RU2214609C2 - Способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем - Google Patents

Способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем Download PDF

Info

Publication number
RU2214609C2
RU2214609C2 RU2001124545A RU2001124545A RU2214609C2 RU 2214609 C2 RU2214609 C2 RU 2214609C2 RU 2001124545 A RU2001124545 A RU 2001124545A RU 2001124545 A RU2001124545 A RU 2001124545A RU 2214609 C2 RU2214609 C2 RU 2214609C2
Authority
RU
Russia
Prior art keywords
voltage
resistance
resistor
terminal
measurement
Prior art date
Application number
RU2001124545A
Other languages
English (en)
Other versions
RU2001124545A (ru
Inventor
А.М. Андрюшаев
В.А. Баранов
В.П. Буц
В.Г. Недорезов
М.К. Смирнов
А.Н. Шестернин
Original Assignee
Федеральное государственное унитарное предприятие Научно-исследовательский институт электронно-механических приборов
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие Научно-исследовательский институт электронно-механических приборов filed Critical Федеральное государственное унитарное предприятие Научно-исследовательский институт электронно-механических приборов
Priority to RU2001124545A priority Critical patent/RU2214609C2/ru
Publication of RU2001124545A publication Critical patent/RU2001124545A/ru
Application granted granted Critical
Publication of RU2214609C2 publication Critical patent/RU2214609C2/ru

Links

Images

Abstract

Изобретение относится к электроизмерительной технике, а именно к измерению активной и реактивной составляющих комплексного сопротивления двухполюсной электрической цепи и напряжения на ней без подключения средства измерения к одному из ее выводов, в частности, параметров изоляции высоковольтного электрического оборудования непосредственно в процессе его эксплуатации. Технический результат заключается в обеспечении возможности измерения абсолютных значений составляющих комплексного сопротивления без использования мостовой измерительной цепи, измерения параметров единичного двухполюсника без использования других двухполюсников и в возможности определения напряжения на измеряемом двухполюснике. Способ заключается в том, что включают последовательно с измеряемым двухполюсником резистор с регулируемым сопротивлением, измеряют напряжения на этом резисторе при трех значениях сопротивления и вычисляют значения измеряемых величин по определенным формулам на основе результатов измерения. 2 ил.

Description

Изобретение относится к электроизмерительной технике, в частности к измерению активной и реактивной составляющих комплексного электрического сопротивления двухполюсных электрических цепей, и позволяет также измерять напряжение на двухполюснике без подключения средства измерения к одному из его выводов. Преимущественными областями применения изобретения являются измерение составляющих комплексного сопротивления высоковольтных пассивных электронных компонентов в процессе их производства и электрической изоляции высоковольтного электрического оборудования, особенно непосредственно в процессе его эксплуатации.
Известен способ измерения составляющих комплексного сопротивления двухполюсника на основе мостовой измерительной цепи (Сви П.М. Методы и средства диагностики оборудования высокого напряжения. - М.: Энергоатомиздат, 1992, с.36-37).
Указанный способ измерения состоит в следующем. На мостовую измерительную цепь, в которую включен измеряемый двухполюсник, подают синусоидальное переменное напряжение. Постоянно измеряя напряжение в диагонали измерительной цепи, регулируют сопротивления опорных двухполюсников до достижения напряжением нулевого значения. Результаты измерения определяют по значениям регулируемых параметров измерительной цепи в этот момент при известных значениях постоянных параметров.
При реализации данного способа моменту равенства напряжения нулю соответствует равенство
Z1•Z4=Z2•Z, (1)
где Z1= Х+j•Y - комплексное сопротивление исследуемого двухполюсника с активной составляющей Х и реактивной составляющей Y, Z4=X4+j•Y4 - комплексное сопротивление третьего опорного двухполюсника с активной составляющей Х4 и реактивной составляющей Y4, Z2 - комплексное сопротивление первого опорного двухполюсника с активной составляющей Х2 (реактивная составляющая равна нулю), Z3 - комплексное сопротивление второго опорного двухполюсника с реактивной составляющей Y4 (активная составляющая равна нулю), j - мнимая единица.
Подставляя эти выражения в уравнение (1), получаем результат измерения составляющих комплексного сопротивления измеряемого двухполюсника в виде
Figure 00000002

