RU2251630C1 - Бустерная насосно-компрессорная установка - Google Patents

Бустерная насосно-компрессорная установка Download PDF

Info

Publication number
RU2251630C1
RU2251630C1 RU2003128655/06A RU2003128655A RU2251630C1 RU 2251630 C1 RU2251630 C1 RU 2251630C1 RU 2003128655/06 A RU2003128655/06 A RU 2003128655/06A RU 2003128655 A RU2003128655 A RU 2003128655A RU 2251630 C1 RU2251630 C1 RU 2251630C1
Authority
RU
Russia
Prior art keywords
liquid
gas
pump
chambers
consumer
Prior art date
Application number
RU2003128655/06A
Other languages
English (en)
Inventor
В.Н. Мартынов (RU)
В.Н. Мартынов
Ю.А. Зильберберг (RU)
Ю.А. Зильберберг
Д.Ю. Ретивых (RU)
Д.Ю. Ретивых
Original Assignee
Общество с ограниченной ответственностью "Научно-производственная Компания "РАНКО"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственная Компания "РАНКО" filed Critical Общество с ограниченной ответственностью "Научно-производственная Компания "РАНКО"
Priority to RU2003128655/06A priority Critical patent/RU2251630C1/ru
Application granted granted Critical
Publication of RU2251630C1 publication Critical patent/RU2251630C1/ru

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Abstract

Бустерная насосно-компрессорная установка предназначена для использования в области добычи углеводородов для нагнетания технологических жидкостей, газов и многофазных сред при вторичных и третичных методах увеличения нефтеотдачи пластов, при освоении нефтегазовых скважин и пр. Установка включает насос объемного вытеснения, например, плунжерный, состоящий из одной или нескольких секций с компрессионными камерами, привод, коллектор, включающий питательный насос, сообщенный с баком для рабочей жидкости, трубопроводную линию подачи газа в бустерные камеры и выкидную трубопроводную обвязку, сообщенную с компрессионными камерами и с потребителем. Установка снабжена блоком отделения жидкости, установленным в выкидной трубопроводной обвязке между компрессионными камерами насоса и потребителем. Указанный блок состоит из последовательно установленных и связанных между собой высоконапорного сепаратора, дросселя и устройства для отвода жидкости. При этом последнее непосредственно сообщено с линией подачи газа в бустерные камеры и через отдельный регулируемый дроссель - с баком для рабочей жидкости. Высоконапорный сепаратор указанного блока выполнен трехступенчатым, а дроссель - многоступенчатым. Устройство для отвода жидкости выполнено в виде полого цилиндра со свободным поршнем и сбрасывающего золотника катушечного типа, фиксирующегося в открытом и закрытом положениях и взаимодействующего со свободным поршнем. 3 з.п.ф-лы, 4 ил.

