RU2252334C1 - Ветропневмотурбинная установка с диффузором, имеющим два вдува - Google Patents

Ветропневмотурбинная установка с диффузором, имеющим два вдува Download PDF

Info

Publication number
RU2252334C1
RU2252334C1 RU2003128903/06A RU2003128903A RU2252334C1 RU 2252334 C1 RU2252334 C1 RU 2252334C1 RU 2003128903/06 A RU2003128903/06 A RU 2003128903/06A RU 2003128903 A RU2003128903 A RU 2003128903A RU 2252334 C1 RU2252334 C1 RU 2252334C1
Authority
RU
Russia
Prior art keywords
diffuser
air
wind
pneumatic
hollow blades
Prior art date
Application number
RU2003128903/06A
Other languages
English (en)
Other versions
RU2003128903A (ru
Inventor
Р.А. Янсон (RU)
Р.А. Янсон
сн нска Т.Г. Р (RU)
Т.Г. Ряснянская
А.В. Гасилов (RU)
А.В. Гасилов
Original Assignee
Янсон Ричард Александрович
Ряснянская Татьяна Геннадьевна
Гасилов Алексей Владимирович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Янсон Ричард Александрович, Ряснянская Татьяна Геннадьевна, Гасилов Алексей Владимирович filed Critical Янсон Ричард Александрович
Priority to RU2003128903/06A priority Critical patent/RU2252334C1/ru
Publication of RU2003128903A publication Critical patent/RU2003128903A/ru
Application granted granted Critical
Publication of RU2252334C1 publication Critical patent/RU2252334C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Landscapes

  • Wind Motors (AREA)

Abstract

Изобретение относится к ветроэнергетике и используется в горизонтально-осевых ветроустановках с пневматическим способом передачи ветровой мощности от ветродвигателя к потребителю (электрогенератору). Техническим результатом является увеличение КПД (коэффициента полезного действия) пневмопередачи и увеличение коэффициента использования энергии ветра, которые достигаются, во-первых, за счет размещения свободно вращающегося ветроколеса с полыми лопастями внутри атмосферного диффузора при входе в него, и, во-вторых, за счет использования при торможении потока в диффузоре кинетической энергии струй воздуха, уходящих из Т-образных периферийных устройств полых лопастей. При вращении ветродвигателя развиваемая им полезная мощность расходуется на прокачку воздуха внутри полых лопастей и периферийных устройств, которые вращаются в кольцевой нише на внутренней стенке диффузора. В результате, в пневмомагистрали устанавливается давление ниже атмосферного, что дает возможность наземной воздушной турбине работать за счет перепада давления между атмосферным давлением и давлением в пневмомагистрали. Воздушная турбина приводит во вращение электрогенератор. Использование кинетической энергии выходящей из периферийного устройства струи воздуха происходит после прохода этого воздуха по кольцевому каналу в пограничный слой на внутренней стенке диффузора, где через кольцевой канал образуется вдув вращающихся по окружности отдельных струй. Второй вдув в кольцевой канал ниже по потоку осуществляется за счет кинетической энергии наружного атмосферного потока и разности статических давлений на внешней и внутренней стенках диффузора. Регулирование работы ветропневмотурбинной установки осуществляется поворотом лопастей, изменением расхода воздуха через воздушную турбину при помощи регулируемого соплового аппарата и увеличением расхода воздуха через полые лопасти при помощи открытия регулируемых каналов в торце гондолы. 4 ил.

