RU2253135C2 - Способ регистрации нейтронного потока - Google Patents

Способ регистрации нейтронного потока Download PDF

Info

Publication number
RU2253135C2
RU2253135C2 RU2003101494/28A RU2003101494A RU2253135C2 RU 2253135 C2 RU2253135 C2 RU 2253135C2 RU 2003101494/28 A RU2003101494/28 A RU 2003101494/28A RU 2003101494 A RU2003101494 A RU 2003101494A RU 2253135 C2 RU2253135 C2 RU 2253135C2
Authority
RU
Russia
Prior art keywords
luminescent
radiation
microns
nuclear
neutron
Prior art date
Application number
RU2003101494/28A
Other languages
English (en)
Other versions
RU2003101494A (ru
Inventor
О.А. Голубева (RU)
О.А. Голубева
В.В. Горбунов (RU)
В.В. Горбунов
Л.Е. Довбыш (RU)
Л.Е. Довбыш
С.П. Мельников (RU)
С.П. Мельников
А.В. Синицын (RU)
А.В. Синицын
нский А.А. Син (RU)
А.А. Синянский
Original Assignee
Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики - РФЯЦ-ВНИИЭФ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики - РФЯЦ-ВНИИЭФ filed Critical Российский федеральный ядерный центр - Всероссийский научно-исследовательский институт экспериментальной физики - РФЯЦ-ВНИИЭФ
Priority to RU2003101494/28A priority Critical patent/RU2253135C2/ru
Publication of RU2003101494A publication Critical patent/RU2003101494A/ru
Application granted granted Critical
Publication of RU2253135C2 publication Critical patent/RU2253135C2/ru

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

Использование: в системах контроля и обеспечения безопасности ядерных реакторов. Сущность: способ заключается в преобразовании энергии ядерных реакций деления в люминесцентное излучение в заполненном газовой средой детекторе, по интенсивности которого судят о величине нейтронного потока. Перед измерением интенсивности люминесцентного излучения его выводят за биологическую защиту реактора по устойчивому к радиационному воздействию световоду на основе кварца с добавлением ионов-протекторов с окнами прозрачности 0,7-0,9 мкм, 1,25-1,35 мкм, 1,5-1,7 мкм, а из отобранных люминесцирующих газовых сред в указанных окнах прозрачности световода выбирают те, в которых мощность люминесцентного излучения линейно зависит от величины нейтронного потока. Люминесцирующими газовыми средами служат смеси инертных газов или смеси инертных газов с молекулярными газами. Технический результат - повышение чувствительности регистрации. 1 ил.

