RU2248496C1 - Способ защиты внутренней поверхности трубопровода - Google Patents

Способ защиты внутренней поверхности трубопровода Download PDF

Info

Publication number
RU2248496C1
RU2248496C1 RU2003119539/06A RU2003119539A RU2248496C1 RU 2248496 C1 RU2248496 C1 RU 2248496C1 RU 2003119539/06 A RU2003119539/06 A RU 2003119539/06A RU 2003119539 A RU2003119539 A RU 2003119539A RU 2248496 C1 RU2248496 C1 RU 2248496C1
Authority
RU
Russia
Prior art keywords
pipeline
binder
shell
winding
filler
Prior art date
Application number
RU2003119539/06A
Other languages
English (en)
Other versions
RU2003119539A (ru
Inventor
В.К. Крыжановский (RU)
В.К. Крыжановский
В.В. Бурлов (RU)
В.В. Бурлов
А.Д. Паниматченко (RU)
А.Д. Паниматченко
Original Assignee
Крыжановский Виктор Константинович
Бурлов Владислав Васильевич
Паниматченко Алла Дмитриевна
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Крыжановский Виктор Константинович, Бурлов Владислав Васильевич, Паниматченко Алла Дмитриевна filed Critical Крыжановский Виктор Константинович
Priority to RU2003119539/06A priority Critical patent/RU2248496C1/ru
Publication of RU2003119539A publication Critical patent/RU2003119539A/ru
Application granted granted Critical
Publication of RU2248496C1 publication Critical patent/RU2248496C1/ru

Links

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

Изобретение относится к строительству и используется при защите от отложений и коррозии внутренней поверхности трубопроводов. Предварительно изготавливают тонкостенную облицовочную оболочку трубчатой формы с наружным диаметром, равным внутреннему диаметру трубопровода, путем намотки непрерывного волокнистого наполнителя на цилиндрическую вращающуюся оправку в два или три слоя с углом намотки, составляющим 120-125 градусов. Волокнистый наполнитель пропитывают эпоксидным связующим с отвердителем при соотношении массы наполнителя и связующего от 30:70 до 50:50% соответственно, с последующим термоотверждением и охлаждением готового изделия. Оболочку в деформированном виде, имеющую поперечное сечение V-образной формы или формы трехлистника, вводят в защищаемую часть трубопровода и прижимают к его внутренней поверхности подачей теплоносителя. В качестве связующего используют состав, содержащий мас.%: 50-70 эпоксидиановой смолы, 30-50 олигоэфируретандиэпоксида и стехиометрическое количество отвердителя аминного или ангидридного типа. Повышает надежность трубопровода.

