RU2223914C2 - Способ переработки дистен-андалузит-силлиманитовых концентратов - Google Patents
Способ переработки дистен-андалузит-силлиманитовых концентратов Download PDFInfo
- Publication number
- RU2223914C2 RU2223914C2 RU2002101990/15A RU2002101990A RU2223914C2 RU 2223914 C2 RU2223914 C2 RU 2223914C2 RU 2002101990/15 A RU2002101990/15 A RU 2002101990/15A RU 2002101990 A RU2002101990 A RU 2002101990A RU 2223914 C2 RU2223914 C2 RU 2223914C2
- Authority
- RU
- Russia
- Prior art keywords
- andalusite
- sillimanite
- processing
- distene
- concentrates
- Prior art date
Links
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Изобретение относится к цветной металлургии, в частности к производству глинозема, и может быть использовано для переработки дистен-андалузит-силлиманитовых концентратов. Способ переработки дистен-андалузит-силлиманитовых концентратов включает приготовление шихты и ее спекание. Приготовление шихты ведут из дистен-андалузит-силлиманитовых концентратов, известняка, соды и дополнительного щелочного алюмосиликатного сырья при массовом соотношении щелочного алюмосиликатного сырья и дистен-андалузит-силлиманитового концентрата 0,1-1,0:1,0. Спекание ведут при температуре 1250-1300oС и спек выщелачивают. Изобретение позволяет снизить настылеобразование в печах, снизить температуру спекания, повысить качество спека, уменьшить расход соды. 3 табл., 1 ил.
Description
Изобретение относится к области цветной металлургии, в частности к производству глинозема, и может быть использовано для переработки дистен-андалузит-силлиманитовых концентратов методом спекания.
Известен способ переработки низкокачественного алюмосиликатного сырья (а. с. 734952, МКИ G 01 F 7/38, СССР, 1980 г.), где дистен-силлиманитовые концентраты используют как высокоглиноземную добавку при переработке низкокачественного щелочного алюмосиликатного сырья при отношении 0,25-1,0:1,0, что позволяет повысить извлечение глинозема из спека. Однако здесь решается другая задача - переработка низкокачественного щелочного алюмосиликатного сырья, и он не может быть использован для переработки дистен-андалузит-силлиманитовых концентратов из-за плохого качества спека.
За прототип взят способ, включающий приготовление шихты из кианитового концентрата, известняка и соды, спекание шихты и выщелачивание спека (Яшунин П. В. , Киселев В.П. Кианиты - перспективное комплексное сырье алюминиевой промышленности. - Л. Труды ВАМИ, 85, 1973 г., с.113-116). Он является наиболее выгодной технологической схемой по величине расходных коэффициентов и материальному потоку. Однако при содово-известняковом спекании дистен-андалузит-силлиманитовых концентратов без добавки щелочного алюмосиликатного сырья или с малой добавкой его (до содержания в рудной смеси меньше 10 мас. %), требуется большая температура, спек разрушается и образуются настыли в печи из-за чрезмерного увеличения объема спека за счет муллитизации минералов группы дистена (кианит, андалузит и силлиманит относятся к минералам группы дистена, имеют одинаковую химическую формулу Al2O3•SiO2(Al2SiO5), обладающих высокими огнеупорностью и химической инертностью, наблюдается низкое качество получаемого спека из-за малой прочности и небольшого извлечения глинозема по вышеуказанным причинам и, кроме того, необходимо расходовать много дорогостоящей соды, т.к. в концентратах практически нет щелочей, необходимых для производства. Эти недостатки способа-прототипа в значительной степени гасят его преимущества по меньшим расходным коэффициентам и материальному потоку при переработке дистен-андалузит-силлиманитовых концентратов и даже ставят под сомнение возможность осуществления самого процесса спекания в промышленных вращающихся печах из-за интенсивного настылеобразования.
Техническим результатом изобретения является снижение настылеобразования в печах и температуры спекания, повышение качества спека и уменьшение расхода соды.