Description

Область техники.
Изобретение относится к детектированию нейтронных излучений и может быть использовано в ядерной физике, атомной энергетике, в частности, в системах контроля и обеспечения безопасности ядерных реакторов.
Уровень техники.
В предлагаемом изобретении доказывается возможность создания способа регистрации нейтронного потока в диапазоне 106-1018 см-2· с-1, характерном для исследовательских и энергетических ядерных реакторов. Зона размещения детекторов имеет агрессивную среду с температурой 200-600 град.С. Ядерные реакторы насыщены электромеханическими исполнительными механизмами. При использовании детекторов, построенных на принципах газового разряда, эти факторы приводят к генерации ложных выходных сигналов. Трудности вывода информации о состоянии реактора преодолеваются сложными конструкциями кабельных коммуникаций, проведением калибровочных тестов аппаратуры в процессе эксплуатации реактора и т.п. И, несмотря на все эти процедуры, информация о плотности потока нейтронов внутри активной зоны (A3) реактора зачастую остается недопустимо искаженной.
Известен способ регистрации нейтронного потока, основанный на делении нейтронами атомов радиатора, ионизации рабочего газа продуктами (осколками) деления, сборе заряда ионизации на электродах камеры, к которым приложено электрическое напряжение, и передаче заряда ионизации во внешнюю электрическую цепь. Этот способ реализован в ионизационных камерах деления [1], основным преимуществом которых является способность контроля плотности потока тепловых нейтронов в широком диапазоне, который определяется минимально контролируемым уровнем мощности реактора и максимальным уровнем при работе реактора на номинальной мощности. С помощью этих камер решаются задачи контроля нейтронного потока в диапазоне 104-1014 см-2· с-1 в энергетических ядерных реакторах как в режиме пуска реактора для контроля локальных искажений реактивности, так и в системах контроля распределения нейтронов по высоте и радиусу активной зоны при выходе на полную мощность.
Недостатком данного способа регистрации нейтронного потока является искажение передаваемого сигнала и затягивание времени срабатывания устройств автоматики в связи с изменением характеристик устройств, входящих в состав аппаратуры каналов измерения нейтронов, в условиях мощного облучения ядерными частицами компонентов реакторного излучения, повышенной температуры в зоне эксплуатации (до 1000° С) и агрессивной среды. Большая протяженность (десятки метров) линий связи между камерами деления и регистрирующей аппаратурой приводит к необходимости разрабатывать сложные кабельные линии и системы тестирования регистрирующей аппаратуры для учета изменений, происходящих под воздействием высоких температур и нейтронных потоков.
Известен способ регистрации нейтронного потока, основанный на преобразовании энергии ядерных реакций в люминесцентное излучение, регистрируемое с помощью фотоэлектронного умножителя (ФЭУ). Этот способ реализуется в газовых сцинтилляционных счетчиках, выполненных в виде камер, заполненных газовой средой с навеской делящегося материала [2], и имеет ряд преимуществ, таких как наиболее короткий импульс высвечивания по сравнению с электроразрядными счетчиками, автономность детектора, высокий КПД, узкая ширина линии по спектру, что позволяет исключить фоновое излучение, большая выделяемая энергия при регистрации нейтронов (170 МэВ), что позволяет дискриминировать сигналы от других частиц.
Данное техническое решение, как наиболее близкое по физической и технической сущности, выбрано в качестве прототипа.
Недостатком прототипа является невозможность регистрировать нейтронные потоки с плотностью выше уровня 106 см-2· с-1 в связи с высокой чувствительностью ФЭУ к нейтронному и гамма-излучению. Поэтому этот способ непригоден для измерения нейтронных потоков в реакторной технике.
Сущность изобретения
Задачей, решаемой изобретением, является создание способа, способного регистрировать потоки нейтронов 106-1018 см-2· с-1 в условиях, характерных для работающего реактора.
Техническим результатом является возможность использования данного способа в системах контроля и обеспечения безопасной эксплуатации ядерных реакторов.
Технический результат в заявляемом способе достигается тем, что в способе регистрации нейтронного потока, основанном на преобразовании энергии ядерных реакций деления в люминесцентное излучение, по интенсивности которого судят о величине нейтронного потока, новым является то, что перед измерением интенсивности люминесцентного излучения его выводят по волоконно-оптическому световоду, который выбирают из условий его устойчивости к радиационному воздействию и совпадения спектрального диапазона пропускания со спектром свечения выбранной люминесцирующей под действием облучения нейтронами газовой среды. В качестве оптического волокна выбран световод на основе кварца, в котором присутствует ион-протектор. В качестве состава газовой среды выбраны благородные газы и благородные газы с добавками молекулярных газов, например Ne-Kr, в которой роль буферного газа играет Ne, а люминесцирующей добавкой служит Кг. Рабочей линией люминесценции могут служить спектральные линии, принадлежащие переходам HeI, NeI, ArI, ArII, KrI, KrII, XeI, XeII, а также линии, принадлежащие переходам атомов О, N, С и молекул N2, N2+.