Description

Изобретение относится к строительству и эксплуатации трубопроводов, а именно к способам защиты внутренней поверхности трубопроводов с помощью полимерных материалов, и может быть использовано для защиты внутренней поверхности сооружаемых, в том числе прокладываемых в грунте, и действующих трубопроводов от коррозии и нежелательных налетов при транспортировке агрессивных газов и жидких сред, а также при ремонте трубопроводов.
Известен способ защиты внутренней поверхности металлических труб (А.с. №1350442, F16 L 58/10, Б.И. №41, 1987 г.), заключающийся в установке в защищаемую трубу заготовки из заполненного воздухом герметически закрытого полимерного рукава и прижатии се к внутренней поверхности трубы посредством создания избыточного давления в полости заготовки, удалении воздуха из межтрубного пространства постепенным нагревом трубы с помощью кольцевой печи путем ее перемещения. В результате термопластический материал перexoдит в вязкотекучее состояние и под воздействием избыточного давления воздуха в заготовке на внутренней поверхности трубы формируется защитное покрытие.
Известный способ позволяет защитить внутреннюю поверхность трубопровода от коррозии, однако он достаточно сложен и в ряде случаев трудновыполним, например, в северных районах, а также не может быть применен при проведении на трубопроводе ремонтных работ и при прокладке трубопровода в грунте. Кроме того, получаемое покрытие имеет нестабильные показатели свойств материала - плотности, прочности и водопоглощения и небольшую протяженность (в пределах нескольких метров).
Известен способ покрытия внутренней поверхности трубопровода, который может быть использован как при строительстве трубопроводов, в том числе и при прокладке их в грунте, так и при ремонте трубопроводов (Патент РФ №2037734, F 16 L 58/10, опубл. 19.06.95), заключающийся в размещении в полости трубопровода гибкого комплексного рукава, наружный слой которого выполнен из герметичного пленочного материала с относительным удлинением 0,5-15%, а средний волокнистый армирующий слой пропитан термореактивным полимерным связующим. В процессе формования трубчатого изделия либо ремонтного покрытия трубопровода в комплексный рукав подается горячий теплоноситель, который раздувая пропитанный жидким связующим рукав, прижимает его к внутренней стенке трубы в течение времени, необходимого для полимеризации (отверждения) связующего, то есть до образования в полости ремонтируемой трубы твердого н сплошного покрытия прочной новой трубы (внутренней оболочки).
Покрытие по известному способу имеет достаточно стабильные показатели геометрических размеров (внешнего диаметра) и свойств материала - плотности, прочности и водопоглощения, однако указанный способ имеет и недостатки, к которым относятся:
- невозможность контролирования полноты завершения химического процесса полимеризации (отверждения) при формовании внутренней оболочки;
- в результате того, что связующее в начальной стадии отверждения представляет собой вязкую жидкость, которая неминуемо стекает под действием силы тяжести к нижней части комплексного рукава, снижаются прочностные свойства получаемой оболочки и происходит нарушение монолитности по периметру оболочки или по ее длине в зависимости от положения геометрической оси защищаемой трубы.
Эти недостатки существенно ограничивают технологические и эксплуатационные возможности известного способа.
Наиболее близким к заявляемому способу по технической сущности является способ покрытия внутренней поверхности трубопровода (Патент РФ №2037733, F 16 L 58/10, опубл. 19.06.95), заключающийся в предварительном изготовлении облицовочной оболочки из внутреннего и наружного пленочных рукавов с размещенным между ними армирующим, пропитанным термореактивным связующим волокнистым рукавом-наполнителем, герметизации оболочки и установлении продолжительности временной выдержки от 1 до 30 суток, при этом выбирают соотношение наполнитель: связующее от 30:70 до 50:50 мас.%. После временной выдержки оболочку вводят в трубопровод, прижимают к внутренней поверхности трубопровода подачей рабочего агента и отверждают оболочку путем полимеризации связующего.
Указанный способ-прототип может быть использован для защиты от коррозии сооружаемых трубопроводов, в том числе и при прокладке в грунте, или при их ремонте, однако способ имеет ряд недостатков, заключающихся в следующем:
- по известному способу пропитку армирующего стеклотрикотажа или стеклоткани осуществляют в объеме между двумя полиэтиленовыми рукавами с последующей выдержкой не менее суток без сдавливания армирующей ткани, следовательно ткань пропитывается за счет капиллярного эффекта, зависящего, как известно, от вязкости жидкости и наличия пор, величины которых в известном способе не контролируются, что неизбежно ухудшает качество пропитки и тем самым снижает физико-механические и эксплуатационные свойства получаемых оболочек;