Description

Изобретение относится к области энергетики, а именно к ветроэнергетическим установкам.
Известно устройство (ветропневмотурбинная установка), преобразующее энергию воздушного потока в механическую мощность привода электрогенератора при помощи установленного на мачте-трубе свободновращающегося горизонтально-осевого ветроколеса с полыми лопастями, наземной воздушной турбины и соединяющей их посредством мачты-трубы пневмомагистрали с давлением воздуха в ней ниже атмосферного /1/ - прототип. К недостаткам этого ветроагрегата относятся пониженный КПД пневмопередачи, составляющий величину порядка 0,5, и увеличенный размер хорды лопасти. Увеличение размера хорды лопасти особенно на ее периферии обусловлено течением внутри лопасти с допустимой скоростью необходимого количества воздуха. Это вызывает увеличение профильных потерь, что ведет к снижению КПД ветродвигателя; а также снижает расчетное значение аэродинамического коэффициента подъемной силы профиля Су, что ведет к перегрузке ветродвигателя с ростом скорости ветра выше расчетного значения. Пониженный КПД пневмопередачи в значительной степени обусловлен тем, что в прототипе невозможно использовать значительную по величине кинетическую энергию уходящий из лопасти струи воздуха.
Известно устройство, преобразующее энергию воздушного потока в механическую мощность привода электрогенератора при помощи горизонтально-осевого ветроагрегата с ветродвигателем, имеющим диффузор со вдувом атмосферного воздуха в пограничный слой на его внутренней стенке (/2/ стр.134 и далее) - аналог. Одним из недостатков этого ветроагрегата является расположение электромеханического оборудования в башне, над землей, что усложняет монтаж, обслуживание и ремонт.
Задачей изобретения, на решение которой направлены предлагаемые ниже технические решения, является увеличение эффективной работы ветроустановки с пневматическим способом передачи мощности ветрового потока к потребителю при помощи ветродвигателя с атмосферным диффузором и с полыми лопастями, в которых происходит процесс сжатия воздуха, наземной воздушной турбины, в которой осуществляется получение полезной работы в процессе расширения в ней атмосферного воздуха, и соединяющей их пневмомагистрали, давление воздуха в которой меньше атмосферного.
Техническим результатом является увеличение КПД пневмопередачи и увеличение коэффициента использования энергии ветра.
Решение поставленной задачи по достижению заявленного технического результата осуществляется следующими способами.
1) В схему ветроустановки прототипа /1/ добавляется атмосферный диффузор. Так же, как и в случае аналога /2/, установка за ветродвигателем диффузора со вдувом потока атмосферного воздуха позволяет уменьшить статическое давление за ветродвигателем, увеличить расход воздуха через него и мощность, извлекаемую из воздушного потока. Увеличение расходной скорости перед ветродвигателем позволяет увеличить окружную скорость на периферии лопасти при сохранении оптимальной величины коэффициента быстроходности. В отличие от рассматриваемого аналога /2/ с ветродвигателем, имеющим сплошные лопасти, увеличение окружной скорости на периферии лопасти приводит в данном случае к достижению нового технического результата, а именно к увеличению степени повышения давления в процессе сжатия воздуха внутри канала полой лопасти, т.е. к увеличению разрежения за воздушной турбиной и, следовательно, к увеличению степени понижения полного давления в воздушной турбине при неизменном заданном значении ее мощности. Это позволяет уменьшить расход воздуха внутри лопасти, в результате чего уменьшается суммарная потеря кинетической энергии уходящей из лопасти струи воздуха, уменьшается хорда лопасти, ее масса, уменьшаются профильные потери и в результате возрастает как КПД ветродвигателя, так и КПД пневмопередачи. Кроме того, при небольшом абсолютном значении степени понижения полного давления в воздушной турбине (в прототипе порядка 1,05...1,08) ее увеличение повышает КПД воздушной турбины. Одновременно уменьшение хорды лопасти приводит к росту коэффициента подъемной силы Су и позволяет снизить перегрузку ветродвигателя при увеличении скорости ветра выше расчетной.