При исследовании электрофизических параметров диэлектрических материалов, испытаниях и контроле состояния электрической изоляции электрооборудования, определении зависимости от приложенного напряжения сопротивления резисторов и емкости электрических конденсаторов необходимо знать значение приложенного к двухполюснику напряжения.
Определение напряжения на измеряемом двухполюснике UZ при использовании описанного способа измерения возможно путем измерения напряжений на первом и третьем опорных двухполюсниках из выражения
UZ=U-UZ2, (3)
где U - напряжение на измерительной цепи;
UZ2 - напряжение на первом опорном двухполюснике.
При этом напряжение на измерительной цепи вычисляется из выражения
Figure 00000003

где UZ3 - напряжение на третьем опорном двухполюснике.
Недостатками описанного способа при измерении составляющих комплексного сопротивления двухполюсника и напряжения на нем является сложность его реализации из-за использования мостовой измерительной цепи с большим числом элементов, необходимости измерять напряжение как в диагонали моста, так и на опорном двухполюснике, и необходимости регулировать и активную, и реактивную составляющие сопротивления.
Наиболее близким по технической сущности к предлагаемому изобретению является способ измерения относительного изменения модуля комплексной проводимости двух или более однородных двухполюсников на основе измерения суммы токов, протекающих через контролируемые двухполюсники (Сви П.М. Методы и средства диагностики оборудования высокого напряжения. - М.: Энергоатомиздат, 1992, с.78) - прототип.
Указанный способ измерения основан на использовании измерительной цепи в виде группы из не менее двух делителей напряжения, соединенных параллельно. Каждый делитель напряжения образован последовательным соединением одного из группы измеряемых двухполюсников и резистора с регулируемым сопротивлением. На измерительную цепь подают синусоидальное переменное напряжение, измеряют напряжение на каждом резисторе и суммируют эти напряжения. Затем сопротивления резисторов регулируют до достижения суммой напряжений нулевого значения. Суммарное напряжение периодически измеряют. При отклонении результата измерения суммарного напряжения от нуля значение отклонения фиксируют. Относительное изменение модуля суммарного комплексного сопротивления группы исследуемых двухполюсников определяют из уравнения
Figure 00000004

где ΔZ - абсолютное изменение модуля суммарного комплексного сопротивления группы исследуемых двухполюсников, Z - модуль суммарного сопротивления группы исследуемых двухполюсников, k - коэффициент преобразования, ΔUs - абсолютное изменение суммарного напряжения. При этом
ΔZ = (ΔX2+ΔY2)0.5, (6)
где ΔX и ΔY - абсолютные изменения активной и реактивной составляющих суммарного комплексного сопротивления группы исследуемых двухполюсников соответственно.
При реализации данного способа измерения в отличие от аналога не требуется использование мостовой измерительной цепи, что упрощает его реализацию.
Недостатками прототипа являются невозможность измерения абсолютных значений составляющих комплексного сопротивления каждого исследуемого двухполюсника из группы, измерения составляющих комплексного сопротивления единичного объекта и измерения напряжения на измеряемом двухполюснике.
Предлагаемым изобретением решаются задачи расширения функциональных возможностей и расширения области применения способа измерения составляющих комплексного сопротивления двухполюсника.
Технический результат от использования предлагаемого изобретения, заключается, во-первых, в обеспечении возможности измерения абсолютных значений составляющих комплексного сопротивления двухполюсника без использования мостовой измерительной цепи, во-вторых, в возможности измерения параметров единичного двухполюсника без необходимости использования других двухполюсников, однородных исследуемому, в-третьих, в возможности определения напряжения на измеряемом двухполюснике.
Для достижения технического результата в способе измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем двухполюсник включают в измерительную цепь последовательно с резистором с регулируемым сопротивлением, подают на измерительную цепь синусоидальное переменное напряжение, измеряют напряжение на резисторе и регулируют сопротивление резистора, причем напряжение измеряют при трех значениях сопротивления резистора, а значения составляющих комплексного сопротивления двухполюсника и приложенного к нему напряжения определяют из выражений
Figure 00000005