Description

Настоящее предлагаемое изобретение относится к области насосно-компрессорных машин объемного вытеснения и, в частности, представляет собой бустерную насосно-компрессорную установку, предназначенную предпочтительно для использования в процессе добычи углеводородов для нагнетания технологических жидкостей, газов и многофазных сред при вторичных и третичных методах увеличения нефтеотдачи пластов, при освоении нефтегазовых скважин и в других случаях.
Современное состояние мировой добычи углеводородов характеризуется значительным количеством применяемых вторичных и третичных методов увеличения нефтеотдачи пластов (более 130) и появлением более десятка новых методов ежегодно. Среди указанных методов значительное место занимают технологии, связанные с нагнетанием в нефтеносный пласт различных технологических жидкостей, газов и газожидкостных смесей (см., н-р, книгу М.Л.Сургучева “Вторичные и третичные методы увеличения нефтеотдачи пластов”, М.: Недра, 1985 г., стр.116-119). Кроме того, оборудование для приготовления и нагнетания газов, технологических жидкостей и газожидкостных смесей нашло эффективное применение в нефтяной и газовой промышленности при освоении скважин, при перекачки многофазных сред по одному трубопроводу, при реализации технологий кустового газлифта с использованием газа низкого давления от соседних скважин или другого внешнего источника и пр.
Способы и оборудование для приготовления и нагнетания газовых и газожидкостных смесей используются в мировой нефтегазовой промышленности более 30 лет. При этом дожимающие насос-компрессоры используются как вторая ступень компримирования газов низкого давления от внешнего источника.
Аналогами заявляемого технического решения могут являться устройство для осуществления способа аэрации промывочной жидкости, выполненное по авт. свид. СССР №142150, кл. F 04 B 23/06, 1961 г., и устройство для нагнетания газожидкостной смеси, выполненное по авт. св. СССР №714044, кл. F 04 B 23/10, 1980 г.
За прототип заявляемого технического решения может быть принята установка для нагнетания газожидкостной смеси, выполненная по патенту РФ №2151911, кл. F 04 B 23/06, 1997 г.
Эта установка включает насос объемного вытеснения, например, плунжерный, который состоит из нескольких секций с компрессионными камерами, привод известного типа, питающий коллектор, сообщенный с баком для рабочей жидкости, трубопроводную линию подачи газа в бустерные камеры и выкидную трубопроводную обвязку, сообщенную с бустерными камерами и с потребителем. В процессе работы установки при выполнении насосом такта всасывания рабочая жидкость из питающего коллектора (в данном случае понятие “питающий коллектор” включает трубопровод, арматуру и питающий насос) поступает в рабочую камеру насоса и при выполнении такта нагнетания вытесняется в компрессионную камеру, где сжимает подаваемый в нее от внешнего источника газ и через выкидную трубопроводную обвязку подает газожидкостную смесь к потребителю (к устью скважины).
Одним из достоинств известной бустерной насосно-компрессорной установки является возможность нагнетания одной и той же установкой как технологических жидкостей (в этом случае она работает как обычная насосная установка), так и газов и газожидкостных смесей (в этом случае она является дожимающей - т.е. доводит давление подаваемого потребителю газа или газожидкостной смеси примерно до 40 МПа, обеспечивая высокую степень сжатия).
Но известная бустерная насосно-компрессорная установка обладает также и недостатком, связанным с причинами, излагаемыми ниже. На преодоление этого недостатка и направлено заявляемое техническое решение.
В последние годы в мире отмечается растущий интерес к применению технологии поочередной закачки в скважину жидкости (воды) и газа (ПЗВГ). Этот метод основан на технологическом процессе, при котором после закачки порции газа в ту же скважину закачивается порция воды. Метод с успехом использован на более чем десяти зарубежных нефтяных месторождениях, на которых отмечалась общая тенденция повышения нефтеотдачи пласта на 5-10% (см. A.Skauge and J.A.Stensen "Обзор промысловой практики применения технологии поочередной закачки воды и газа (ПЗВГ)”. Доклад для предоставления на 1-ой Международной конференции и выставке “Нефтедобыча - 2003”. “Современные изменения в нефтедобыче”, 19-23 мая, Москва, Россия, Университет им.Губкина).
Авторы доклада отмечают, что закачка по технологии ПЗВГ является технически более сложной по сравнению с закачкой только воды или только газа. Т.к. часто изменяется закачиваемый агент. Вследствие этого в процессе работы могут возникать эксплуатационные проблемы.
