RU2220297C1 - Method of thermal deaeration of water - Google Patents

Method of thermal deaeration of water Download PDF

Info

Publication number
RU2220297C1
RU2220297C1 RU2002115203/06A RU2002115203A RU2220297C1 RU 2220297 C1 RU2220297 C1 RU 2220297C1 RU 2002115203/06 A RU2002115203/06 A RU 2002115203/06A RU 2002115203 A RU2002115203 A RU 2002115203A RU 2220297 C1 RU2220297 C1 RU 2220297C1
Authority
RU
Russia
Prior art keywords
water
temperature
source
carbon dioxide
superheated
Prior art date
Application number
RU2002115203/06A
Other languages
Russian (ru)
Other versions
RU2002115203A (en
Inventor
В.И. Шарапов
Д.В. Цюра
М.А. Сивухина
М.Р. Феткуллов
Original Assignee
Ульяновский государственный технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ульяновский государственный технический университет filed Critical Ульяновский государственный технический университет
Priority to RU2002115203/06A priority Critical patent/RU2220297C1/en
Publication of RU2002115203A publication Critical patent/RU2002115203A/en
Application granted granted Critical
Publication of RU2220297C1 publication Critical patent/RU2220297C1/en

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

FIELD: heat power engineering; thermal power stations. SUBSTANCE: according to proposed method, heating system water is heated in system heaters by steam of heating extractions of extraction turbine, and feed water is deaerated in vacuum deaerator before delivering into return pipeline of heating system. For this purpose source water and superheated water are delivered into deaerator. Preset concentration of carbon dioxide in deaerated feed water is maintained by sequential regulation of temperatures of source and superheated water. In case of rise of carbon dioxide concentration relative to preset value, first temperature of source water is raised and then, if necessary, temperature of superheated water. In case of drop of carbon dioxide concentration relative to preset value, first temperature of superheated water is decrease and than source water temperature. EFFECT: improved reliability and increased economy of thermal power station. 1 dwg

Description

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электростанциях.The invention relates to the field of power engineering and can be used in thermal power plants.

Известны аналоги-способы деаэрации воды на тепловых электрических станциях (ТЭС), по которым сетевую воду подогревают в сетевых подогревателях паром отопительных отборов теплофикационной турбины, подпиточную воду теплосети перед подачей в обратный сетевой трубопровод деаэрируют в вакуумном деаэраторе, для чего в деаэратор подают исходную и перегретую воду (см. а.с. SU 1328563, F 01 К 17/02, 07.08.1987). Данный аналог принят в качестве прототипа.Known analogs are methods for deaerating water at thermal power plants (TPPs), in which the network water is heated in the network heaters with steam from the heating taps of the heating turbine, the heating water is deaerated in the vacuum deaerator before being fed to the return network pipe, for which initial and superheated are fed to the deaerator water (see.with. SU 1328563, F 01 K 17/02, 08/07/1987). This analogue is adopted as a prototype.

Недостатком аналогов и прототипа является пониженная экономичность способа деаэрации воды на тепловой электрической станции из-за повышенных энергетических затрат на нагрев перегретой и исходной воды перед деаэратором при остаточной концентрации диоксида углерода в деаэрированной воде ниже требуемого значения. Обычно тепловой и гидравлический режимы подготовки подпиточной воды поддерживают постоянными, исходя из достижения заданного нормами отсутствия диоксида углерода СO2 в деаэрированной воде в расчетном стационарном режиме. В процессе эксплуатации тепловой электрической станции в ряде переменных режимов подготовки подпиточной воды меняется качество воды, а вместе с ним и отсутствие СО2 может быть достигнуто при меньших температурах исходной и перегретой воды, но несмотря на это температуры исходной и перегретой воды перед деаэратором остаются неизменными, что приводит к перерасходу энергии. Еще одним недостатком известного способа является низкое качество деаэрации воды, приводящее к понижению надежности тепловой электрической станции.The disadvantage of analogues and prototype is the reduced efficiency of the method of deaeration of water at a thermal power plant due to the increased energy costs of heating superheated and source water in front of the deaerator at a residual concentration of carbon dioxide in deaerated water below the required value. Typically, thermal and hydraulic regimes preparation makeup water is maintained constant, based on the achievement of predetermined rules absence of carbon dioxide CO 2 in deaerated water in a predetermined steady state. During operation of a thermal power plant in a number of variable modes of makeup water preparation, the water quality changes, and with it the absence of CO 2 can be achieved at lower temperatures of the source and superheated water, but despite this, the temperatures of the source and superheated water before the deaerator remain unchanged, which leads to energy overruns. Another disadvantage of this method is the low quality of water deaeration, leading to a decrease in the reliability of the thermal power plant.

