RU2214929C1 - Регулятор температуры энергетической установки транспортного средства - Google Patents

Регулятор температуры энергетической установки транспортного средства Download PDF

Info

Publication number
RU2214929C1
RU2214929C1 RU2002123598/28A RU2002123598A RU2214929C1 RU 2214929 C1 RU2214929 C1 RU 2214929C1 RU 2002123598/28 A RU2002123598/28 A RU 2002123598/28A RU 2002123598 A RU2002123598 A RU 2002123598A RU 2214929 C1 RU2214929 C1 RU 2214929C1
Authority
RU
Russia
Prior art keywords
frequency converter
induction motor
cooling fan
rotor
frequency
Prior art date
Application number
RU2002123598/28A
Other languages
English (en)
Other versions
RU2002123598A (ru
Inventor
Н.М. Луков
А.С. Космодамианский
Original Assignee
Российский государственный открытый технический университет путей сообщения
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российский государственный открытый технический университет путей сообщения filed Critical Российский государственный открытый технический университет путей сообщения
Priority to RU2002123598/28A priority Critical patent/RU2214929C1/ru
Application granted granted Critical
Publication of RU2214929C1 publication Critical patent/RU2214929C1/ru
Publication of RU2002123598A publication Critical patent/RU2002123598A/ru

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Регулятор содержит источник электроэнергии переменного тока, например синхронный генератор, приводимый во вращение от теплового двигателя, управляющий орган, асинхронный двигатель и вентилятор охлаждения. Асинхронный двигатель выполнен с фазным ротором, статорная обмотка его подключена к источнику электроэнергии, а роторная - к преобразователю частоты. Преобразователь частоты подключен к источнику электроэнергии и к блоку управления преобразователя частоты, соединенному с управляющим органом и роторной обмоткой асинхронного двигателя. Технический результат изобретения - повышение КПД и надежности установки, а также снижение ее веса и габаритов. 1 ил.

