RU2236562C1 - Способ энергоснабжения скважинной аппаратуры при контроле за разработкой нефти или газа и термоэлектрический автономный источник питания - Google Patents

Способ энергоснабжения скважинной аппаратуры при контроле за разработкой нефти или газа и термоэлектрический автономный источник питания Download PDF

Info

Publication number
RU2236562C1
RU2236562C1 RU2003102566/03A RU2003102566A RU2236562C1 RU 2236562 C1 RU2236562 C1 RU 2236562C1 RU 2003102566/03 A RU2003102566/03 A RU 2003102566/03A RU 2003102566 A RU2003102566 A RU 2003102566A RU 2236562 C1 RU2236562 C1 RU 2236562C1
Authority
RU
Russia
Prior art keywords
power source
thermoelectric
choke
oil
gas
Prior art date
Application number
RU2003102566/03A
Other languages
English (en)
Other versions
RU2003102566A (ru
Inventor
Г.А. Григашкин (RU)
Г.А. Григашкин
В.В. Кульчицкий (RU)
В.В. Кульчицкий
Original Assignee
Закрытое акционерное общество Научно-производственная фирма "Самарские Горизонты"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Закрытое акционерное общество Научно-производственная фирма "Самарские Горизонты" filed Critical Закрытое акционерное общество Научно-производственная фирма "Самарские Горизонты"
Priority to RU2003102566/03A priority Critical patent/RU2236562C1/ru
Publication of RU2003102566A publication Critical patent/RU2003102566A/ru
Application granted granted Critical
Publication of RU2236562C1 publication Critical patent/RU2236562C1/ru

Links

Images

Landscapes

  • Earth Drilling (AREA)

Abstract

Изобретения относятся к технологии добычи нефти или газа и могут быть использованы для питания электроэнергией скважинной аппаратуры контроля состояния пласта. Способ включает подачу электрической энергии от термоэлектрического источника питания, работающего за счет разности температур на его поверхностях, и дросселирование пластовых флюидов для обеспечения указанной разницы температур. Термоэлектрический источник питания, содержащий один или несколько термоэлементов, выполняют в виде дросселя или установливают на дросселе. Дроссель устанавливают в эксплуатационной колонне. Изобретения направлены на увеличение кпд источника питания и увеличение ресурса работы аппаратуры контроля состояния пласта. 2 с.п. ф-лы, 9 ил.