Техническим результатом, достигаемым настоящим изобретением, является повышение надежности и экономичности работы тепловой электрической станции за счет поддержания оптимальных параметров температуры исходной и перегретой воды, подаваемых в деаэратор.The technical result achieved by the present invention is to increase the reliability and efficiency of the thermal power plant by maintaining optimal temperature parameters of the source and superheated water supplied to the deaerator.

Для достижения этого результата предложен способ термической деаэрации воды на тепловой электрической станции, по которому сетевую воду подогревают в сетевых подогревателях паром отопительных отборов теплофикационной турбины, подпиточную воду теплосети перед подачей в обратный сетевой трубопровод деаэрируют в вакуумном деаэраторе, для чего в деаэратор подают исходную и перегретую воду.To achieve this result, a method is proposed for thermal deaeration of water at a thermal power plant, in which the network water is heated in the network heaters with steam from the heating taps of the cogeneration turbine, the heating network feed water is deaerated in the vacuum deaerator before being fed to the return network pipe, for which initial and superheated are fed to the deaerator water.

Отличием заявляемого способа является то, что поддержание заданной концентрации диоксида углерода в деаэрированной подпиточной воде осуществляют путем последовательного регулирования температуры исходной воды и температуры перегретой воды, причем при повышении концентрации диоксида углерода относительно заданной величины сначала повышают температуру исходной воды, а затем при необходимости температуру перегретой воды и, напротив, при понижении концентрации диоксида углерода относительно заданной величины сначала снижают температуру перегретой воды, а затем температуру исходной воды.The difference of the proposed method is that maintaining a given concentration of carbon dioxide in deaerated make-up water is carried out by sequentially controlling the temperature of the source water and the temperature of the superheated water, and when the concentration of carbon dioxide is increased relative to the set value, the temperature of the source water is first raised, and then, if necessary, the temperature of the superheated water and, conversely, when lowering the concentration of carbon dioxide relative to a given value, the temperature is first reduced aturu of superheated water, and then the temperature of the source water.

Новый способ термической деаэрации воды на тепловой электрической станции позволяет повысить надежность и экономичность тепловой электрической станции за счет обеспечения требуемого качества деаэрации при экономичной работе станции.A new method of thermal deaeration of water at a thermal power plant allows to increase the reliability and efficiency of a thermal power plant by ensuring the required quality of deaeration during economical operation of the station.

Далее рассмотрим сведения, подтверждающие возможность осуществления изобретения с получением искомого технического результата.Next, we consider the information confirming the possibility of carrying out the invention with obtaining the desired technical result.

На чертеже изображена принципиальная схема тепловой электрической станции, поясняющая способ.The drawing shows a schematic diagram of a thermal power plant explaining the method.

Станция содержит теплофикационную турбину 1 с отборами пара, подключенные по греющей среде к отопительным отборам и включенные по нагреваемой среде в сетевой трубопровод сетевые подогреватели, вакуумный деаэратор 2 с трубопроводами исходной 3 и перегретой воды 4, соединенный трубопроводом деаэрированной подпиточной воды 5 с обратным сетевым трубопроводом 6, включенные в трубопровод исходной воды 3 подогреватель исходной воды 7 с трубопроводом греющей среды 8 и в трубопровод перегретой воды 4 подогреватель 9, к которому подключен трубопровод пара высокого потенциала 10. Станция снабжена регулятором содержания диоксида углерода 11 в подпиточной воде теплосети, который соединен с датчиком концентрации диоксида углерода 12 в деаэрированной подпиточной воде и с регулирующими органами 13 на трубопроводе греющей среды подогревателя исходной воды и 14 на трубопроводе пара высокого потенциала подогревателя перегретой воды. В качестве датчика 12 может быть использован рН-метр с преобразователем показаний рН в значения концентрации диоксида углерода.The station contains a cogeneration turbine 1 with steam extraction connected to the heating extraction via a heating medium and network heaters connected to the heating pipe via a heating medium, a vacuum deaerator 2 with source 3 and superheated water 4 pipes, connected by a deaerated make-up water pipe 5 with a return network pipe 6 included in the source water pipe 3 source water heater 7 with a heating medium pipe 8 and in the superheated water pipe 4 heater 9 to which the pipe is connected d steam of high potential 10. The station is equipped with a regulator of the content of carbon dioxide 11 in the make-up water of the heating network, which is connected to a sensor for the concentration of carbon dioxide 12 in the deaerated make-up water and with regulating bodies 13 on the heating medium pipeline of the source water heater and 14 on the high-potential steam pipeline of the heater superheated water. As the sensor 12, a pH meter can be used with a converter of pH readings to carbon dioxide concentration values.