- полнота отверждения не контролируется, и следовательно, прочность и качество поверхности получаемых известным способом оболочек не регламентируется;
- сборка облицовочной или ремонтной оболочки производится непосредственно перед ее установкой в ремонтируемую трубу без использования приспособлений, гарантирующих качество оболочки;
- временная выдержка оболочки перед ее введением в трубопровод достаточно велика (от 1 до 30 суток), что удлинняет процесс установки оболочки в трубопроводе;
- использование заранее изготовленной известным способом оболочки с наружным диаметром, близким к внутреннему диаметру ремонтируемой трубы, практически невозможно вследствие механических трудностей введения такой оболочки внутрь трубопровода.
Задачей предлагаемого технического решения является повышение эффективности и технологичности способа защиты внутренней поверхности трубопровода за счет создания тонкостенной трубчатой оболочки, способной к деформативности с последующим восстановлением формы и обладающей высокой механической прочностью, химической стойкостью и низким водопоглощением.
Поставленная задача решается тем, что в способе защиты внутренней поверхности трубопровода, заключающемся в предварительном изготовлении облицовочной оболочки путем пропитки волокнистого наполнителя эпоксидным связующим с отвердителем при соотношении массы наполнителя и связующего от 30:70 до 50:50% соответственно, с последующим термоотверждением и охлаждением готового изделия, в введении оболочки в защищаемую часть трубопровода и прижатии к его внутренней поверхности подачей теплоносителя, изготавливают тонкостенную оболочку трубчатой формы с наружным диаметром, равным внутреннему диаметру трубопровода, путем намотки на цилиндрическую вращающуюся оправку в два или три слоя с углом намотки, составляющим 120-125 градусов, предварительно пропитанного связующим непрерывного неорганического волокна и съема готовой оболочки с оправки после oтвqзждeния и охлаждения, причем в качестве связующего используют состав, содержащий, мас.%: 50-70 эпоксидиановой смолы, 30-50 олигоэфируретандиэпоксида и стехиометрическое количество отвердителя аминного или ангидридного типа, в трубопровод вводят готовую оболочку в деформированном виде, имеющую поперечное сечение V-образной формы или формы трехлистника, а затем расправляют ее под действием теплоносителя до исходной трубчатой формы.
В настоящее время для решения многих практических задач применяются полимерные материалы, армированные различными волокнами, в том числе и неорганическими, так как они характеризуются высокой механической прочностью и химической стойкостью, однако армированные пластики имеют довольно жесткую структуру, поэтому, чтобы использовать их, например, для введения в трубопровод с целью защиты его поверхности, необходимо решить ряд технических задач, одной из которых является придание изделию из пластика способности к деформативности с последующим восстановлением формы.
Было обнаружено, что отвержденное связующее, содержащее, мас.%: 50-70 эпоксидиановой смолы, 30-50 олигоэфируретандиэпоксида и стехиометрическое количество отвердителя аминного или ангидридного типа, способно к глубокой (до 35%) относительной деформации при температуре 100-120°С и последующей ее фиксации охлаждением до 50°С, благодаря чему предлагаемый способ изготовления тонкостенной трубчатой оболочки путем намотки на оправку в два или три слоя с углом намотки 120-125 градусов пропитанного указанным связующим неорганического волокна обеспечивает способность готовой оболочки к деформации и последующему восстановлению первоначальной формы при нагревании.
При содержании в заявляемом связующем менее 50 мас.% эпоксидиановой смолы и более 50 мас.% олигоэфируретандиэпоксида происходит снижение прочностных свойств изготавливаемой оболочки. При содержании эпоксидиановой смолы более 70 мас.%, а олигоэфируретандиэпоксида менее 30 мас.% резко снижается величина относительной деформации. При использовании в предлагаемом способе угла намотки волокна вне заявляемых пределов конструкция оболочки не обладает в достаточной мере требуемыми свойствами.
Полученная заявляемым способом оболочка имеет толщину 0,8-1,2 мм, обладает прочностью при растяжении 800-1000 МПа и водопоглощением за 24 часа, равным 0,2%, а химическая стойкость оболочки соответствует 1 баллу по ГОСТ 12020.
Заявляемое техническое решение является новым, так как не известно из уровня техники, обладает изобретательским уровнем и промышленно применимо, поскольку может быть использовано в промышленных условиях, а именно при строительстве и эксплуатации трубопроводов.
Предлагаемый способ защиты внутренней поверхности трубопровода поясняется примерами его осуществления.
Пример 1.