В том же докладе отмечается, что на месторождении Экофиск в процессе применения ПЗВГ возникла задержка из-за закупоривания питательной скважины. Как выяснилось, причиной закупоривания явилось образование гидратов при относительно низкой температуре в скважине.
Преимущество бустерной насосно-компрессорной установки, заключающееся в обеспечении высокой степени сжатия газожидкостной смеси в компрессионой камере, утрачивается, если по условиям закачки нужно свести к минимуму процент объемного содержания воды в подаваемой потребителю (в пласт) порции газа при технологии ПЗВГ (не более 1-2%) или в других случаях.
По условиям работы бустерной насосно-компрессорной установки при всасывании процент объемного содержания воды в газожидкостной смеси должен составить 5-10%.
Примем условно:
- рабочий объем насоса 10 л;
- процент объемного содержания воды в газожидкостной смеси при всасывании 10%;
- давление газа, поступающего в бустерную камеру, 10 МПа;
- давление газожидкостной смеси в такте нагнетания 40 МПа (степень сжатия равна 4).
При сжатии газожидкостной смеси в компрессионной камере до 40 МПа объем газа уменьшится в 4 раза, т.е. составит (10-1):4=2,25 л. Тогда по условиям нагнетания процент объемного содержания воды в газожидкостной смеси, подаваемой к потребителю, составит
Figure 00000002
(при требовании, как указывалось выше, по условиям закачки не более 1-2%).
В связи с изложенным основной технической задачей, на решение которой направлено заявляемое техническое решение, является создание такой конструкции бустерной насосно-компрессорной установки, которая при высокой степени сжатия газожидкостной смеси обеспечивала бы требование минимального по условиям нагнетания содержания жидкости (не более 1-2%) в подаваемой потребителю смеси.
Для решения поставленной технической задачи бустерная насосно-компрессорная установка включает насос объемного вытеснения, например, плунжерный, состоящий из одной или нескольких секций с компрессионными камерами, привод известного типа, питающий коллектор, сообщенный с баком для рабочей жидкости, трубопроводную линию подачи газа в компрессионные камеры, выкидную трубопроводную обвязку, сообщенную с бустерными камерами и с потребителем. Характерной особенностью установки является то, что она снабжена блоком отделения жидкости, установленным в выкидной трубопроводной обвязке между бустерными камерами насоса и потребителем и состоящим из последовательно установленных и связанных между собой высоконапорного сепаратора, дросселя и устройства для отвода жидкости, причем последнее сообщено с линией подачи газа в бустерные камеры и через отдельный регулируемый дроссель - с баком рабочей жидкости.
Высоконапорный сепаратор блока отделения жидкости выполнен трехступенчатым и включает полый цилиндрический корпус с горизонтальным отверстием для тангенциального ввода разделяемой газожидкостной смеси и верхней и нижней торцевыми заглушками со штуцерами для выхода газа и жидкости. Внутри корпуса аксиально закреплена газоотводящая труба с кольцевой заглушкой, расположенной выше тангенциального ввода, снабженная шнековой навивкой ниже тангенциального ввода с образованием зазора между внутренней поверхностью корпуса и наружной поверхностью шнековой навивки и со сквозными продольными прорезями под шнековой навивкой. Внутри газоотводящей трубы закреплен Т-образный патрубок, сообщаемый с кольцевой полостью корпуса выше указанной заглушки под установленным в верхней части последнего каплеотбойником коноидальной формы, выполненным в виде скрутки из металлической сетки. Кроме того, дроссель блока отделения жидкости выполнен многоступенчатым, состоящим из корпуса с размещенным внутри него набором перфорированных дисков, разделенных проставками, с чередованием количества отверстий в смежных дисках.