2) Внутренняя поверхность диффузора на определенном расстоянии от его входа выполняется в виде кольцевой ниши, в которой вращаются периферийные устройства полых лопастей. Периферийные устройства выполнены Т-образной формы, что дает возможность формировать поток выходящего из них воздуха в виде слегка изогнутых вокруг оси ветродвигателя струй. Эти струи входят затем в кольцевой канал, расположенный под внутренней поверхностью диффузора, и выходят на его внутреннюю поверхность в пограничный слой перед местом его возможного отрыва от стенки, являясь первым вдувом, в виде отдельных вращающих по окружности струй, число которых равно числу лопастей. Вдув воздуха в пограничный слой на стенке диффузора приводит к увеличению эффективности процесса торможения потока в диффузоре, к возможности увеличения угла его раскрытия, т.е. к уменьшению его длины. Таким образом, установка атмосферного диффузора у ветродвигателя с полыми лопастями в отличие от аналога /2/, имеющего ветродвигатель со сплошными лопастями, приводит к достижению еще одного нового технического результата, а именно позволяет улучшить энергетические показатели процесса повышения статического давления в диффузоре за счет использования кинетической энергии струй воздуха, выходящих из полых лопастей ветродвигателя.
На фиг.1 изображена принципиальная конструктивная схема ветропневмотурбинной установки с диффузором, имеющим два вдува воздуха в пограничный слой на его внутренней стенке. На фиг.2 дана развертка сечения В-В периферийного устройства и каналов, подводящих вдуваемые струи к щели вдува. На фиг.3 дано сечение А-А для ветродвигателя с тремя лопастями. На фиг.4 дан разрез С-С периферийного устройства.
Ветропневмотурбинная установка состоит из следующих основных узлов: ветродвигателя 1, атмосферного диффузора 3 с двумя кольцевыми каналами 8 и 7 для вдува, полой мачты-пневмомагистрали 16, наземной воздушной турбины 17, вырабатывающей полезную мощность, электрогенератора 20. Ветродвигатель 1 (свободновращающееся ветроколесо) имеет полый ротор и полые лопасти 2, на периферии которых располагаются Т-образные периферийные устройства 4 для выхода воздуха. На внутренней поверхности диффузора 3 на определенном расстоянии от его входа выполняется кольцевая ниша 5, в которой вращаются периферийные устройства 4. Ротор 1 свободно вращается в подшипниковых опорах 13. Полые лопасти 2 аэродинамически соединены через полый ротор и пневмомагистраль 16 с воздушной наземной турбиной 17. Турбина 17 механически, возможно через редуктор 19, соединена с электрогенератором 20. Диффузор 3 конструктивно соединяется с гондолой 11 при помощи стоек 9 и имеет на внутренней поверхности два кольцевых канала: канал 7 для вдува в пограничный слой наружного ветрового потока и канал 8 для вдува воздуха, вышедшего в виде струи 30 из периферийного устройства 4 полой лопасти 2. Периферийное устройство 4 (фиг.2, 3, 4) выполнено в виде полого Т-образного козырька, внутри которого имеются изогнутые каналы (например, три канала 21, 22, 23), являющиеся продолжением внутреннего полого канала 24 лопасти 2. Каналы 21, 22, 23 направляют выходящий поток воздуха вдоль хорды 29 лопасти 2. Передняя часть 25 периферийного устройства 4 имеет обтекаемую аэродинамическую форму с плоскими в направлении длины лопасти 2 боковыми поверхностями 26. Кольцевой канал 6 в диффузоре 3 разделен внутренними профилированными лопатками 27 на отдельные межлопаточные каналы 28, имеющими увеличивающуюся в направлении течения площадь поперечного сечения. Угол выхода γ лопатки 27 может быть не равен нулю. Длина L межлопаточного канала 27 определяется следующими условиями: время пролета частицы воздуха по межлопаточному каналу 27 должно быть меньше интервала времени от момента ухода при вращении по окружности одного периферийного устройства 4 от входа в этот канал до момента появления в этом месте другого периферийного устройства 4. Между вращающимся ротором 1 и гондолой 11 находится лабиринт 10. Воздушная турбина 17 имеет поворотный регулируемый сопловой аппарат 18. В торце гондолы 11 располагаются регулируемые каналы 12 впуска воздуха в пневмомагистраль.