Технический результат достигается тем, что в способе переработки дистен-андалузит-силлиманитовых концентратов, включающем приготовление шихты и ее спекание, новым является то, что приготовление шихты ведут из дистен-андалузит-силлиманитовых концентратов, известняка, соды и дополнительного щелочного алюмосиликатного сырья при массовом соотношении щелочного алюмосиликатного сырья к дистен-андалузит-силлиманитовым концентратам 0,1-1,0:1,0, спекание ведут при температуре 1250-1300oС и спек выщелачивают. Нижний предел добавки щелочного алюмосиликатного сырья к дистен-андалузит-силлиманитовым концентратам (масс.отн. 0,1:1,0) обусловлен повышением качества спека, т.е. улучшением физико-химических свойств его, а именно: увеличением прочности и извлечением глинозема и щелочей, а также снижением температуры спекания, предотвращением настылеобразования во вращающихся печах и уменьшением расхода соды на 1 т глинозема.
Верхний предел добавки щелочного алюмосиликатного сырья обусловлен снижением качества спеков и увеличением удельных (на 1 т глинозема) материальных потоков - по глиноземсодержащему сырью, известняку, шихте, спеку, топливу и шламу, т.к. в добавляемом щелочном алюмосиликатном сырье содержание глинозема значительно меньше, чем в дистен-андалузит-силлиманитовых концентратах, что снизит содержание его в шихте и спеке. Кроме того, при более высоких добавках щелочного алюмосиликатного сырья, чем принятый верхний предел (масс. отн. 1,0:1,0), с глиноземсодержащим сырьем поступает в переработку щелочей больше, чем необходимо производству для компенсации их безвозвратных механических потерь и потерь со шламом. В этом случае необходима организация дополнительного производства по выводу щелочей из процесса в виде товарного продукта - соды, что осложнит аппаратурно-технологическую схему переработки концентратов.
Таким образом, подача в шихту для спекания щелочного алюмосиликатного сырья при массовом отношении его к дистен-андалузит-силлиманитовым концентратам 0,1-1,0: 1,0 повышает содержание в шихте оксидов железа-спекообразователя, образующих при спекании легкоплавкие эвтектики, и щелочей, необходимых для производства, снижает содержание глинозема и огнеупорных, химически инертных, склонных к муллитизации и увеличению объема, минералов группы дистена - спекостойкой части шихты, которые приводят к увеличению скорости твердофазных реакций при спекании шихты, более полному превращению глинозема в хорошо растворимые при выщелачивании алюминаты щелочных металлов, улучшению качества спека, уменьшению настылеобразования в печах, температуры спекания и расхода соды и позволяют более эффективно решить задачу переработки на глинозем дистен-андалузит-силлиманитовых концентратов. Следовательно, заявляемый способ переработки дистен-андалузит-силлиманитовых концентратов соответствует критериям "новизна" и "изобретательский уровень".
Заявляемый способ был осуществлен в лабораторном масштабе. Химические составы используемых сырьевых материалов и смесей на основе дистен-андалузит-силлиманитовых концентратов и горячегорской нефелиновой руды (щелочного алюмосиликатного сырья) приведены в табл.1. Причем рудные смеси для опытов готовили из более высококачественного дистенового концентрата (А) и менее качественного силлиманитового концентрата (В), где содержание глинозема ниже на 7%, а оксида железа и кремнезема - выше соответственно на 0,07 и ~4,5%, смешивая их с нефелиновой рудой Горячегорского месторождения.
Для спекания выбрана насыщенная шихта как наиболее хорошо изученная и широко применяемая в производстве, с молекулярными отношениями основных компонентов (Na2O+K2O):(Аl2O3+Fе2O3)=1,05, CaO:SiO2=2,0). В качестве шихтуемых материалов использовали углекислый натрий и углекислый кальций марки "ч.д.а. "
Предварительно измельченные до крупности - 0,074 мм материалы шихты тщательно перемешивали, затем брикетировали на механическом прессе при удельном давлении ~200 кг/см2 и спекали в корундовых тиглях при 1250 и 1300oС. Подъем температуры до заданной осуществляли со скоростью 15-20oС/мин, затем следовала выдержка в течение 1 часа. Спеки охлаждали вместе с печью до 400oС, а далее - до комнатной температуры на воздухе. Внешний вид полученных при температуре спекания 1250 и 1300oС спеков показан на чертеже. Затем спеки измельчали до крупности - 0,074 мм и выщелачивали по стандартной методике содощелочным раствором при отношении жидкого к твердому =20, температуре 70oС в течение 7 минут. Извлечение глинозема и щелочей из спеков в раствор при выщелачивании рассчитывали по анализу шламов, которые приведены в табл.2.