Устройство для отвода жидкости выполнено в виде полого цилиндра со свободным поршнем. Последний разделяет полость цилиндра на верхнюю часть, сообщенную с источником сжатого газа, подающим его в бустерные камеры, и нижнюю часть, сообщенную с выходом дросселя и с камерами кольцевых и торцевых полостей. Устройство имеет также сбрасывающий жидкость золотник катушечного типа, фиксирующийся в открытом и закрытом положениях. При этом свободный поршень в верхнем и нижнем положениях контактирует со штангой, связанной с золотником. Величина хода поршня до контакта со штангой при ходе вверх и вниз равна разнице величины конечного хода поршня и величины хода золотника между открытым и закрытым положениями. Возможность осуществления заявляемого технического решения доказывается отечественной практикой успешного использования бустерных насосно-компрессорных установок в нефтегазодобывающей промышленности. Отличительные признаки, отраженные в формуле изобретения, необходимы и достаточны для его осуществления, т.к. обеспечивают решение поставленной технической задачи - создание такой бустерной насосно-компрессорной установки, которая при высокой степени сжатия газожидкостной смеси обеспечивала бы требование минимального по условиям нагнетания содержания жидкости (не более 1-2% по объему) в подаваемой потребителю смеси.
В дальнейшем заявляемое техническое решение поясняется примером его выполнения, схематически изображенном на прилагаемых чертежах, на которых:
Фиг.1 - схематическое изображение бустерной насосно-компрессорной установки в соответствии с заявляемым техническим решением,
Фиг.2 - продольный разрез высоконапорного сепаратора и дросселя блока отделения жидкости установки, показанной на фиг.1;
Фиг.3 - продольный разрез устройства для отвода жидкости блока отделения жидкости установки, показанной на фиг.1;
Фиг.4 - параметрическая расчетная схема.
Бустерная насосно-компрессорная установка (фиг.1) включает насос объемного вытеснения 1, например, плунжерный, состоящий, как правило, из нескольких секций (на фиг.1 показана одна секция) с компрессионными камерами 2, привод известного типа 3, питающий коллектор 4, который включает трубопровод, арматуру и питательный насос 5, сообщенный с баком для рабочей жидкости 6. Установка также включает трубопроводную линию подачи газа 7 в компрессионные камеры и выкидную трубопроводную обвязку 8, сообщенную с бустерными камерами и с потребителем, например со скважиной (не показана). Установка снабжена блоком отделения жидкости 9, установленным в выкидной трубопроводной обвязке 8 между компрессионными камерами и потребителем. Блок отделения жидкости состоит из последовательно установленных и связанных между собой высоконапорного сепаратора 10, многоступенчатого дросселя 11 и устройства для отвода жидкости 12. Последнее связано через трубопровод 13 с линией подачи газа 7 в компрессионные камеры и через отдельный регулируемый дроссель 14 - с баком для рабочей жидкости 6. Высоконапорный сепаратор 10 блока отделения жидкости 9 включает полый цилиндрический корпус 15 (фиг.2) с горизонтальным отверстием 16 для тангенциального ввода разделяемой газожидкостной смеси и с верхней 17 и нижней 18 заглушками со штуцерами 19 и 20 для выхода газа и жидкости. Внутри корпуса 15 аксиально закреплена газоотводящая труба 21 с кольцевой заглушкой 22, расположенной выше тангенциального ввода 16. Газоотводящая труба 21 снабжена шнековой навивкой 23, расположенной ниже тангенциального ввода 16 с образованием зазора “k” между внутренней поверхностью корпуса 15 и наружной поверхностью шнековой навивки 23. Газоотводящая труба 21 имеет сквозные продольные прорези 24 под шнековой навивкой 23. Внутри газоотводящей трубы закреплен Т-образный патрубок 25, который своим нижним концом достигает нижнего конца газоотводящей трубы, а своей поперечной частью 26 сообщен с кольцевой полостью корпуса 15 выше кольцевой заглушки 22. В верхней части корпуса 15 расположен каплеотбойник 27, имеющий коноидальную форму и изготовленный в виде скрутки из металлической сетки. Штуцер 19 сообщен с трубопроводом 28 (фиг.1), ведущим к потребителю, а штуцер 20 посредством трубопровода 29 (фиг.2) сообщен с дросселем 11. Последний выполнен многоступенчатым и состоит из корпуса с размещенным внутри него набором дисков 30 с отверстиями 31, разделенных проставками 32. При этом количество отверстий в смежных дисках чередуется (два-одно-два и т.д.). Дроссель 11 посредством трубы 33 сообщен с устройством для отвода жидкости 12.