Description

Предлагаемое изобретение относится к транспортному машиностроению, в частности к области автоматических систем регулирования температуры теплоносителей (воды, масла, наддувочного воздуха), нагревающейся детали теплового двигателя, обмоток тяговых электрических машин, трансформаторов, элементов полупроводниковых перобразователей и др. в системах охлаждения транспортных средств (автомобилей, локомотивов и др.)
Любая автоматическая система содержит две функциональные части: объект регулирования (например, система охлаждения энергетической установки) и автоматический регулятор [1]. Любой автоматический регулятор содержит две основные соединенные последовательно функциональных части: управляющий орган (например, термореле в автоматическом регуляторе температуры) и исполнительно-регулирующее устройство (например, привод вентилятора охлаждения и собственно вентилятор охлаждения энергетической установки транспортного средства). В свою очередь исполнительно-регулирующее устройство содержит две основные функциональные части: исполнительный механизм (например, привод вентилятора охлаждения) и регулирующий орган (например, вентилятор охлаждения) [2, 3].
Известные автоматические регуляторы температуры непрерывного действия с электроприводом вентилятора охлаждения на переменном токе содержат источник электроэнергии (например, тяговый или вспомогательный генератор). Известны автоматические регуляторы температуры энергетических установок транспортных средств с электроприводом вентилятора охлаждения на переменном токе трех типов.
Автоматический регулятор температуры первого типа содержит источник электроэнергии, к которому подключен преобразователь частоты (обычно со звеном постоянного тока - выпрямителем), соединенный со статорной обмоткой асинхронного двигателя с короткозамкнутым ротором, соединенным с валом вентилятора охлаждения. К преобразователю частоты подключен управляющий орган, управляющий им по регулируемой температуре tp в системе охлаждения энергетической установки транспортного средства [1, 3, 4]. В таком электроприводе вентилятора охлаждения реализован принцип частотного управления асинхронным двигателем [5, 6, 8].
Автоматический регулятор второго типа содержит источник электроэнергии, к которому подключен преобразователь фазного напряжения, соединенный со статорной обмоткой специального асинхронного двигателя с двухслойным (или двухпакетным) ротором, соединенным с валом вентилятора охлаждения. К преобразователю напряжения подключен управляющий орган, управляющий им по регулируемой температуре tp. В электроприводе вентилятора охлаждения этого типа реализован принцип фазного управления специальными асинхронными двигателями [5, 7].
Автоматические регуляторы температуры третьего типа содержат источники электроэнергии, к которым непосредственно подключена статорная обмотка асинхронного двигателя с короткозамкнутым ротором, соединенным с валом вентилятора охлаждения переменной подачи (с поворотными лопатками рабочего колеса). К механизму поворота лопаток рабочего колеса вентилятора охлаждения переменной подачи подключен управляющий орган, управляющий им по регулируемой температуре tp [1, 2, 3, 8, 9, 12].
Известные автоматические регуляторы температуры энергетических установок транспортных средств с электроприводом вентилятора охлаждения на переменном токе имеют существенные недостатки. В автоматических регуляторах температуры с частотным управлением асинхронным двигателем вентилятора охлаждения применяются преобразователи частоты со звеном постоянного тока, имеющие определенные габаритные размеры, вес и стоимость. При частотном управлении асинхронным двигателем с вентиляторной нагрузкой его КПД снижается, а нагрев увеличивается из-за несинусоидальности напряжения, особенно в зоне частичных нагрузок. Трудности с возвратом реактивной мощности Q от асинхронного двигателя к источнику электроэнергии вынуждают создавать электроприводы вентиляторов охлаждения не с плавным, а со ступенчатым изменением скорости вращения вала ωw асинхронного двигателя (квазичастотное управление) [11].
В автоматических регуляторах температуры с фазным управлением специальным асинхронным двигателем применяются преобразователи напряжения, имеющие определенные габаритные размеры, вес и стоимость. Наличие такого преобразователя напряжения и специального асинхронного двигателя снижает технико-экономические показатели автоматического регулятора температуры. При фазном управлении асинхронным двигателем с вентиляторной нагрузкой КПД электропривода вентилятора сильно снижается, особенно при уменьшении скорости вращения вала ωw асинхронного двигателя. Кроме того, в таком электроприводе вентилятора охлаждения номинальная мощность специального асинхронного двигателя на 30-40% меньше мощности обычного асинхронного двигателя подобных размеров [5, 7].
