RU2260219C2 - Опорный изолятор - Google Patents

Опорный изолятор Download PDF

Info

Publication number
RU2260219C2
RU2260219C2 RU2003107611/09A RU2003107611A RU2260219C2 RU 2260219 C2 RU2260219 C2 RU 2260219C2 RU 2003107611/09 A RU2003107611/09 A RU 2003107611/09A RU 2003107611 A RU2003107611 A RU 2003107611A RU 2260219 C2 RU2260219 C2 RU 2260219C2
Authority
RU
Russia
Prior art keywords
insulator
support
filling
insulating
tracking
Prior art date
Application number
RU2003107611/09A
Other languages
English (en)
Other versions
RU2003107611A (ru
Inventor
Б.А. Астапов (RU)
Б.А. Астапов
зин В.А. Ков (RU)
В.А. Ковязин
А.А. Маркачёва (RU)
А.А. Маркачёва
Э.П. Соловьёв (RU)
Э.П. Соловьёв
В.В. Струкова (RU)
В.В. Струкова
М.Ю. Цыганов (RU)
М.Ю. Цыганов
М.К. Ярмаркин (RU)
М.К. Ярмаркин
Original Assignee
Общество с ограниченной ответственностью ООО "Альфа-Энерго"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью ООО "Альфа-Энерго" filed Critical Общество с ограниченной ответственностью ООО "Альфа-Энерго"
Priority to RU2003107611/09A priority Critical patent/RU2260219C2/ru
Publication of RU2003107611A publication Critical patent/RU2003107611A/ru
Application granted granted Critical
Publication of RU2260219C2 publication Critical patent/RU2260219C2/ru

Links

Landscapes

  • Insulators (AREA)