Устройство для отвода жидкости 12 (фиг.3) выполнено в виде полого цилиндра 34 со свободным поршнем 35. Последний разделяет полость цилиндра на верхнюю (газовую) часть 36 и нижнюю (жидкостную) часть 37. С нижней частью корпуса цилиндра 34 соединен корпус 38 сбрасывающего жидкость золотника 39 катушечного типа (т.е. золотник имеет цилиндрическую форму с проточкой 40 в средней части). Корпус 38 вставлен в наружную обойму 41, имеющую две кольцевые проточки 42 и 43, сообщающиеся двумя группами радиальных отверстий 44 и 45. Полости корпуса 38 со стороны торцов золотника 39 сообщены с жидкостной частью 37 полости цилиндра 34 и между собой осевым каналом 46 в золотнике 39. Последний может фиксироваться в двух положениях (в верхнем - открытом и в нижнем - закрытом) шариковым фиксатором 47. Верхняя кольцевая проточка 42 обоймы 41 сообщается через канал штуцера 48 с выходом дросселя 11 (фиг.1) и с жидкостной частью 37 полости цилиндра 34. Золотник 39 соединен со штангой 49, имеющей в верхней части утолщение 50. Штанга размещена внутри патрубка 51 с заглушкой 52. Патрубок 51 герметично и соосно соединен с поршнем 35, имеющим буртик 55 для взаимодействия с утолщением 50 штанги 49. Кольцевая проточка 43 соединена с отверстием штуцера 53, который через регулирующий дроссель 14 (фиг.1, 3) сообщается с баком для рабочей жидкости 6. Штуцер 54 соединен с источником сжатого газа, в качестве которого может быть либо отвод от газовой линии 7 бустерного насоса 1 (фиг.1), либо газовый баллон с редуктором (на фиг. не показан).
Работа заявляемой бустерной насосно-компрессорной установки осуществляется следующим образом.
В режиме закачки технологической жидкости в скважину она работает как обычная насосная установка, подавая технологическую жидкость из бака 6 насосом 1 через трубопровод 28 к потребителю (не показан).
В режиме закачки газожидкостной смеси установка работает как обычная бустерная насосно-компрессорная установка, т.е. в компрессионные камеры 2 по трубопроводу 7 подается газ сравнительно низкого давления, одновременно в цилиндры насоса 1 (фиг.1) из коллектора 4 посредством питательного насоса 5 подается из бака 6 рабочая жидкость (при ходе всасывания насоса 1). Образующаяся в компрессионных камерах газожидкостная смесь под высоким давлением (до 40 МПа) нагнетается (при ходе нагнетания насоса 1) через выкидную трубопроводную обвязку 28 при отключенном блоке отделения жидкости к потребителю.
В режиме, при котором по условиям закачки нужно свести к минимуму процент объемного содержания жидкости (1...2%) в подаваемой потребителю порции газа, газожидкостная смесь направляется по выходе из компрессионной камеры 2 в блок отделения жидкости 9, в котором она вначале попадает в сепаратор 10. Ее подача в сепаратор осуществляется тангенциально через горизонтальное отверстие 16 в корпусе сепаратора 15 (фиг.2). При тангенциальном вводе через отверстие 16 и при прохождении по шнековой навивке 23 происходит центробежное отделение жидкости от газа. Жидкость стекает в нижнюю часть корпуса 15, а газ через проходные прорези 24 поступает в газоотводящую трубу 21, поднимается по ней, выходит через штуцер 19 и по трубопроводу 28 направляется потребителю. В нижней части корпуса 15 происходит вторая стадия газоотделения - гравитационное разделение отделенной от смеси жидкости от газа. Газ при этом поднимается по газоотводящей трубе 21 в верхнюю часть корпуса и далее как уже было указано. При этом, поднимаясь по газоотводящей трубе 21, газ проходит через коноидальный, выполненный в виде скрутки из металлической сетки каплеотбойник 27, где от него отделяются остатки жидкости (в виде капель), сохранившиеся после центробежного и гравитационного разделения. Отделенная каплеотбойником 27 жидкость по Т-образному патрубку 25, поперечная часть 26 которого выведена в кольцевой зазор корпуса 15 над заглушкой 22, спускается в нижнюю часть корпуса 15.
Из нижней части корпуса 15 отделенная описанным способом жидкость под давлением, создаваемым бустерным насосом, поступает по трубопроводу 29 в дроссель 11, где по прохождении ее через отверстия 31 в дисках 30 ее давление снижается примерно до 10 МПа, после чего жидкость поступает в устройство для отвода жидкости. Работа устройства для отвода жидкости (фиг.3) осуществляется следующим образом. В исходном положении (т.е. до начала работы бустерного насоса) поршень 35 под давлением газа в полости 36 находится в крайнем нижнем положении. При этом заглушка 52 контактирует со штангой 49 и золотник 39 зафиксирован в нижнем положении. При этом радиальные отверстия 44 перекрыты верхним утолщением золотника, а радиальные отверстия 45 сообщаются через штуцер 53 и регулируемый дроссель 14 (фиг.1) с баком 6. При поступлении жидкости из дросселя 11 (фиг.1) через штуцер 48 в полость 37 поршень 35 поднимается, сжимая газ в полости 36. При этом полость 37 заполняется жидкостью. В конце хода поршень 35 своим внутренним буртиком 55 приподнимает штангу 49 за утолщение 50 и вместе со штангой золотник 39. К моменту упора поршня 35 в верхнюю крышку цилиндра 34 золотник 39 стопорится фиксатором 47 в верхнем (открытом) положении. При этом отверстия 44 сообщаются с отверстиями 45, т.е. с атмосферой, давление в полости 37 падает, а жидкость, заполнившая цилиндр 34, а также жидкость, продолжающая поступать через штуцер 48, вытесняется через штуцер 53 и регулирующий дроссель 14 (фиг.1) в бак под давлением газа в полости 36. При этом поршень 35 опускается, а скорость опускания регулируется дросселем 14. При переходе поршня 35 к крайнему нижнему положению заглушка 52 нажимает на штангу 49 и золотник 39 опускается в нижнее (закрытое) положение и фиксируется в нем. При этом отверстие 44 перекрывается и сброс жидкости в бак 6 прекращается. Далее цикл работы устройства повторяется.