Предварительно измельченные до крупности - 0,074 мм материалы шихты тщательно перемешивали, затем брикетировали на механическом прессе при удельном давлении ~200 кг/см2 и спекали в корундовых тиглях при 1250 и 1300oС. Подъем температуры до заданной осуществляли со скоростью 15-20oС/мин, затем следовала выдержка в течение 1 часа. Спеки охлаждали вместе с печью до 400oС, а далее - до комнатной температуры на воздухе. Внешний вид полученных при температуре спекания 1250 и 1300oС спеков показан на чертеже. Затем спеки измельчали до крупности - 0,074 мм и выщелачивали по стандартной методике содощелочным раствором при отношении жидкого к твердому =20, температуре 70oС в течение 7 минут. Извлечение глинозема и щелочей из спеков в раствор при выщелачивании рассчитывали по анализу шламов, которые приведены в табл.2.
Кроме того, брикеты полученных спеков подвергали испытанию на прочность на прессе с динамометром. За предел прочности спека принимали способность брикета выдерживать максимальную нагрузку на сжатие без разрушения. Пористость спеков определяли по методике гидростатического взвешивания сухих и насыщенных этиловым спиртом спеков на воздухе и в спирте. Результаты этих испытаний приведены также в табл.2.
Для оценки расхода материалов и выхода продуктов на 1 т глинозема при переработке различных смесей из дистен-силлиманитового концентрата и щелочного алюмосиликатного сырья выполнены расчеты материальных балансов, результаты которых приведены в табл.3.
Анализ результатов экспериментов и расчеты показывают, что переработка дистен-силлиманитовых концентратов по прототипу, т.е. без подачи на приготовление шихты для спекания щелочного алюмосиликатного сырья, характеризуется в целом более низкими показателями:
1) спеки разрушаются, непрочные, склонны к настылеобразованию, т.е. по физическим свойствам некачественные и не удовлетворяют требованиям технологии процесса спекания (см. чертеж и табл.2);
2) по химическим свойствам спеки также получаются низкого качества, т.к. извлечение глинозема и щелочей при их выщелачивании меньше, чем из спеков, полученных из дистен-силлиманитовых концентратов с добавкой щелочного алюмосиликатного сырья (см. табл. 2);
3) для спекания шихты на основе только дистен-силлиманитовых концентратов (без нефелинов) требуется более высокая температура спекания. Например, для дистеновых концентратов она должна быть больше 1300oС, т.к. снижение температуры спекания до 1250oС приводит к уменьшению извлечения глинозема и щелочей из спека (см. табл.2, смесь 1);
4) расход свежей соды максимален и составляет в данном конкретном случае 0,19 т на 1 т Аl2О3 (см. табл.3).
1) спеки разрушаются, непрочные, склонны к настылеобразованию, т.е. по физическим свойствам некачественные и не удовлетворяют требованиям технологии процесса спекания (см. чертеж и табл.2);
2) по химическим свойствам спеки также получаются низкого качества, т.к. извлечение глинозема и щелочей при их выщелачивании меньше, чем из спеков, полученных из дистен-силлиманитовых концентратов с добавкой щелочного алюмосиликатного сырья (см. табл. 2);
3) для спекания шихты на основе только дистен-силлиманитовых концентратов (без нефелинов) требуется более высокая температура спекания. Например, для дистеновых концентратов она должна быть больше 1300oС, т.к. снижение температуры спекания до 1250oС приводит к уменьшению извлечения глинозема и щелочей из спека (см. табл.2, смесь 1);
4) расход свежей соды максимален и составляет в данном конкретном случае 0,19 т на 1 т Аl2О3 (см. табл.3).
Единственным преимуществом рассматриваемой шихты является наименьший материальный поток при подготовке шихты, ее спекании и выщелачивании спека (см. табл. 3). Однако отмеченные недостатки способа-прототипа, как это показано выше, не дают возможности осуществить процесс спекания в промышленных вращающихся печах из-за интенсивного настылеобразования и получить качественные спеки, поэтому достижение преимущества - наименьшего материального потока при переработке только дистен-силлиманитовых концентратов (без добавки щелочного алюмосиликатного сырья) является вообще нереальной задачей.
