) Турбокомпрессор и способ его работы

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100106