Вывод люминесцентного излучения перед измерением его интенсивности за биологическую защиту реактора в предлагаемом способе позволяет измерять потоки нейтронов, характерные для работающего реактора, и тем самым решить поставленную в изобретении задачу. Для реализации необходимо выбрать радиационно-стойкий материал для световода, спектральный диапазон пропускания которого совпадает со спектром свечения под действием нейтронного облучения люминесцирующей газовой среды. Этому выбору предшествовали экспериментальные исследования, проведенные на предприятии. Исследования показали, что наиболее подходящим материалом для световодов является плавленый кварц высокой частоты, первое окно прозрачности (0.7-0.9 мкм) которого является оптимальным для эффективного вывода люминесцентного излучения. Стойкость промышленного световода не достаточна для использования в условиях реакторного излучения, поэтому были проведены экспериментальные исследования по влиянию концентрации различных добавок для повышения радиационной стойкости световодов [3]. Этим условиям и удовлетворяет выбранный световод на основе кварца, в котором присутствует ион-протектор. Концентрация иона-протектора выбирается из условий компенсации красящих примесей, концентрация которых зависит от применяемой технологии изготовления оптического волокна. Механизм защиты объясняется процессом конкурентного захвата носителя заряда на ион-протектор с его дальнейшей рекомбинацией.
Информация о возможности использования активной среды, спектр свечения которой совпадает со спектральным диапазоном пропускания материала световода, была получена на основании анализа результатов спектрально-люминесцентных исследований плазмы, возбуждаемой продуктами деления ядерных реакций. Такие исследования позволили выделить наиболее интенсивные линии, измерить спектроскопические характеристики радиационных переходов. На основании этих исследований в качестве люминесцирующей среды были выбраны чистые благородные газы и благородные газы с добавками молекулярных газов, например Ne-Kr, He-N2.
На фиг.1 представлена схема устройства, реализующая заявляемый способ, где 1 - корпус датчика; 2 - газовая среда; 3 - источник осколков деления; 4 - световод; 5 - фильтр; 6 - фотоприемник; 7 - широкодиапазонная система измерения нейтронного потока, 8 - заправочный штуцер для откачки корпуса датчика и наполнения его газовой смесью.
Устройство для реализации этого способа выполнено в виде корпуса 1, заполненного люминесцирующей газовой средой 2, слоя делящегося материала 3, нанесенного на его внутреннюю боковую поверхность. В одном из торцов корпуса размещен световод на основе кварца 4 с лигатурой иона-протектора, соединенный с регистрирующей системой 7 посредством фотоприемника 6 с фильтром 5, а на другом из торцов установлен заправочный штуцер для откачки корпуса датчика и заполнения его газовой смесью. В качестве люминесцирующей газовой среды используются чистые благородные газы и благородные газы с добавками молекулярных газов.
Способ реализуется следующим образом. Корпус датчика откачивают при помощи заправочного штуцера 8 и заполняют его газовой смесью. Под действием нейтронного излучения, попадающего на слой делящегося материала 3, нанесенного на внутреннюю боковую поверхность корпуса 1 детектора нейтронов, вылетают осколки, которые возбуждают газовую среду 2, заполняющую корпус, и приводят к ее люминесценции. Люминесцентное излучение выводят по волоконному световоду 4 через фильтр 5 к фотодетектору 6 и далее к регистрирующей аппаратуре 7. По величине сигнала регистрирующей аппаратуры судят о величине нейтронного потока. При этом выбирают световод на основе чистого кварца с окнами прозрачности 0.7-0.9 мкм, 1.25-1.35 мкм, 1.5-1.7 мкм с лигатурой иона-протектора, из условий устойчивости световода к радиационному воздействию. В качестве люминесцирующей газовой среды выбрана бинарная смесь благородных газов, спектр излучения которой совпадает с окнами прозрачности радиационно-стойкого волоконно-оптического световода.
Проведенные испытания показали работоспособность заявленного способа, позволили отобрать наиболее эффективно люминесцирующие газовые среды, в которых мощность люминесцентного излучения линейно зависит от нейтронного потока. Это позволяет регистрировать нейтроны в диапазоне плотностей потока нейтронов 106-1018 см-2· с-1 и формировать сигналы управления реактором во всех режимах работы. Благодаря этому предложенный способ регистрации нейтронов найдет широкое применение в системах контроля и обеспечения безопасности энергетических ядерных реакторов.
Используемая литература
1. Малышев Е.К., Стабровский С.А. Малогабаритные ионизационные камеры и их применение на ядерных реакторах. Атомная техника за рубежом, №12, 1983, стр.10-17.
2. Балдин С.А., Матвеев В.В. Газовые сцинтилляционные счетчики. ПТЭ, №4, 1963, стр.5-18 - прототип.
3. Воинов А.М., Довбыш Л.Е., Кривоносов В.Н., Мельников С.П., Синянский А.А. Методическое обеспечение исследований по радиационной стойкости оптических элементов лазеров с ядерной накачкой. - Труды 2-й Международной конф. "Физика ядерно-возбуждаемой плазмы и проблемы лазеров с ядерной накачкой", Арзамас-16, т.1, с.52-69 (1995).