Abstract

Изобретение относится к электротехнике и касается опорных изоляторов для высоковольтных подстанций и линий электропередачи. Опорный изолятор состоит из несущего тела металлических фланцев и защитной трекингостойкой оболочки. Несущее тело опорного изолятора представляет собой изолирующую трубу, изготовленную из полимерного изолирующего компаунда, армированного высокопрочными нитями. Это позволяет значительно снизить вес и стоимость изолятора по сравнению со стержневой конструкцией. Для того чтобы предотвратить конденсацию влаги во внутренней полости несущего тела (трубы) при колебаниях температуры окружающего воздуха, влажный воздух из указанной полости вытеснен с помощью заполнения кремнийорганическим компаундом холодного отверждения. Для заполнения внутренней полости тела изолятора используются отдельно изготовленные фрагменты изоляционного материала макроскопического размера. Техническим результатом является повышение надежности. 3 с. и 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к электротехнике и касается опорных изоляторов для высоковольтных подстанций и линий электропередачи.
Такие опорные изоляторы представляют собой, как правило, фарфоровый или стеклопластиковый стержень с ребрами и закрепленными на концах металлическими фланцами. Изоляторы предназначены для изоляции и крепления токоведущих частей в воздушных линиях электропередачи, в распределительных устройствах станций и подстанций и, в частности, используются в качестве опорных поворотных изолирующих элементов токоведущих шин и ножей разъединителей при эксплуатации на открытом воздухе.
Известна опорно-изоляционная конструкция в виде опорно-стержневого изолятора, содержащего несущий стеклопластиковый стержень с однонаправленной структурой стекловолокна, защитную ребристую трекингостойкую оболочку и металлические оконцеватели (фланцы), закрепляемые на стержне методом объемного обжатия [1]. Основным недостатком этой опорно-изоляционной конструкции являются ее низкие механические характеристики на изгиб и кручение, высокая деформируемость от температуры, что не обеспечивает надежную работу высоковольтных аппаратов с использованием таких изоляционных конструкций.
Известна опорно-изоляционная конструкция в виде опорного полимерного изолятора, который используется в качестве опорной изоляции высоковольтных аппаратов, например выключателей, разъединителей, шинных опор и т.д. Изолятор содержит стержень из электроизоляционного материла, например, из стекложгута, пропитанного термореактивным компаундом, трекингостойкую оболочку, экран, выполненный из стекловолокна, пропитанного термореактивным компаундом и расположенного между стержнем и трекингостойкой оболочкой и металлические оконцеватели [2].
Основными недостатками указанной конструкции являются недостаточно высокие механические характеристики на изгиб и кручение, а также существенная зависимость механических свойств стержня от температуры, что не обеспечивает надежную работу высоковольтных аппаратов.
Известна опорно-изоляционная конструкция в виде опорного полимерного изолятора, содержащего стержень из электроизоляционного материла, например из стекложгута, пропитанного термореактивным компаундом, несущую оболочку из стеклоткани, пропитанной термореактивным компаундом, а также трекингостойкую оболочку и металлические оконцеватели [3]. Это техническое решение является наиболее близким по технической сущности к заявленному и выбрано в качестве прототипа.
Основным недостатком указанной конструкции является то, что она обладает недостаточно высокими механическими характеристиками на изгиб и кручение. Это обстоятельство требует применения стержней большого диаметра и массивных фланцев, что в совокупности приводит к большой массе изолятора и высокой его стоимости. Кроме того, возникает необходимость обеспечивать высокую степень адгезии между поверхностью стержня и несущей оболочкой.
Предлагаемым изобретением решается задача создания опорной изоляционной конструкции для изоляции и крепления элементов воздушных линий электропередачи, токоведущих частей в распределительных устройствах станций и подстанций, а также для использования в качестве опорного поворотного изолирующего элемента, поддерживающего токоведущие шины и ножи разъединителей при эксплуатации на открытом воздухе. Одновременно решается задача обеспечения высокой механической прочности на изгиб и кручение, а также малой деформируемости при одинаковой электрической прочности изолятора.
Для решения поставленной задачи, согласно настоящему изобретению, используется опорный изолятор, содержащий несущее тело изолятора, защитную трекингостойкую оболочку и металлические фланцы, установленные на обоих торцах изолятора. Несущее тело изолятора выполнено в виде изолирующей трубы на основе полимерного связующего, армированного высокопрочными нитями, причем внутренняя полость трубы заполнена материалом на основе кремнийорганического компаунда холодного отверждения. Кремнийорганический компаунд для заполнения внутренней полости может быть использован с добавлением мелкодисперсного наполнителя. Кремнийорганический компаунд для заполнения внутренней полости тела изолятора может быть использован в виде пены с добавлением или без добавления твердого наполнителя. Для заполнения внутренней полости тела изолятора могут быть также использованы отдельно изготовленные фрагменты изоляционного материала макроскопического размера произвольной формы.
Заявителям неизвестен опорный изолятор, несущее тело которого представляет собой изолирующую трубу с заполнением кремнийорганическим компаундом холодного отверждения. Применение кремнийорганического компаунда позволяет достичь необходимой адгезии материала заполнения к стенкам изолирующей трубы и возможность изгиба тела изолятора без растрескивания внутреннего заполнения.