В автоматических регуляторах температуры с электроприводом вентилятора охлаждения переменной подачи необходимо применение механизма поворота лопаток рабочего колеса, что усложняет конструкцию механической части автоматических регуляторов температуры. Этот механизм поворота увеличивает размеры, вес и стоимость вентилятора охлаждения и автоматического регулятора температуры. Кроме того, в таком автоматическом регуляторе температуры вентилятор имеет скорость вращения вала, пропорциональную частоте питающего напряжения, которая может изменяться в небольшом диапазоне или быть постоянной, что обуславливает при малых тепловых нагрузках системы охлаждения энергетической установки транспортного средства работу вентилятора охлаждения с малыми углами установки лопаток рабочего колеса и низкими КПД вентилятора охлаждения и электропривода вентилятора охлаждения.
Предлагаемый регулятор температуры энергетической установки транспортного средства на переменном токе не имеет недостатков известных автоматических регуляторов температуры с электроприводом вентилятора охлаждения: в нем не применяется преобразователь частоты или преобразователь напряжения на полную мощность асинхронного двигателя вентилятора охлаждения, а также механизм поворота лопаток рабочего колеса. В нем применен серийный асинхронный двигатель с фазным ротором, статорная обмотка которого непосредственно подключена к источнику электроэнергии, а роторная обмотка подключена к статическому полупроводниковому преобразователю частоты с непосредственной связью (без звена постоянного тока), соединенному посредством блока управления с управляющим органом автоматического регулятора температуры энергетической установки транспортного средства. Конструкция предлагаемого регулятора температуры намного проще, меньше по размерам, весу и стоимости, надежнее и экономичнее, чем известных автоматических регуляторов с электроприводом вентилятора охлаждения на переменном токе.
Предлагаемый регулятор температуры содержит следующие основные элементы (см. принципиальную блок-схему): источник электроэнергии 1, например, синхронный генератор, приводимый во вращение от теплового двигателя 2, роторная обмотка которого подключена к регулятору напряжения 3, а к его статорной обмотке непосредственно подключена статорная обмотка асинхронного двигателя 4, вал которого соединен с валом вентилятора охлаждения 5. Роторная обмотка асинхронного двигателя подключена к преобразователю частоты 6, подключенному к источнику электроэнергии 1 и к блоку управления 7 преобразователя частоты, соединенному с управляющим органом 8 и с роторной обмоткой асинхронного двигателя 4.
Предлагаемый регулятор температуры энергетической установки транспортного средства с электроприводом вентилятора охлаждения на переменном токе работает следующим образом. При величине регулируемой температуры tp меньше нижнего предела диапазона регулирования выходной сигнал управляющего органа 8 IУ1 имеет такое значение, при котором выходные сигналы блока управления 7 IУ2 и IУ3 имеют значения, обеспечивающие скорость вращения вала ротора асинхронного двигателя 4 и вентилятора охлаждения 5 ωw = 0. При этом подача вентилятора охлаждения 5 также равна нулю. Это обусловлено тем, что ωw зависит от частоты вращения магнитного поля статорной обмотки ωc относительно статора и от частоты вращения магнитного поля роторной обмотки ωp относительно ротора и определяется выражением:
ωw = ωc±ωp (1).
Знак "минус" в (1) соответствует вращению магнитного поля статора и ротора в одном направлении, знак "+" - в противоположных направлениях. Изменяя ωp и направление вращения магнитного поля ротора можно принудить асинхронный двигатель вращать вал со скоростью ωw как выше, так и ниже синхронной. При синхронной частоте вращения ωwc преобразователь частоты подает постоянный ток в роторную обмотку, при этом ωp = 0 и скольжение асинхронного двигателя
S = 1-(ωc±ωp)/ωc = 0 (2).