Description

Изобретение относится к технологии добычи нефти или газа и относится к источникам питания электроэнергией скважинных приборов, установленных в эксплуатационной колонне и передающих информацию в процессе добычи нефти или газа на поверхность.
Известен способ энергоснабжения скважинной аппаратуры и автономный источник питания скважинной аппаратуры в виде турбогенератора, содержащего гидротурбину, приводимую в движение потоком бурового раствора, маслозаполненный статор, залитый эпоксидным компаундом, и ротор генератора переменного тока на постоянных магнитах, расположенных на валу гидротурбины (Молчанов А.А., Сираев А.X. Скважинные автономные системы с магнитной регистрацией. - М.: Недра, 1979, с.102...103).
Недостатком такого способа и автономного источника питания является низкий ресурс, связанный с износом подшипников и уплотнений. Этот способ и устройство применяются при бурении скважин, когда возможна частая профилактика оборудования, поднимаемого на поверхность. В условиях эксплуатации скважины оборудование должно работать в скважине без профилактики несколько лет, желательно в течение всего срока действия скважины. Описанные выше способ и устройство этого не обеспечивают.
Известен также источник питания скважинной аппаратуры по свидетельству РФ на полезную модель №18211. Этот источник питания содержит химические элементы, каждый из которых выполнен в корпусе и размещен в общем корпусе, который закреплен с кольцевым зазором внутри колонны бурильных труб над скважинной аппаратурой при помощи разъема на торце и кабельного наконечника.
Недостаток - низкий ресурс работы химических элементов и неприспособленность их к условиям работы в процессе добычи нефти. Ресурс батарейных элементов весьма ограничен, и они не восстанавливаются и не перезаряжаются. Такие элементы могут использоваться при бурении скважины для питания электронных компонентов скважинной аппаратуры, но вообще непригодны для работы в скважине в условиях добычи нефти.
Известен также источник питания, работа которого основана на явлении термоэдс (явление, обратное эффекту Пельтье) (см. Физический энциклопедический словарь, М., Советская энциклопедия, 1983, с.756). Источник питания содержит термоэлементы, соединенные с потребителем электроэнергии. Термоэдс возникает в электрической цепи, состоящей из нескольких разнородных проводников, контакты между которыми имеют различную температуру.
Наиболее близким к заявленному является способ энергоснабжения скважинной аппаратуры контроля за разработкой месторождения нефти или газа, включающий подачу электрической энергии от термоэлектрического источника питания, работающего за счет разности температур на его поверхностях, возникающей, в свою очередь, в результате дросселирования пластовых флюидов. Применяемый в способе термоэлектрический источник питания содержит один или несколько термоэлементов (см. GB 2336943 A, Кл. H 01 L 35/32, опубл. 03.11.1999).
Термоэлектрический источник питания установлен в колонне труб невдалеке от дросселя, что не позволяет в полной мере использовать разность температур, создаваемую за счет дросселирования. Таким образом, недостатком прототипа является низкая мощность источника питания.
Задачей изобретения является увеличение ресурса работы аппаратуры контроля состояния пласта за счет увеличения мощности источника питания.
Решение указанной задачи достигнуто за счет того, что в способе энергоснабжения скважинной аппаратуры контроля за разработкой месторождения нефти или газа, включающем подачу электрической энергии от термоэлектрического источника питания, работающего за счет разности температур на его поверхностях, и дросселирование пластовых флюидов для обеспечения указанной разницы температур, термоэлектрический источник питания выполняют в виде дросселя или устанавливают на нем, а дроссель устанавливают в эксплуатационной колонне.
В термоэлектрическом автономном источнике питания, содержащем один или несколько термоэлементов, термоэлементы выполнены в виде дросселя или установлены на дросселе, а дроссель установлен в эксплуатационной колонне.
Сущность изобретения поясняется на фиг.1...9, где
на фиг.1 приведена схема установки,
на фиг.2 - конструкция термоэлектрического источника питания, содержащего термоэлемент, выполненный в виде дросселя,
на фиг.3 - конструкция источника питания, выполненного в виде термоэлементов, смонтированных на дросселе,
на фиг.4 и 8 - конструкция термоэлектрического автономного источника питания, выполненного в виде дросселя цилиндрической формы с установленными на нем элементами термоэлементами,
на фиг.5 - конструкция варианта исполнения источника питания в виде цилиндрического дросселя с оребрением,
на фиг.6 и 9 - конструкция термоэлектрического автономного источника питания, выполненного в виде цилиндрического дросселя с установленными на нем двумя термопарами,
на фиг.7 - конструкция автономного источника питания в виде цилиндрического дросселя с установленными на нем несколькими (более 2-х) термопарами.
на фиг.8 - то же самое, что и на фиг.4, в большем масштабе,
на фиг.9 - то же самое, что и на фиг.6, в большем масштабе.
В эксплуатационной колонне 1 (фиг.1) установлены насосно-компрессорные трубы 2, скважинный прибор 3 сцентрирован внутри обсадной колонны 1 или на нижнем конце насосно-компрессорных труб 2. Насосно-компрессорные трубы 2 оборудованы в верхней части арматурой 4, к которой подсоединена газовая (или нефтяная труба) 5. Ниже или выше скважинного прибора 3 в эксплуатационной колонне 1 установлен дроссель 6. На дросселе 6 (или в виде его) смонтирован термоэлектрический автономный источник питания 7, содержащий один или несколько термоэлементов. В качестве термоэлементов могут быть использованы термопары (элементы Пелетье). Термоэлементы могут быть подключены к накопителю энергии 8.
Эксплуатационная колонна 1 выходит нижним концом в продуктивный пласт 9, который наиболее вероятно состоит из трех слоев: воды 10, нефти 11 и газа 12. В нижней части эксплуатационной колонны 1 около скважинного прибора 3 смонтирован электрический разделитель 13, который обеспечивает передачу информации со скважинного прибора 3 по электромагнитному каналу связи 14 на антенну 15, приемное устройство 16 и далее на персональный компьютер 17, например, типа Pentium. Термоэлектрический автономный источник питания 7 соединен со скважинным прибором 3 проводами 18. В состав скважинного прибора 3 входят датчики измерения параметров, усилитель, преобразователь и передающее устройство, которые в дальнейшем детально не расписаны в описании и не раскрыты на чертежах.
Возможно несколько вариантов исполнения конструкции термоэлектрического автономного источника питания 7. По одному из них (фиг.2) дроссель 6 конструктивно совмещен с термоэлектрическим автономным источником питания 7 и является одновременно термоэлементом 19 (термопарой). “Горячая” поверхность 20 выполнена на внутренней поверхности конического дросселя 6, а “холодная” 21 - на наружной поверхности. В другом варианте исполнения на дросселе 6 (фиг.3) установлены один или несколько термоэлементов 19. В третьем варианте (фиг.4) термоэлементы 19 закреплены на торцах цилиндрического дросселя 6. В четвертом варианте (фиг.5) дополнительно применено оребрение 22. В пятом варианте (фиг.6) на поверхности дросселя установлена одна или несколько термопар 23. Проводами 18 термоэлементы подключены к скважинному прибору 3.
На фиг.6 приведен вариант исполнения дросселя с двумя термопарами 23, а на фиг.7 - с четырьмя термопарами 23.
На фиг.8 представлена детально конструкция термоэлектрического автономного источника питания. Термоэлемент закреплен на дросселе 6 при помощи неэлектропроводного клея 24, который заливает “горячий спай” 25 и “холодный спай” 26.
На фиг.9 представлена схема установки термопар на торцовые поверхности дросселя 6, на которые предварительно нанесен слой неэлектропроводного клея 24. “Холодный спай” 26 установлен сверху, а “горячий спай” 25 соответственно снизу.
При добыче газа или нефти пластовые флюиды (чистая нефть, газ, смесь нефти с водой и т.д.) проходят через дроссель 6, при этом температура пластовых флюидов вследствие эффекта дросселирования жидкости или газа на гидравлическом дросселе снижается (Т1<Т2) и разность температур практически без потерь воспринимается термоэлементами.
В результате возникает термоЭДС и полученный электрический ток поступает либо в скважинный прибор 3 напрямую или через накопитель энергии 8.
Применение изобретения позволит:
1. Создать источник с неограниченным (в пределах срока эксплуатации скважины) ресурсом.
2. Упростить конструкцию источника питания.
3. Повысить КПД источника питания и увеличить ресурс работы аппаратуры контроля.