Уменьшение коэффициента температурного расширения материала заполнения и предотвращение его отрыва от стенок трубы при температурном расширении вдоль оси изолятора может быть достигнуто тем, что внутренняя полость изолятора заполняется кремнийорганическим каучуком холодного отверждения с добавлением мелкодисперсного наполнителя (например, кварцевого песка, гидрата окиси алюминия или другого диэлектрического материала). Кроме того, таким способом устраняются механические напряжения в стенке трубы и в металлических фланцах, возникающие из-за несовпадения температурного расширения материала несущего тела и материала заполнения, уменьшается расход полимерного связующего и снижается стоимость заполнения.
Предотвращение проникновения влаги во внутреннюю полость изолятора и устранение механических напряжений в стенке трубы может быть достигнуто также применением заполняющего материала в виде пены. Вспенивание материала заполнения осуществляется на стадии полимеризации путем добавки специальных веществ (вспенивателей). Вспенивание материала может быть выполнено также путем интенсивного перемешивания заполняющего материала с газом (воздухом). При вспенивании должна быть обеспечена замкнутость пор, а объем каждой отдельной поры не должен превышать 10 см3.
Для заполнения внутренней полости тела изолятора могут быть также использованы отдельно изготовленные фрагменты изоляционного материала макроскопического размера произвольной формы (например, в виде стержней, плоских шайб, шаров и не имеющие определенной формы). При этом зазоры между фрагментами изоляционного материала и внутренней поверхностью трубы также заполняются кремнийорганическим компаундам.
Сущность изобретения поясняется чертежом, на котором изображен опорный изолятор, состоящий из несущего тела 1, металлических фланцев 2 и 3 и защитной трекингостойкой оболочки 4. Несущее тело опорного изолятора представляет собой изолирующую трубу, заполненную кремнийорганическим компаундом холодного отверждения 5.
Несущее тело опорного изолятора (изолирующая труба) 1 изготовлено из полимерного изолирующего компаунда, армированного стеклянными или полимерными нитями. Создание опорного изолятора на основе трубы из изоляционного материала значительно снижает вес и стоимость изолятора по сравнению со стержневой конструкцией. Несущее тело может быть изготовлено методом протяжки с однонаправленной структурой расположения армирующих нитей, или методом намотки слоев ткани с расположением нитей в двух взаимно перпендикулярных направлениях. Для крепления опорного изолятора несущее тело снабжено металлическими фланцами 2 и 3. Для защиты несущего тела (изолирующей трубы) от воздействия окружающей среды оно снабжено покрытием 4. Для того чтобы предотвратить конденсацию влаги во внутренней полости несущего тела (трубы) при колебаниях температуры окружающего воздуха, влажный воздух из указанной полости вытеснен с помощью специального заполнения 5. Предполагаемым изобретением в качестве материала для заполнения внутренней полости несущего тела предложено использовать композиции на основе кремнийорганического кампаунда холодного отверждения. Применение кремнийорганического компаунда позволяет достичь высокой адгезии материала заполнения к стенкам внутренней полости и возможность изгиба изолятора без растрескивания внутреннего заполнения. Для повышения степени адгезии при заполнении внутренней полости изолятора ее поверхность предварительно обрабатывается.
Для уменьшения коэффициента температурного расширения материала заполнения и предотвращения его отрыва от стенок несущего тела опорного изолятора (изолирующей трубы) при температурном расширении вдоль оси изолятора в кремнийорганический компаунд добавляется наполнитель. Кроме того, при этом устраняются механические напряжения в стенке трубы и в металлических фланцах, возникающие из-за несовпадения температурного расширения материала несущего тела и материала заполнения. Применение наполнителя позволяет также уменьшить расход полимерного связующего и понизить стоимость заполнения.
Для решения указанных задач может быть использовано вспенивание материала заполнения. Вспенивание материала заполнения может быть выполнено на стадии полимеризации путем добавки специальных веществ (вспенивателей), а также путем интенсивного перемешивания заполняющего материала с газом (например, с воздухом).
Для заполнения внутренней полости могут быть использованы отдельно изготовленные фрагменты изоляционного материала макроскопического размера произвольной формы (например, в виде стержней, плоских шайб, шаров и не имеющие определенной формы) в сочетании с кремнийорганическим компаундом холодного отверждения.
Результаты испытаний разъединителей с таким опорным изолятором подтверждают возможность их применения, так как разъединители работоспособны при эксплуатационных нагрузках, а по механической прочности при изгибе имеют более чем десятикратный запас прочности, что позволяет их эксплуатировать не менее 30 лет с учетом снижения механической прочности за счет старения полимерного материала.
Заявляемый опорный изолятор может найти применение в качестве опорной изоляции проводов линий электропередачи, а также высоковольтных аппаратов: выключателей, разъединителей, шинных опор и так далее, особенно в тех типах аппаратов, опорная изоляция которых работает в условиях высоких механических нагрузок на открытом воздухе.
Применение таких изоляторов в качестве опорной изоляции высоковольтных аппаратов, например разъединителей, позволит увеличить их надежность.
Литература
1. Свидетельство РФ на полезную модель №5676, 1996 г.
2. Патент РФ №2074425, Н 01 В 17/02, 27.02.97.
3. Патент РФ №2173902, Н 01 В 17/14.