В предлагаемом регуляторе температуре асинхронный двигатель 4 работает в режиме электрической машины двойного питания (от источника электроэнергии 1 и от преобразователя частоты 6) [12, 13]. При S=0 асинхронный двигатель 4 работает в режиме синхронного двигателя. При ωp = ωc S = 1 и ωw = 0. При увеличении регулируемой температуры tp и превышении ею нижнего предела диапазона регулирования увеличивается выходной сигнал управляющего органа 8 IУ1, изменяются сигналы на выходе блока управления 7 IУ2 и IУ3 (по одному из них изменяется ωp, а по другому - напряжение), что приводит к изменению частоты на выходе преобразователя частоты 6, к уменьшению ωp и к увеличению ωw.
Процесс изменения величин tp, IУ1, IУ2, IУ3, ωp и ωw будет продолжаться до тех пор, пока не настанет равновесный тепловой режим работы системы охлаждения энергетической установки транспортного средства. При достижении tp верхнего предела диапазона регулирования - tp max величины IУ1, IУ2, IУ3, ωp и ωw достигнут своих предельных значений. При этом ωp = 0, S = 0 и ωw = ωw ном. Мощность, габаритные размеры и вес преобразователя частоты 6 определяются мощностью скольжения асинхронного двигателя 4. При вентиляторной нагрузке асинхронного двигателя мощность преобразователя максимальна при S=0,33 и составляет 16-18% от номинальной мощности вентилятора охлаждения.
В предлагаемом регуляторе температуры должен быть применен преобразователь частоты 6 с непосредственной связью (без звена постоянного тока), который называется преобразователем "низкой" частоты. Для питания роторной обмотки асинхронного двигателя 4, которая может работать при очень низкой частоте вращения поля ωp относительно ротора, целесообразно применение преобразователя именно "низкой" частоты, обеспечивающего получение синусоидального тока в роторной цепи при ползучих "низких" частотах. Применение преобразователя частоты с принудительной коммутацией вентилей позволит осуществить наиболее простую схему блока управления 7.
Характерным важным свойством таких преобразователей частоты является изменение знака реактивной мощности нагрузки Q при частоте коммутации вентилей (ωТ), большей, чем частота преобразуемого напряжения источника электроэнергии 1 ωc. Так как напряжение в двигательном режиме асинхронного двигателя (электрической машины двойного питания) больше, чем ЭДС скольжения обычного асинхронного двигателя при данном скольжении, то отдаваемая в источник электроэнергии 1 Q больше потребляемой Q со стороны ротора.
Таким образом, в предлагаемом регуляторе температуры асинхронный двигатель 4 может работать с опережающим коэффициентом мощности (cosφ). Одним из преимуществ асинхронного двигателя 4, работающего в качестве электрической машины двойного питания, по сравнению с обычным асинхронным двигателем является возможность получения высокого cosφ асинхронного двигателя и источника электроэнергии за счет перевозбуждения асинхронного двигателя 4 со стороны ротора.
Таким образом, предлагаемый регулятор температуры автоматически изменяет ωw (и подачу вентилятора охлаждения) в зависимости от регулируемой температуры tp при изменении ее в заданных пределах без использования в нем преобразователя частоты или преобразователя напряжения между источником электроэнергии 1 и асинхронным двигателем 4 (на полную мощность вентилятора охлаждения), специальных асинхронных двигателей или вентиляторов с поворотными лопатками вентиляторного колеса. При этом асинхронный двигатель и источник электроэнергии имеют повышенные КПД и cosφ, а регулятор температуры энергетической установки транспортного средства более надежен и имеет меньшие габаритные размеры, вес и стоимость изготовления.
Источники информации
1. Луков Н.М. Основы автоматики и автоматизации тепловозов. - М.: Транспорт, 1989.
2. Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1977.
3. Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1995.
4. Булгаков А. А. Частотное управление асинхронными двигателями. - М.: Наука, 1966.
5. Могильников B.C., Олейников А.М. Асинхронный электродвигатель с двухслойным ротором. - М.: Энергия, 1983.
6. Винокуров В. А. , Попов Д.А. Электрические машины железнодорожного транспорта. - М.: Транспорт, 1986.
7. Торба С.В. Применение фазового регулирования частоты вращения асинхронного мотор-вентилятора охлаждающего устройства электровоза // Конструкция и производство транспортных машин. - Харьков, 1982. - Вып.14. - С. 48-50.
8. А.с. СССР 246165.
9. А.с. СССР 206627.
10. Патент ФРГ 2121209.
11. А.с. СССР 127540.
12. Ботвинник М.М., Шакарян Ю.Г. Управляемая машина переменного тока. - М.: Наука, 1969.
13. Собинин Ю.А., Грузов В.Л. Частотно-регулируемый электропривод. - Л.: Энергоатомиздат, 1985.