Claims (1)

  1. Способ регистрации нейтронного потока, включающий преобразование энергии ядерных реакций деления в люминесцентное излучение в заполненном газовой средой детекторе, по интенсивности которого судят о величине нейтронного потока, отличающийся тем, что перед измерением интенсивности люминесцентного излучения его выводят за биологическую защиту реактора по устойчивому к радиационному воздействию световоду на основе кварца с добавлением ионов-протекторов с окнами прозрачности 0,7-0,9 мкм, 1,25-1,35 мкм, 1,5-1,7 мкм, а из отобранных люминесцирующих газовых сред в указанных окнах прозрачности световода выбирают те, в которых мощность люминесцентного излучения линейно зависит от величины нейтронного потока, при этом люминесцирующими газовыми средами служат смеси инертных газов или смеси инертных газов с молекулярными газами.
RU2003101494/28A 2003-01-20 2003-01-20 Способ регистрации нейтронного потока RU2253135C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003101494/28A RU2253135C2 (ru) 2003-01-20 2003-01-20 Способ регистрации нейтронного потока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003101494/28A RU2253135C2 (ru) 2003-01-20 2003-01-20 Способ регистрации нейтронного потока

Publications (2)

Publication Number Publication Date
RU2003101494A RU2003101494A (ru) 2004-07-10
RU2253135C2 true RU2253135C2 (ru) 2005-05-27

Family

ID=35824832

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003101494/28A RU2253135C2 (ru) 2003-01-20 2003-01-20 Способ регистрации нейтронного потока

Country Status (1)

Country Link
RU (1) RU2253135C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014055852A1 (en) * 2012-10-05 2014-04-10 Schlumberger Canada Limited Null space projection for sourceless gain stabilization in downhole gamma ray spectroscopy
RU2538950C2 (ru) * 2009-12-21 2015-01-10 Конинклейке Филипс Электроникс Н.В. Узел детектора излучения со схемой тестирования
FR3125135A1 (fr) * 2021-07-12 2023-01-13 Commissariat A L’Energie Atomique Et Aux Energies Alternatives Dispositif de détection neutronique à chambre d’ionisation et à transduction optique comprenant plusieurs cavités optiques, logeant chacune l’extrémité libre d’une fibre optique.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
С.А.БАЛДИН и др. Газовые сцинтилляционные счетчики, ПТЭ, №4, 1963, с.5-18. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2538950C2 (ru) * 2009-12-21 2015-01-10 Конинклейке Филипс Электроникс Н.В. Узел детектора излучения со схемой тестирования
WO2014055852A1 (en) * 2012-10-05 2014-04-10 Schlumberger Canada Limited Null space projection for sourceless gain stabilization in downhole gamma ray spectroscopy
US9658351B2 (en) 2012-10-05 2017-05-23 Schlumberger Technology Corporation Null space projection for sourceless gain stabilization in downhole gamma ray spectroscopy
FR3125135A1 (fr) * 2021-07-12 2023-01-13 Commissariat A L’Energie Atomique Et Aux Energies Alternatives Dispositif de détection neutronique à chambre d’ionisation et à transduction optique comprenant plusieurs cavités optiques, logeant chacune l’extrémité libre d’une fibre optique.
EP4119991A1 (fr) * 2021-07-12 2023-01-18 Commissariat à l'énergie atomique et aux énergies alternatives Dispositif de detection neutronique a chambre d'ionisation et a transduction optique comprenant plusieurs cavites optiques, logeant chacune l'extremite libre d'une fibre optique

Similar Documents

Publication Publication Date Title
Ramsey D‐T radiation effects on TFTR diagnostics
JP5916421B2 (ja) 中性子検出器
RU2182715C2 (ru) Сцинтилляционное оптическое волокно, чувствительное к излучению с низкой энергией, детектор излучения для регистрации частиц излучения с низкой энергией и устройство для контроля источника воды
FR2697348A1 (fr) Appareil de contrôle des neutrons et des photons pour exploration souterraine.
Kalnins et al. Enhanced radiation dosimetry of fluoride phosphate glass optical fibres by terbium (III) doping
De Michele et al. Origins of radiation-induced attenuation in pure-silica-core and Ge-doped optical fibers under pulsed x-ray irradiation
Guo et al. SiO 2 glass-cladding YAP: Ce scintillating fiber for remote radiation dosimeter
RU2253135C2 (ru) Способ регистрации нейтронного потока
JP2009036752A (ja) 放射線センサ
EP3321714B1 (en) Radiation monitor
Liu et al. Rayleigh scattering and depolarization ratio in linear alkylbenzene
EP3489722B1 (en) Radiation monitor
RU30008U1 (ru) Детектор нейтронов
CN116047576A (zh) 一种中子探测器及其制备方法
WO2012011505A1 (ja) 放射線検出器
RU2421756C1 (ru) Газовый детектор
RU2075093C1 (ru) Сцинтилляционный блок детектирования
Rippon Cherenkov detectors for the measurement of reactor power
RU96431U1 (ru) Газовый детектор
US4971749A (en) Nuclear excitation laser type intra-reactor neutron flux measuring system
US3691383A (en) Device to measure infrared radiation
Sakasai et al. In-situ out-core monitoring using optical fibers with scintillators
Koizumi et al. EXPERIMENTAL RESULTS OF ENVIRONMENTAL RESISTANCE AT A SEVERE ACCIDENT CONDITION TO A FIBER OPTIC RADIATION MONITOR AND OTHER TYPE OF DETECTOR
SU1698868A1 (ru) Способ мониторировани генератора быстрых нейтронов и устройство дл его осуществлени
Gota et al. Visible bremsstrahlung tomographic diagnostic for the pulsed high density field-reversed configuration experiment

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170121