Сначала готовят эпоксидное связующее, вводя в 100 мас.ч. (50 мас.%) эпоксидиановой смолы марки ЭД-20 (ГОСТ 10587) 100 мас.ч. (50 мас.%) олигоэфирурегандиэпоксида марки ППГ-3А (ТУ 38-03-001-89), перемешивая их при температуре 20°С в течение 10 мин и добавляя в полимерную смесь 15 мас.ч. м-фенилендиамина (ГОСТ 5826) в качестве отвердителя и снова перемешивая в течение 10 мин. Полученный состав загружают в пропиточную ванну и пропускают через нее непрерывное стекловолокно марки РБН (ТУ 648-00204984-22-96), после чего наматывают пропитанное стекловолокно в два слоя с углом намотки 120 градусов на вращающуюся оправку намоточной машины, при этом соотношение массы волокна и связующего составляет 50:50% соответственно. После намотки волокна оправку помещают в гермокамеру и подвергают горячему отверждению, выдерживая по режиму: 4 часа при 100°С и 8 часов при 140°С, обеспечивающему полное отверждение связующего и формирование оболочки, затем оправку с оболочкой охлаждают при комнатной температуре и снимают готовую тонкостенную трубчатую оболочку с оправки. Для облегчения введения готовой оболочки в трубопровод ее деформируют с временной фиксацией деформации, придавая оболочке в поперечном сечении V-образную форму. С этой целью оболочку нагревают до температуры 100-120°С, обжимают специальным приспособлением и в обжатом виде охлаждают до 50°С, что позволяет зафиксировать новую форму. После установки в трубопровод оболочку расправляют подачей теплоносителя, нагретого до 120°С (например, горячего воздуха или воды).
Пример 2.
Все технологические операции соответствуют приведенным в примере 1, при этом в качестве отвердителя используют полиэтиленполиамин сорт А (ТУ 2413-357-00203447), взятый в количестве 15 мас.ч., и отверждают намотанную оболочку по режиму: 24 часа при 20°С и 6 часов при 80°С.
Пример 3.
Все технологические операции соответствуют приведенным в примере 1, при этом выбирают соотношение массы наполнителя и связующего равным 30:70% соответственно, в качестве наполнителя используют базальтовое волокно (поизводитель Украина), а в качестве отвердителя берут изо-метилтетрагидрофталевый ангидрид (ТУ 6-09-3321) в количестве 80 мас.ч. с добавкой 0,5 мас.ч. катализатора отверждения УП606/2 (ТУ 6-09-6101) и отверждают намотанную оболочку по режиму: 2 часа при 100°С и 6 часов при 140°С.
Пример 4.
Все технологические операции соответствуют приведенным в примере 1, при этом наматывают пропитанное связующим волокно на оправку в три слоя с углом намотки, составлялющим 125 градусов.
Пример 5.
Все технологические операции соответствуют приведенным в примере 1, при этом связующее готовят следующего состава: на 100 мас.ч. (70 мас.%) эпоксидиановой смолы марки ЭД-16 (ГОСТ 10587) берут 80 мас.ч. (30 мас.%) олигоэфируретандиэпоксида марки ППГ-3А (ТУ 38-03-001-89) и 50 мас.ч. отвердителя, в качестве которого используют изо-метилтетрагидрофталевый ангидрид (ТУ 6-09-3321).
Для установки оболочки в трубопровод ее деформируют так же, как в примере 1, но придают форму оболочке в поперечном сечении в виде трехлистника.
Пример 6.
Все технологические операции соответствуют приведенным в примере 1, при этом в качестве наполнителя используют углеволокно марки УКН-П-5000 и готовят связующее следующего состава: на 100 мас.ч. (48 мас.%) эпоксидиановой смолы марки ЭД-22 (ГОСТ 10587) берут 110 мас.ч. (52 мас.%) олигоэфируретандиэпоксида марки ППГ-3А (ТУ 38-03-001-89) и 80 мас.ч. отвердителя, в качестве которого используют изо-метилтетрагидрофталевый ангидрид (ТУ 6-09-3321).
Полученные по примерам 1-6 трубчатые оболочки имеют толщину стенки 0,8-1,2 мм; прочность при растяжениии 800-1000 МПа, измеренную в соответствии с ГОСТ 11262; водопоглощение за 24 часа, равное 0,2% и определенное по ГОСТ 4650; химическую стойкость, соответствующую 1 баллу по ГОСТ 12020.
Указанные физико-механические свойства полученных по заявляемому способу тонкостенных оболочек, их способность к деформативности с последующим восстановлением формы и то, что диаметр оболочки соответствует диаметру трубопровода, позволяют с большей эффективностью использовать оболочки для защиты внутренней поверхности трубопровода, чем в способе-прототипе, так как заявляемая оболочка в деформированном виде легко вводится в трубопровод, а в расправленном виде плотно прилегает к его внутренней поверхности. Кроме того, водопоглощение полученных оболочек в 3 раза ниже, чем у оболочек способа-прототипа, а прочность выше.
Следует также добавить, что заявляемая оболочка является более качественной, так как изготавливается заранее, в условиях предприятия-изготовителя, в отличие от оболочки по способу-прототипу, и поэтому процесс ее изготовления, в том числе полноту отверждения связующего, прочность, деформативность, можно проконтролировать. Кроме того, доставляться заявляемая оболочка к трубопроводу может и в деформированном виде, что упрощает процесс ее транспортировки, а устанавливаться в любом трубопроводе, в том числе и проложенном в грунте, с минимальными затратами времени.
Таким образом, заявляемый способ защиты внутренней поверхности трубопровода является более эффективным и технологичным по сравнению с известным способом-прототипом.