Claims (1)

  1. Регулятор температуры энергетической установки транспортного средства, содержащий источник электроэнергии переменного тока, например, синхронный генератор с регулятором напряжения, приводимый во вращение от теплового двигателя, управляющий орган, асинхронный двигатель и вентилятор охлаждения, вал которого соединен с валом асинхронного двигателя, отличающийся тем, что асинхронный двигатель выполнен с фазным ротором, его статорная обмотка подключена к источнику электроэнергии переменного тока, а роторная на выходы преобразователя частоты, также подключенного к источнику электроэнергии переменного тока, а на входы преобразователя частоты подаются управляющие сигналы с выводов блока управления, один из которых соответствует изменению частоты, а второй - изменению напряжения на выходе преобразователя частоты, один вход блока управления подключен к выходу преобразователя частоты, а другой вход - к выходу управляющего органа.
RU2002123598/28A 2002-09-04 2002-09-04 Регулятор температуры энергетической установки транспортного средства RU2214929C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002123598/28A RU2214929C1 (ru) 2002-09-04 2002-09-04 Регулятор температуры энергетической установки транспортного средства

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002123598/28A RU2214929C1 (ru) 2002-09-04 2002-09-04 Регулятор температуры энергетической установки транспортного средства

Publications (2)

Publication Number Publication Date
RU2214929C1 true RU2214929C1 (ru) 2003-10-27
RU2002123598A RU2002123598A (ru) 2004-03-20

Family

ID=31989393

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002123598/28A RU2214929C1 (ru) 2002-09-04 2002-09-04 Регулятор температуры энергетической установки транспортного средства

Country Status (1)

Country Link
RU (1) RU2214929C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2478046C1 (ru) * 2011-08-01 2013-03-27 Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ИрГУПС (ИрИИТ)) Устройство непрерывного температурного контроля и автоматического регулирования нагрузки силового электрооборудования электровоза

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Луков Н.М. Автоматическое регулирование температуры двигателей. - М.: Машиностроение, 1995, с.209-216. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2478046C1 (ru) * 2011-08-01 2013-03-27 Государственное образовательное учреждение высшего профессионального образования Иркутский государственный университет путей сообщения (ИрГУПС (ИрИИТ)) Устройство непрерывного температурного контроля и автоматического регулирования нагрузки силового электрооборудования электровоза

Also Published As

Publication number Publication date
RU2002123598A (ru) 2004-03-20

Similar Documents

Publication Publication Date Title
CN101304234B (zh) 电源转换器
US6626002B1 (en) Controller for PWM/PAM motor, air conditioner, and method of motor control
CN103490675B (zh) 一种交流内燃机车柴油机变频起动控制方法
US4656413A (en) Stabilized control system and method for coupling an induction generator to AC power mains
US6066935A (en) Pole-changing asynchronous fan motor with continuously adjustable speed
WO2017174957A2 (en) Method and apparatus for controlling three-phase electric motor
Weiss Adjustable speed AC drive systems for pump and compressor applications
RU2297090C1 (ru) Электрическая передача мощности тягового транспортного средства
RU2426895C1 (ru) Автоматический комбинированный микропроцессорный регулятор температуры энергетической установки транспортного средства
RU2214929C1 (ru) Регулятор температуры энергетической установки транспортного средства
RU2241837C2 (ru) Регулятор температуры энергетической установки транспортного средства
RU2369752C2 (ru) Автоматический комбинированный микропроцессорный регулятор температуры энергетической установки транспортного средства
RU2351776C1 (ru) Регулятор температуры энергетической установки транспортного средства
RU2256996C1 (ru) Автоматическая система регулирования температуры обмоток тяговых электрических машин с электрическим на переменном токе приводом вентилятора
Berdiyev et al. Ways to improve the energy performance of asynchronous electric motors of rolling stock
RU2283247C1 (ru) Электрическая передача мощности переменного тока тягового транспортного средства
RU2541491C1 (ru) Способ регулирования температуры энергетической установки транспортного средства и устройство для его реализации
JPH06225598A (ja) 発電システム
Tanaka et al. Driving system incorporating vector control inverter for large-scale paper machine
Jarc et al. A graphical approach to AC drive classification
RU2819035C1 (ru) Система автоматизированного регулирования частоты вращения вентилятора электровоза переменного тока
SU599312A1 (ru) Автономна электростанци
RU2728285C1 (ru) Устройство регулирования режима охлаждения электрооборудования силовой электрической подстанции
JAISINGH et al. ENERGY CONSERVATION USING VARIABLE FREQUENCY DRIVE IN KMML
Magnusson Energy economics for equipment replacement

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040905