Ветропневмотурбинная установка работает следующим образом. При помощи гидро- или электромеханического привода 15 и поворотного устройства 14 ветроустановка ориентируется на направление ветра. Ветровой поток раскручивает ветродвигатель 1, вследствие чего развиваемая на его роторе полезная мощность расходуется на прокачку воздуха внутри полых лопастей 2. В результате, в пневмомагистрали 16 устанавливается давление ниже атмосферного, что дает возможность наземной воздушной турбине 17 работать за счет использования перепада давления между атмосферным давлением и давлением в пневмомагистрали 16, приводя во вращение электрогенератор 20. Воздух, прошедший через воздушную турбину 17, пневмомагистраль 16 и полые лопасти 2, выходит из периферийных устройств 4 с относительной скоростью Wc в виде струи 30 (изображенной в своем относительном движении) и, имея окружную составляющую скорости U, поступает в кольцевой канал 6 с абсолютной скоростью Сс, периодически проходя по межлопаточным каналам 28, выходя из которых этот поток воздуха создает кольцевой вдув на стенке диффузора. Длина межлопаточного канала 28 обеспечивает нахождение в нем не менее одной порции воздуха, вышедшей в виде струи 30 из периферийного устройства 4. Это исключает возвратное движение воздуха по межлопаточному каналу 28 из области повышенного давления при выходе из него в область пониженного давления при входе в него. Дополнительное наполнение межлопаточных каналов 28 набегающим потоком воздуха из диффузора обеспечивается за счет воздействия поверхности 26 периферийного устройства 4 на натекающий на его переднюю часть 25 поток воздуха, имеющий относительную скорость W1a (фиг.2). Сойдя с поверхности 26 с относительной скоростью W2a и получив переносную скорость Ua, этот поток воздуха входит в межлопаточный канал 28 с абсолютной скоростью Са. Вдув обтекающего диффузор наружного атмосферного воздуха в кольцевой канал 7, а затем в пограничный слой на стенке диффузора происходит за счет кинетической энергии этого наружного потока и разности давлений на внешней и внутренней поверхности диффузора. Регулирование работы ветропневмотурбинной установки осуществляется поворотом лопастей 2 для изменения угла установки φ (механизм поворота не показан), а также изменением расхода воздуха через воздушную турбину 17 при помощи механизма поворота ее соплового аппарата 18 и увеличением расхода воздуха через полые лопасти 2 при помощи открытия регулируемых каналов 12 в торце гондолы 11.
Возможность осуществления изобретения подтверждается использованием в качестве прототипа и аналога устройств, которые были ранее изготовлены и успешно функционировали. По патенту /1/ (прототип) в 1953 г. английской фирмой Enfild Cables Ltd была изготовлена ветроустановка с пневмопередачей, имеющая электрогенератор мощностью 100 кВт /3/. По схеме ветроустановки с диффузором (аналог) в 1996 г. в Новой Зеландии была смонтирована и пущена в работу ветроустановка Vortec - 7 с электрогенератором мощностью 1000 кВт /4/.
Источники информации
1. Патент Германии №900079, кл. F 03 D 11/02.
2. “Ветроэнергетика” под ред. Д. де Рензо. Пер. с англ. под ред. Я.И.Шефтера. - М.: Энергоатомиздат, 1982. - 272 с.
3. Wind - Generated Electricity. Prototype 100-kW Plant. “Engineering”. V.180, №4652, 1955. (March 25, 1955). - Р.371-374.
4. Bruce Cole. New turbine could offer low cost wind power. “Modem Rotor Systems”. August 1977. - P.27-30.