Claims (1)

  1. Способ защиты внутренней поверхности трубопровода, заключающийся в предварительном изготовлении облицовочной оболочки путем пропитки волокнистого наполнителя эпоксидным связующим с отвердителем при соотношении массы наполнителя и связующего от 30:70 до 50:50% соответственно с последующим термоотверждением и охлаждением готового изделия, в введении оболочки в защищаемую часть трубопровода и прижатии к его внутренней поверхности подачей теплоносителя, отличающийся тем, что изготавливают тонкостенную оболочку трубчатой формы с наружным диаметром, равным внутреннему диаметру трубопровода, путем намотки на цилиндрическую вращающуюся оправку в два или три слоя с углом намотки, составляющим 120-125 градусов, предварительно пропитанного связующим непрерывного неорганического волокна и съема готовой оболочки с оправки после отверждения и охлаждения, причем в качестве связующего используют состав, содержащий 50-70 мас.%: эпоксидиановой смолы, 30-50 мас.% олигоэфируретандиэпоксида и стехиометрическое количество отвердителя аминного или ангидридного типа, в трубопровод вводят готовую оболочку в деформированном виде, имеющую поперечное сечение V-образной формы или формы трехлистника, а затем расправляют ее под действием теплоносителя до исходной трубчатой формы.
RU2003119539/06A 2003-06-20 2003-06-20 Способ защиты внутренней поверхности трубопровода RU2248496C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003119539/06A RU2248496C1 (ru) 2003-06-20 2003-06-20 Способ защиты внутренней поверхности трубопровода

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003119539/06A RU2248496C1 (ru) 2003-06-20 2003-06-20 Способ защиты внутренней поверхности трубопровода

Publications (2)

Publication Number Publication Date
RU2003119539A RU2003119539A (ru) 2004-12-20
RU2248496C1 true RU2248496C1 (ru) 2005-03-20

Family

ID=35454172

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003119539/06A RU2248496C1 (ru) 2003-06-20 2003-06-20 Способ защиты внутренней поверхности трубопровода

Country Status (1)

Country Link
RU (1) RU2248496C1 (ru)

Similar Documents

Publication Publication Date Title
US3769127A (en) Method and apparatus for producing filament reinforced tubular products on a continuous basis
US3340115A (en) Method of making a reinforced composite concrete pipe
US5653555A (en) Multiple resin system for rehabilitating pipe
US4622196A (en) Lining of pipelines and passageways
US3177902A (en) Reinforced pipe and method of making
US3489626A (en) Method of making a prestressed,reinforced,resin-crete concrete pipe
SE405889B (sv) Sammansatt rorformig kropp
US20060070676A1 (en) Apparatus, system, and method of repairing conduit, and method of manufacturing a conduit repair apparatus
US11754205B2 (en) Method and apparatus of making pipes and panels using a treated fiber thread to weave, braid or spin products
RU2248491C2 (ru) Способ и установка для сооружения цилиндрического трубопровода в открытой в своей верхней части траншее
FI90132B (fi) Roer foer nyinfodring av underjordiska roerledningar
US3288171A (en) Fluid conduit and method for making same
US3554999A (en) Method of making a shrink device
USRE27061E (en) Method of making a reinforced composite concrete pipe
JP6918301B2 (ja) 既設管更生方法
RU2248496C1 (ru) Способ защиты внутренней поверхности трубопровода
RU192353U1 (ru) Рукав для ремонта трубопровода большого диаметра
WO2012076017A1 (en) A method of producing a curved, elongate fiber reinforced polymer element, a method of producing a flexible pipe and a flexible pipe comprising a curved, elongate fiber reinforced polymer element
WO2016096906A1 (en) Filament-wound liner-free pipe
KR101174381B1 (ko) 수중경화형 에폭시 수지도료와 굴절형 팽창보수장치를 이용한 비굴착 하수도관 부분보수공법.
CN115059411B (zh) 一种复合连续油管及制作方法
RU192354U1 (ru) Рукав для ремонта трубопровода
CA2291821A1 (en) Apparatus and method for lining of passageways
CA2008230C (en) Method for thermally insulating a pipeline
RU2145029C1 (ru) Способ облицовки трубопровода

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060621