Для анализа параметров сепаратора и устройства для отвода жидкости бустерной насосно-компрессорной установки рассмотрим параметрическую расчетную схему на фиг.4.
В расчетном режиме жидкость равномерно с номинальным расходом течет через дроссель высокого давления 11. При закрытом золотнике 39 (фиг.3) жидкость накапливается в основном объеме устройства для отвода жидкости и переводит поршень 35 в верхнее положение. Дополнительное давление, требуемое для открытия золотника 39, в типовой конструкции может составить всего 2,92·105 Па. При открытом золотнике 39 расход жидкости через дроссель 11 остается близким к номинальному, а через дроссель 14 - чуть больше, поскольку появляется дополнительный расход жидкости, связанный с опорожнением устройства для отвода жидкости. Запишем в виде системы уравнений:
Figure 00000003
Где:
P1 - давление в магистрали нагнетания;
P2 - давление наддува устройства 12;
P3 - давление в сливной магистрали воды;
P4 - внутреннее давление системы отделения жидкости;
QНОМ - номинальный расход жидкости от насос-компрессора;
Q1 - расход жидкости через дроссель 11;
Q2 - расход жидкости через дроссель 14;
k1 - коэффициент сопротивления дросселя 11;
k2 - коэффициент сопротивления дросселя 14;
Vсеп.зап. - запас жидкости в сепараторе,
Vводоотв. - максимальный объем жидкости в устройстве для отделения воды.
Из соотношений стационарного режима определяем соотношения на часть параметров устройства для отвода жидкости 12:
1. Давление наддува устройства для отвода жидкости 12Р2>>100 кПа. (1)
2. Коэффициент сопротивления дросселя 11
Figure 00000004
3. Коэффициент сопротивления дросселя 14
Figure 00000005
Дополнительные соотношения для определения параметров конструкции.
Устойчивость и регулирование.
В процессе работы водоотделительного блока в составе насосно-компрессорной установки возможны следующие отклонения от номинального режима:
1. Возрастание давления нагнетания:
Figure 00000006
2. Падение давления нагнетания:
Figure 00000007
3. Увеличение расхода жидкости:
Figure 00000008
4. Уменьшение расхода жидкости:
Figure 00000009
Рассмотрим возможные последствия для работы установки.
В первом случае возрастает перепад давления на дросселе высокого давления k1. Это приводит к кратковременному увеличению расхода через дроссель k1.
Во избежание прорыва газа в емкости сепаратора должен быть предусмотрен запасной объем жидкости, который позволит заполнить основную емкость устройства для отвода жидкости и открыть золотник и по абсолютной величине равный значительной части заполняемого объема, т.е.
а сопротивление дросселя 14 k2 должно быть увеличено.
Во втором случае снижается перепад давления на дросселе 11 k1. Если сопротивление k1 нерегулируемое, это приводит к длительному снижению расхода воды через отводящую систему. Для сохранения функциональности необходимо снизить давление Р2 и снизить величину сопротивления k2.
В третьем случае для сохранения процесса отвода жидкости необходимо снизить давление Р2 и снизить величину сопротивления k2.
В четвертом случае достаточно увеличить сопротивление k2.
Из рассмотрения вариантов можно сделать вывод о том, что для сохранения работоспособности блока отделения жидкости в широком диапазоне режимов необходимо и достаточно автоматического или ручного регулирования двух параметров - сопротивления дросселя 14 k2 и давления наддува устройства для отделения жидкости Р2 (5).
Таким образом, заявляемое техническое решение позволяет выполнить поставленную техническую задачу - создать такую конструкцию бустерной насосно-компрессорной установки, которая при высокой степени сжатия газожидкостной смеси обеспечивала бы требование минимального (по условиям нагнетания) содержания жидкости в подаваемой потребителю смеси (не более 1-2% по объему), т.е. оно позволяет расширить технологические возможности установки (например, применить ее при описанной выше технологии ПЗВГ и в некоторых других случаях).