Рассмотрим пример реализации заявленного способа термической деаэрации воды.Consider an example of the implementation of the claimed method of thermal deaeration of water.

Сетевую воду подогревают в сетевых подогревателях паром отопительных отборов теплофикационной турбины 1, подпиточную воду теплосети перед подачей в обратный сетевой трубопровод 6 деаэрируют в вакуумном деаэраторе 2, для чего в деаэратор подают исходную и перегретую воду. Исходную воду подогревают паром нижнего отопительного отбора в подогревателе 7, а перегретую воду - паром отбора более высокого потенциала в подогревателе 9. Поддержание заданной концентрации диоксида углерода в деаэрированной подпиточной воде осуществляют путем последовательного регулирования температуры исходной воды и температуры перегретой воды. При повышении концентрации диоксида углерода относительно заданной величины сначала повышают температуру исходной воды в пределах тепловой мощности подогревателя исходной воды или до температуры t=40-50°С, а затем при необходимости увеличивают температуру перегретой воды и, напротив, при понижении концентрации диоксида углерода относительно заданной величины сначала снижают температуру перегретой воды, а затем температуру исходной воды. Такой порядок регулирования обеспечивает преимущественную загрузку высокоэкономичного нижнего отопительного отбора турбины.The network water is heated in the network heaters with steam from the heating taps of the heating turbine 1, the make-up water of the heating system is deaerated in the vacuum deaerator 2 before being fed to the return network pipe 6, for which initial and superheated water is supplied to the deaerator. The source water is heated by the bottom heating steam in heater 7, and the superheated water is heated by higher potential steam in heater 9. A predetermined concentration of carbon dioxide in deaerated make-up water is maintained by sequentially controlling the temperature of the source water and the temperature of superheated water. When increasing the concentration of carbon dioxide relative to a given value, first increase the temperature of the source water within the thermal power of the source water heater or to a temperature of t = 40-50 ° C, and then, if necessary, increase the temperature of the superheated water and, conversely, decrease the concentration of carbon dioxide relative to the set values first reduce the temperature of superheated water, and then the temperature of the source water. This control procedure provides preferential loading of the highly economical lower heating turbine extraction.

В качестве регулятора возможно применение серийно выпускаемого микропроцессорного контроллера Ремиконт Р-130, позволяющего реализовать около 90 программ управления регулируемыми процессами, более того, обладающего рядом функций самонастройки регулируемых процессов. Реализация с его помощью предусмотренного заявленным способом последовательного регулирования температуры исходной воды и расхода перегретой воды (в этой последовательности и состоит основной отличительный признак заявленного способа) при использовании в качестве регулируемого фактора остаточного содержания диоксида углерода не представила сложности. Операции по блокированию сигналов от регулятора к регулирующим органам реализуются самим Рамиконтом на основании введенных в него последовательности работы регулирующих органов и допустимых для конкретной электростанции интервалов изменения температуры исходной воды и температуры перегретой воды.As a regulator, it is possible to use the mass-produced microprocessor controller Remicont R-130, which allows to implement about 90 programs for controlling controlled processes, moreover, it has a number of self-tuning functions for controlled processes. The implementation with its help of the sequential control of the source water temperature and the consumption of superheated water provided for by the claimed method (the main distinguishing feature of the claimed method consists in this sequence) when using the residual carbon dioxide content as an adjustable factor was not difficult. The operations to block signals from the regulator to the regulatory bodies are carried out by Ramikont himself on the basis of the sequence of work of the regulatory bodies entered into it and the intervals for changing the temperature of the source water and the temperature of superheated water that are valid for a particular power plant.