Заявляемый способ устраняет или существенно уменьшает вышеотмеченные недостатки при переработке концентратов: позволяет качественно провести спекание шихты (без настылеобразования) и повысить показатели переработки дистен-силлиманитовых концентратов, а именно снизить настылеобразование в печах и температуру спекания шихты, повысить качество спека (улучшить физико-химические свойства его) и уменьшить расход свежей соды на нужды производства. На чертеже видно, что при содержании в рудной смеси горячегорской нефелиновой руды 1 (Д) 10 мас.% и дистенового концентрата (А) 90 мас.%, т.е. при массовом отношении их 0,11:1,0, спек еще склонен к разрушению и настылеобразованию (особенно отчетливо это видно при температуре спекания 1250oС), а с увеличением добавки щелочного алюмосиликатного сырья до содержания его в смеси 20 мас.% и выше (до 50 мас.%) спеки получаются уже хорошего качества (достаточно прочные) и извлечение глинозема и щелочей из них достигается больше, чем из спека, полученного только из дистенового концентрата - см. табл. 2. Причем температуру спекания указанных смесей можно уменьшить с 1300 до 1250oС без ухудшения качества спеков - см. табл.2 и чертеж, а расход соды снижается по сравнению с переработкой чистого дистенового концентрата - см. табл.3 и спеки не склонны к настылеобразованию (см. чертеж). При переработке же более низкого качества силлиманитового концентрата (В), количество щелочного алюмосиликатного сырья (Д) в смеси 10 мас.% (мас. отн. Д:В=0,11:1,0) уже достаточно, чтобы спек получился хорошего качества, не разрушался и не образовывал настыли из-за увеличения объема (см. чертеж и табл.2). Следует отметить, что извлечение глинозема и щелочей из этих спеков меньше, чем из более качественного дистенового концентрата. Поэтому нижний предел массового отношения щелочного алюмосиликатного сырья и дистен-андалузит-силлиманитового концентрата выбран 0,1:1,0, который обусловлен повышением качества спека, т.е. улучшением физико-химических свойств его, а именно увеличением прочности и извлечения глинозема и щелочей, а также снижением температуры спекания, предотвращением настылеобразования во вращающихся печах и уменьшением расхода соды на 1 т глинозема.
Из результатов опытов видно, что повышение массового отношения щелочного алюмосиликатного сырья (нефелиновой руды) и дистен-андалузит-силлиманитового концентрата больше чем 1,0:1,0 (верхний предел) нецелесообразно. Это приводит к значительному уменьшению извлечения глинозема и щелочей из получаемых спеков (см. табл.2) и увеличению удельных материальных потоков (на 1 т глинозема) по рудной смеси, известняку, шихте, спеку, топливу на спекание шихты и шламу (см. табл.3). Кроме того, при этом с глиноземсодержащим сырьем поступает в переработку щелочей больше, чем необходимо производству для компенсации их безвозвратных механических потерь и потерь со шламом. Поэтому здесь расхода свежей соды нет (см. табл.3), а необходима организация дополнительного производства по выводу щелочей из процесса в виде товарной соды, что осложнит аппаратурно-технологическую схему.
Таким образом, заявляемый способ имеет следующие преимущества:
1) снижается настылеобразование в печах;
2) снижается температура спекания, что позволяет уменьшить расход топлива на переделе спекания и улучшить работу печей;
3) повышается качество спека за счет увеличения его прочности до требуемых значений и увеличивается извлечение ценных компонентов - глинозема и щелочей;
4) уменьшается расход свежей соды при переработке дистен-андалузит-силлиманитовых концентратов.
1) снижается настылеобразование в печах;
2) снижается температура спекания, что позволяет уменьшить расход топлива на переделе спекания и улучшить работу печей;
3) повышается качество спека за счет увеличения его прочности до требуемых значений и увеличивается извлечение ценных компонентов - глинозема и щелочей;
4) уменьшается расход свежей соды при переработке дистен-андалузит-силлиманитовых концентратов.