Claims (4)

1. Бустерная насосно-компрессорная установка, включающая насос объемного вытеснения, например плунжерный, состоящий из одной или нескольких секций с компрессионными камерами, привод, коллектор, включающий питательный насос, сообщенный с баком для рабочей жидкости, трубопроводную линию подачи газа в компрессионные камеры, выкидную трубопроводную обвязку, сообщенную с компрессионными камерами и потребителем, отличающаяся тем, что установка снабжена блоком отделения жидкости, установленным в выкидной трубопроводной обвязке между компрессионными камерами насоса и потребителем и состоящим из последовательно установленных и сообщенных между собой высоконапорного сепаратора, дросселя и устройства для отвода жидкости, причем последнее сообщено с линией подачи газа в компрессионные камеры и через отдельный регулируемый дроссель с баком для рабочей жидкости.
2. Бустерная насосно-компрессорная установка по п.1, отличающаяся тем, что высоконапорный сепаратор блока отделения жидкости выполнен трехступенчатым и включает полый цилиндрический корпус с горизонтальным отверстием для тангенциального ввода разделяемой газожидкостной смеси и с верхней и нижней торцевыми заглушками со штуцерами для выхода газа и жидкости, аксиально закрепленную внутри него газоотводящую трубу с кольцевой заглушкой, расположенной выше тангенциального ввода, снабженную шнековой навивкой ниже тангенциального ввода с образованием зазора между внутренней поверхностью корпуса и наружной поверхностью шнековой навивки, со сквозными продольными прорезами под шнековой навивкой, Т-образный патрубок закреплен внутри газоотводящей трубы и сообщен с кольцевой полостью корпуса выше указанной кольцевой заглушки под установленным в верхней части корпуса каплеотбойником коноидальной формы, выполненным в виде скрутки из металлической сетки.
3. Бустерная насосно-компрессорная установка по п.1 или 2, отличающаяся тем, что дроссель блока отделения жидкости выполнен многоступенчатым, состоящим из корпуса с размещенным внутри него набором перфорированных дисков, разделенных проставками, с чередованием количества отверстий в смежных дисках.
4. Бустерная насосно-компрессорная установка по любому из пп.1-3, отличающаяся тем, что устройство для отвода жидкости блока отделения жидкости выполнено в виде полого цилиндра со свободным поршнем, разделяющим полость цилиндра на верхнюю часть, сообщенную с источником сжатого газа, подающим его в компрессионные камеры, и нижнюю часть, сообщенную с выходом дросселя и с камерами кольцевой и торцевых полостей золотника катушечного типа, фиксирующегося в открытом и закрытом положениях, причем свободный поршень в верхнем и нижнем положениях контактирует со штангой, связанной с золотником, а величина хода поршня до контакта со штангой при ходе вверх и вниз равна разнице величины полного хода поршня и величины хода золотника между открытым и закрытым положениями.
RU2003128655/06A 2003-09-25 2003-09-25 Бустерная насосно-компрессорная установка RU2251630C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003128655/06A RU2251630C1 (ru) 2003-09-25 2003-09-25 Бустерная насосно-компрессорная установка