Claims (4)

1. Опорный изолятор, содержащий несущее тело изолятора, защитную трекингостойкую оболочку и металлические фланцы, установленные на обоих торцах изолятора, отличающийся тем, что несущее тело изолятора выполнено в виде изолирующей трубы на основе полимерного связующего, армированного высокопрочными нитями, причем внутренняя полость трубы заполнена материалом на основе кремнийорганического компаунда холодного отверждения.
2. Опорный изолятор по п.1, отличающийся тем, что для заполнения внутренней полости тела изолятора используется пена на основе кремнийорганического компаунда холодного отверждения.
3. Опорный изолятор, содержащий несущее тело изолятора, защитную трекингостойкую оболочку и металлические фланцы, установленные на обоих торцах изолятора, отличающийся тем, что внутренняя полость тела изолятора заполнена кремнийорганическим каучуком холодного отверждения с добавкой мелкодисперсного наполнителя.
4. Опорный изолятор, содержащий несущее тело изолятора, защитную трекингостойкую оболочку и металлические фланцы, установленные на обоих торцах изолятора, отличающийся тем, что для заполнения внутренней полости тела изолятора используются отдельно изготовленные фрагменты изоляционного материала макроскопического размера.
RU2003107611/09A 2003-03-20 2003-03-20 Опорный изолятор RU2260219C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003107611/09A RU2260219C2 (ru) 2003-03-20 2003-03-20 Опорный изолятор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003107611/09A RU2260219C2 (ru) 2003-03-20 2003-03-20 Опорный изолятор

Publications (2)

Publication Number Publication Date
RU2003107611A RU2003107611A (ru) 2004-09-20
RU2260219C2 true RU2260219C2 (ru) 2005-09-10

Family

ID=35847988

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003107611/09A RU2260219C2 (ru) 2003-03-20 2003-03-20 Опорный изолятор

Country Status (1)

Country Link
RU (1) RU2260219C2 (ru)

Similar Documents

Publication Publication Date Title
CA2701361C (en) High-voltage outdoor bushing with a moisture diffusion barrier
EP2203522B1 (en) An electric insulation device and an electric device provided therewith
CN201773637U (zh) 复合绝缘管形母线
CN209232460U (zh) 一种加强型航空导线
Varivodov et al. Technological aspects of the use of cast polymer insulation for high-voltage switchgear and busbars
US3296366A (en) Outdoor high tension insulator having long creepage path
RU2260219C2 (ru) Опорный изолятор
CA1259171A (en) Insulating stay for retaining high voltage electrical equipment__
RU2343578C1 (ru) Опорный изолятор
US3291899A (en) Electric insulators in the form of framed structures incorporating rods of resin bonded fibre
Hrastnik et al. Designing a new post insulator using 3-D electric-field analysis
Zhu et al. Optimal insulation design for new-type transmission tower with composite cross-arm
RU2319241C1 (ru) Опорный полимерный изолятор увеличенной жесткости
RU2173902C1 (ru) Опорная стержневая изоляционная конструкция
Varivodov et al. Busbars for the Switchgears and Internal Connections of the Power Plants and 6-to 750-kV Substations
CN201069685Y (zh) 多功能针式复合绝缘子
US6140573A (en) Hollow core composite bushings
RU55504U1 (ru) Опорный полимерный изолятор
CN2374966Y (zh) 户外支柱式高压真空断路器
Mizuno et al. The electrical performance of air or nitrogen gas with solid insulation and the application for switchgears
Sørensen Composite based EHV AC overhead transmission lines
JP2000236605A (ja) ガス絶縁開閉装置及びスペーサ
CN109273177A (zh) 一种特殊的改进结构的绝缘子
CN209494294U (zh) 一种配网用中空隔仓式结构的管状复合绝缘横担
CN210245173U (zh) 一种柱式防风易固定绝缘子

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060321

NF4A Reinstatement of patent

Effective date: 20071010

MM4A The patent is invalid due to non-payment of fees

Effective date: 20090321