Claims (1)
- Способ переработки дистен-андалузит-силлиманитовых концентратов, включающий приготовление шихты и ее спекание, отличающийся тем, что приготовление шихты ведут из дистен-андалузит-силлиманитовых концентратов, известняка, соды и дополнительного щелочного алюмосиликатного сырья при массовом соотношении щелочного алюмосиликатного сырья к дистен-андалузит-силлиманитовым концентратам 0,1-1,0:1,0, спекание ведут при 1250-1300°С и спек выщелачивают.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002101990/15A RU2223914C2 (ru) | 2002-01-21 | 2002-01-21 | Способ переработки дистен-андалузит-силлиманитовых концентратов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2002101990/15A RU2223914C2 (ru) | 2002-01-21 | 2002-01-21 | Способ переработки дистен-андалузит-силлиманитовых концентратов |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2002101990A RU2002101990A (ru) | 2003-07-27 |
RU2223914C2 true RU2223914C2 (ru) | 2004-02-20 |
Family
ID=32172281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2002101990/15A RU2223914C2 (ru) | 2002-01-21 | 2002-01-21 | Способ переработки дистен-андалузит-силлиманитовых концентратов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2223914C2 (ru) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2446103C1 (ru) * | 2010-08-02 | 2012-03-27 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" | Способ получения глинозема из кианитового концентрата |
RU2489503C1 (ru) * | 2012-03-12 | 2013-08-10 | Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) | Способ переработки кианитового концентрата |
-
2002
- 2002-01-21 RU RU2002101990/15A patent/RU2223914C2/ru not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
Труды ВАМИ №85. Производство глинозема, - Л., 1973, с.113-116. * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2446103C1 (ru) * | 2010-08-02 | 2012-03-27 | Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" | Способ получения глинозема из кианитового концентрата |
RU2489503C1 (ru) * | 2012-03-12 | 2013-08-10 | Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра Российской академии наук (ИХТРЭМС КНЦ РАН) | Способ переработки кианитового концентрата |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Balomnenos et al. | The ENEXAL bauxite residue treatment process: industrial scale pilot plant results | |
CN105585314B (zh) | 一种致密六铝酸钙耐火熟料及其制备方法 | |
CN107935555A (zh) | 一种镍铁渣陶瓷及其制备方法 | |
CN101591197A (zh) | 一种利用高铝粉煤灰预脱硅制备硅钙肥的方法 | |
EA036441B1 (ru) | Способ изготовления алюминатов кальция | |
CN103030312B (zh) | 一种金属镁冶炼渣的处理方法 | |
CN110066923A (zh) | 赤泥综合回收低熔点金属、铁、钒及熔融渣水泥化的方法 | |
CN104498668A (zh) | 一种复合球体形式的钢水净化剂及生产方法 | |
RU2428490C2 (ru) | Способ переработки красных шламов | |
CN108929103A (zh) | 一种以氰化尾渣为原料的发泡陶瓷保温材料及其制备方法 | |
CN101435020B (zh) | 利用钛精矿生产富钛料的方法 | |
CN103880304B (zh) | 一种提高富硼渣活性的方法 | |
RU2223914C2 (ru) | Способ переработки дистен-андалузит-силлиманитовых концентратов | |
CN100593018C (zh) | 用高铝炉渣生产氧化铝的工艺过程方法 | |
CN108623293A (zh) | 一种磷石膏和赤泥制备高白陶瓷材料联产酸的工艺 | |
CN113582647A (zh) | 一种环保节能型高强赤泥砖及其制备方法 | |
RU2478590C1 (ru) | Шлаковый плавень | |
US3770469A (en) | Process for preparing self-disintegrating products containing dicalcium silicate | |
KR101153887B1 (ko) | 제철제강용 알카리 칼슘페라이트 플럭스의 제조방법 | |
CN101823893A (zh) | 合成钙砂及其生产方法和合成钙砂钢水过滤器的制备方法 | |
RU2340559C1 (ru) | Способ переработки нефелиновых руд и концентратов | |
RU2244026C1 (ru) | Брикет для выплавки металла | |
RU2232716C1 (ru) | Способ переработки бокситов на глинозем | |
CN114455617B (zh) | 一种利用铝灰生产铝酸钙的方法 | |
CN108623291A (zh) | 一种制备铁水包用耐火浇注料联产酸的工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20040122 |