Claims (1)

  1. Ветропневмотурбинная установка с диффузором, имеющим два вдува, содержащая свободно вращающееся ветроколесо с полыми лопастями, воздушную турбину, расположенную на земле и вырабатывающую полезную мощность, пневмомагистраль, соединяющую полые лопасти ветроколеса и воздушную турбину, и атмосферный диффузор, при этом на внутренней стенке диффузора имеется кольцевая ниша, в которой вращаются периферийные устройства полых лопастей, и каналы для двух кольцевых вдувов в пограничный слой, возникающий на внутренней стенке диффузора наружного атмосферного потока воздуха и потока воздуха, вышедшего из периферийных устройств полых лопастей и прошедшего затем через первый кольцевой канал вдува, который расположен под внутренней поверхностью стенки диффузора и разделен изогнутыми лопатками на отдельные межлопаточные каналы, выходя из которых этот поток воздуха создает кольцевой вдув на стенке диффузора, состоящий из вращающихся по окружности струй.
RU2003128903/06A 2003-09-29 2003-09-29 Ветропневмотурбинная установка с диффузором, имеющим два вдува RU2252334C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003128903/06A RU2252334C1 (ru) 2003-09-29 2003-09-29 Ветропневмотурбинная установка с диффузором, имеющим два вдува

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003128903/06A RU2252334C1 (ru) 2003-09-29 2003-09-29 Ветропневмотурбинная установка с диффузором, имеющим два вдува

Publications (2)

Publication Number Publication Date
RU2003128903A RU2003128903A (ru) 2005-03-20
RU2252334C1 true RU2252334C1 (ru) 2005-05-20

Family

ID=35454018

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003128903/06A RU2252334C1 (ru) 2003-09-29 2003-09-29 Ветропневмотурбинная установка с диффузором, имеющим два вдува

Country Status (1)

Country Link
RU (1) RU2252334C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ШЕФТЕР Я.И., РОЖДЕСТВЕНСКИЙ И.В. Изобретателю о ветродвигателях и ветроустановках, Москва, издательство Министерства Сельского хозяйства СССР, 1957, с.55-58, рис.44-45. *

Also Published As

Publication number Publication date
RU2003128903A (ru) 2005-03-20

Similar Documents

Publication Publication Date Title
RU2124142C1 (ru) Ветроэнергетическая установка
CA1266005A (en) Wind turbine "runner" impulse type
KR101383849B1 (ko) 전방향식 풍력 터빈
US20120003077A1 (en) Annular multi-rotor double-walled turbine
US20040042894A1 (en) Wind-driven electrical power-generating device
US7112034B2 (en) Wind turbine assembly
AU2004308987B2 (en) Wind powered turbine engine-horizontal rotor configuration
AU2012339597A1 (en) Wind turbine
US20150361953A1 (en) Horizontally channeled vertical axis wind turbine
WO2008043367A1 (en) Aerodynamic wind-driven powerplant
RU2252334C1 (ru) Ветропневмотурбинная установка с диффузором, имеющим два вдува
US7121804B1 (en) Fan system
RU2623637C2 (ru) Ветротепловой преобразователь-накопитель
RU2425249C1 (ru) Роторная ветроэлектростанция
RU2387871C1 (ru) Ветроэнергетическая установка
RU2249722C1 (ru) Роторная ветроэлектростанция
CA2349443C (en) Wind turbine design
RU2253037C2 (ru) Ветропневмотурбинная установка с ветродвигателем, имеющим диффузор, и компрессором в пневмомагистрали
RU2270359C1 (ru) Роторная ветроэлектростанция
RU2466296C1 (ru) Гирляндная ветроэнергетическая станция
RU2805400C1 (ru) Напорно-вакуумная ветроэнергетическая установка
RU188712U1 (ru) Фотоветровая автономная электростанция
WO2024080891A1 (ru) Напорно-вакуумная ветроэнергетическая установка "квадратор тандем"
CA1294220C (en) Wind turbine
CA2569386A1 (en) Windmill

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20090930