Claims (2)

1. Способ энергоснабжения скважинной аппаратуры контроля за разработкой месторождения нефти или газа, включающий подачу электрической энергии от термоэлектрического источника питания, работающего за счет разности температур на его поверхностях, и дросселирование пластовых флюидов для обеспечения указанной разницы температур, отличающийся тем, что термоэлектрический источник питания выполняют в виде дросселя или установливают на нем, а дроссель устанавливают в эксплуатационной колонне.
2. Термоэлектрический автономный источник питания, содержащий один или несколько термоэлементов, отличающийся тем, что термоэлементы выполнены в виде дросселя или установлены на дросселе, а дроссель установлен в эксплуатационной колонне.
RU2003102566/03A 2003-01-30 2003-01-30 Способ энергоснабжения скважинной аппаратуры при контроле за разработкой нефти или газа и термоэлектрический автономный источник питания RU2236562C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2003102566/03A RU2236562C1 (ru) 2003-01-30 2003-01-30 Способ энергоснабжения скважинной аппаратуры при контроле за разработкой нефти или газа и термоэлектрический автономный источник питания

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2003102566/03A RU2236562C1 (ru) 2003-01-30 2003-01-30 Способ энергоснабжения скважинной аппаратуры при контроле за разработкой нефти или газа и термоэлектрический автономный источник питания

Publications (2)

Publication Number Publication Date
RU2003102566A RU2003102566A (ru) 2004-07-27
RU2236562C1 true RU2236562C1 (ru) 2004-09-20

Family

ID=33433448

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2003102566/03A RU2236562C1 (ru) 2003-01-30 2003-01-30 Способ энергоснабжения скважинной аппаратуры при контроле за разработкой нефти или газа и термоэлектрический автономный источник питания

Country Status (1)

Country Link
RU (1) RU2236562C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494250C1 (ru) * 2012-01-19 2013-09-27 Общество с ограниченной ответственностью Научно-производственная фирма "ГОРИЗОНТ" (ООО НПФ "ГОРИЗОНТ") Способ передачи информации по электромагнитному каналу связи при эксплуатации скважины и устройство для его осуществления
RU173746U1 (ru) * 2017-05-02 2017-09-07 Катарина Валерьевна Найгерт Реологический дроссель-термостат

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2494250C1 (ru) * 2012-01-19 2013-09-27 Общество с ограниченной ответственностью Научно-производственная фирма "ГОРИЗОНТ" (ООО НПФ "ГОРИЗОНТ") Способ передачи информации по электромагнитному каналу связи при эксплуатации скважины и устройство для его осуществления
RU173746U1 (ru) * 2017-05-02 2017-09-07 Катарина Валерьевна Найгерт Реологический дроссель-термостат

Similar Documents

Publication Publication Date Title
US3036645A (en) Bottom-hole turbogenerator drilling unit
US7770645B2 (en) Method and apparatus for downhole thermoelectric power generation
US20060191687A1 (en) Switchable power allocation in a downhole operation
US5965964A (en) Method and apparatus for a downhole current generator
US5931000A (en) Cooled electrical system for use downhole
CA2587897C (en) Heating and cooling electrical components in a downhole operation
CA2860417C (en) Pipe in pipe bha electric drive motor
US20090166045A1 (en) Harvesting vibration for downhole power generation
CA3040255C (en) Systems and methods to generate power in a downhole environment
JPH02197694A (ja) 井戸孔工具
US20160145974A1 (en) Apparatus and method for power management of downhole tool
US10145215B2 (en) Drill bit with electrical power generator
US20130236332A1 (en) Systems and Methods for Cooling High Temperature Electrical Connections
RU2236562C1 (ru) Способ энергоснабжения скважинной аппаратуры при контроле за разработкой нефти или газа и термоэлектрический автономный источник питания
CA2971098C (en) Thermoelectric generator for use with wellbore drilling equipment
US11970923B2 (en) Downhole electrical generator
RU2211328C1 (ru) Термоэлектрический автономный источник питания
RU27153U1 (ru) Термоэлектрический автономный источник питания
RU2235875C2 (ru) Термоэлектрический автономный источник питания
CA2824176C (en) Systems and methods for cooling high temperature electrical connections
GB2437433A (en) Free flowing tags powered by vibrational energy
RU2003102566A (ru) Способ энергоснабжения скважинной аппаратуры при контроле за разработкой нефти или газа и термоэлектрический автономный источник питания
CN116446853A (zh) 一种具备主动降温功能的侧壁舱体式随钻测控系统

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150131