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003128655/06A RU2251630C1 (ru) 2003-09-25 2003-09-25 Бустерная насосно-компрессорная установка

Publications (1)

Publication Number Publication Date
RU2251630C1 true RU2251630C1 (ru) 2005-05-10

Family

ID=35746933

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003128655/06A RU2251630C1 (ru) 2003-09-25 2003-09-25 Бустерная насосно-компрессорная установка

Country Status (1)

Country Link
RU (1) RU2251630C1 (ru)

Similar Documents

Publication Publication Date Title
US6173768B1 (en) Method and apparatus for downhole oil/water separation during oil well pumping operations
US6672392B2 (en) Gas recovery apparatus, method and cycle having a three chamber evacuation phase for improved natural gas production and down-hole liquid management
US7100695B2 (en) Gas recovery apparatus, method and cycle having a three chamber evacuation phase and two liquid extraction phases for improved natural gas production
CA2917316A1 (en) Coalbed methane drainage and recovery equipment
US9181783B2 (en) Well-drilling sucker-rod pump
CN108756847B (zh) 一种泵前油水分离单机组双泵注采系统
RU2567571C1 (ru) Устройство для отвода газа из затрубного пространства нефтяной скважины
CA3039771C (en) Chemical injection with subsea production flow boost pump
US10738575B2 (en) Modular top loading downhole pump with sealable exit valve and valve rod forming aperture
US20170183948A1 (en) Preconditioning flow to an electrical submersible pump
US6182751B1 (en) Borehole sucker-rod pumping plant for pumping out gas liquid mixtures
RU2251630C1 (ru) Бустерная насосно-компрессорная установка
RU2680028C1 (ru) Компрессорная установка
RU2674042C1 (ru) Насосно-эжекторная установка для эксплуатации скважин
CA2281083C (en) Method and apparatus for down-hole oil/water separation during oil well pumping operations
RU2312985C1 (ru) Газосепаратор вставного насоса
US20190264553A1 (en) Separator and method for removing free gas from a well fluid
CN112627785B (zh) 孔隙内剩余油的低频变压油藏开采方法、装置和系统
CN112627784B (zh) 孔隙内剩余油的低频变压油藏开采方法、装置和系统
JPH0733757B2 (ja) 原油産出装置
RU2531228C1 (ru) Установка для эксплуатации скважины
RU2317443C1 (ru) Штанговая насосная установка
RU2196249C1 (ru) Скважинная штанговая насосная установка
RU2779979C1 (ru) Перепускной клапан
RU2068492C1 (ru) Способ эксплуатации комбинированной установки "газлифт-погружной насос"

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20120926