Таким образом, новый способ позволяет повысить надежность и экономичность работы тепловой электрической станции за счет обеспечения заданной концентрации диоксида углерода в деаэрированной подпиточной воде при экономичной загрузке отборов турбины.Thus, the new method allows to increase the reliability and efficiency of the thermal power plant by providing a given concentration of carbon dioxide in deaerated make-up water at an economical loading of turbine withdrawals.

Claims (1)

Способ термической деаэрации воды на тепловой электрической станции, по которому сетевую воду подогревают в сетевых подогревателях паром отопительных отборов теплофикационной турбины, подпиточную воду теплосети перед подачей в обратный сетевой трубопровод деаэрируют в вакуумном деаэраторе, для чего в деаэратор подают исходную и перегретую воду, отличающийся тем, что поддержание заданной концентрации диоксида углерода в деаэрированной подпиточной воде осуществляют путем последовательного регулирования температуры исходной воды и температуры перегретой воды, причем при повышении концентрации диоксида углерода относительно заданной величины сначала повышают температуру исходной воды, а затем при необходимости увеличивают температуру перегретой воды и, наоборот, при понижении концентрации диоксида углерода относительно заданной величины сначала снижают температуру перегретой воды, а затем температуру исходной воды.The method of thermal deaeration of water at a thermal power plant, in which the network water is heated in the network heaters with steam from the heating taps of the cogeneration turbine, the heating network feed water is deaerated in a vacuum deaerator before being fed to the return network pipe, for which source and superheated water is supplied to the deaerator, characterized in that maintaining a given concentration of carbon dioxide in deaerated make-up water is carried out by sequentially controlling the temperature of the source water and temperature of superheated water, and when the concentration of carbon dioxide is increased relative to a predetermined value, the temperature of the source water is first raised, and then, if necessary, the temperature of superheated water is increased, and, conversely, when the concentration of carbon dioxide is reduced relative to the specified value, the temperature of superheated water is first reduced, and then the temperature of the source water .
RU2002115203/06A 2002-06-06 2002-06-06 Method of thermal deaeration of water RU2220297C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002115203/06A RU2220297C1 (en) 2002-06-06 2002-06-06 Method of thermal deaeration of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002115203/06A RU2220297C1 (en) 2002-06-06 2002-06-06 Method of thermal deaeration of water

Publications (2)

Publication Number Publication Date
RU2002115203A RU2002115203A (en) 2003-12-10
RU2220297C1 true RU2220297C1 (en) 2003-12-27

Family

ID=32066684

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002115203/06A RU2220297C1 (en) 2002-06-06 2002-06-06 Method of thermal deaeration of water

Country Status (1)

Country Link
RU (1) RU2220297C1 (en)

Similar Documents

Publication Publication Date Title
RU2220297C1 (en) Method of thermal deaeration of water
RU2220296C1 (en) Method of thermal deaeration of water
RU2220288C1 (en) Method of operation of thermal power station
RU2220295C1 (en) Method of thermal deaeration of water
RU2220291C1 (en) Method of operation of thermal power station
RU2261336C1 (en) Method of operation of thermal power station
RU2259483C1 (en) Power station operation method
RU2220294C1 (en) Thermal power station
RU2220292C1 (en) Thermal power station
RU2259482C1 (en) Power station
RU2220290C1 (en) Thermal power station
RU2230198C2 (en) Thermal power station operation method
RU2220293C1 (en) Thermal power station
RU2220289C1 (en) Thermal power station
RU2275546C1 (en) Method of thermal deaeration of water
RU2227865C2 (en) Method of thermal water deaeration
RU2227863C2 (en) Method of thermal water deaeration
RU2227864C2 (en) Method of thermal water deaeration
RU2280812C1 (en) Method of thermal deaeration of water
RU2227868C1 (en) Vacuum deaeration apparatus for boiler plant
RU2227867C1 (en) Vacuum deaeration apparatus for boiler plant
RU2278324C1 (en) Deaeration plant for boiler room
RU2144508C1 (en) Method of thermal deaeration of water
RU2227866C1 (en) Vacuum deaeration apparatus for boiler plant
RU2147558C1 (en) Vacuum water deaeration process

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040607