Figure 00000006

Figure 00000007

Figure 00000008

Figure 00000009

где X - активная составляющая комплексного сопротивления двухполюсника; Y - реактивная составляющая комплексного сопротивления двухполюсника;
a1=-A1-1; (13)
а22-1; (14)
b1=A1•R1-R2; (15)
b2=A2•R1-R2; (16)
с1=R2-A1•R1; (17)
c2=R32-A2•R12; (18)
Figure 00000010

Figure 00000011

где R1 - первое значение сопротивления резистора, R2 - второе значение сопротивления резистора, R3 - третье значение сопротивления резистора, UZ1 - напряжение на измеряемом двухполюснике при первом значении сопротивления резистора, U1 - напряжение на резисторе при первом значении сопротивления, UZ2 - напряжение на измеряемом двухполюснике при втором значении сопротивления резистора, U2 - напряжение на резисторе при втором значении сопротивления, UZ3 - напряжение на измеряемом двухполюснике при третьем значении сопротивления резистора, U3 - напряжение на резисторе при третьем значении сопротивления.
На фиг.1 представлена функциональная схема устройства для измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем, реализующего предлагаемый способ измерения. На фиг.2 представлен вариант реализации резистора с регулируемым сопротивлением.
Устройство для измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем (фиг.1) содержит генератор переменного напряжения 1, двухполюсник 2, резистор с регулируемым сопротивлением 3, аналого-цифровой преобразователь напряжения 4, блок управления и вычислений 5.
Резистор с регулируемым сопротивлением 3 в предпочтительном варианте реализации (фиг.2) содержит первый 6, второй 7 и третий 8 постоянные резисторы, первый 9 и второй 10 аналоговые ключи, которые управляются сигналами 11 и 12 с блока управления и вычисления 5.
Предлагаемый способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем реализуется следующим образом.
Образуют измерительную цепь последовательным соединением двухполюсника и резистора с регулируемым сопротивлением. На измерительную цепь подают синусоидальное переменное напряжение. Последовательно во времени устанавливают три различных известных значения сопротивления резистора с регулируемым сопротивлением.
Напряжения, формируемые на резисторе с регулируемым сопротивлением при этих трех значениях его сопротивления, определяются соответственно как
Figure 00000012

Figure 00000013

Figure 00000014

После установления каждого значения сопротивления измеряют соответствующее напряжение на резисторе с регулируемым сопротивлением. Результаты измерения фиксируют и запоминают.
Значения составляющих комплексного сопротивления двухполюсника определяют путем решения системы двух уравнений относительно этих неизвестных:
Figure 00000015

Уравнения системы (24) получены путем деления на уравнение (23) уравнений (21) и (22) соответственно.
Значения активной и реактивной составляющих комплексного сопротивления двухполюсника определяются как решения (8) и (9) данной системы уравнений.
Значение напряжения UZ1, приложенного к двухполюснику при первом значения R1 сопротивления резистора с регулируемым сопротивлением, определяют из уравнения
UZ1=U-U1. (25)
Из уравнения (21) имеем
Figure 00000016

Подставляя в уравнение (25) выражение для U из уравнения (26), получаем уравнение (10).
Аналогично получены уравнения (11) и (12), позволяющие определить значения UZ2 и UZ3 напряжения, приложенного к измеряемому двухполюснику, при значениях сопротивления резистора с регулируемым сопротивлением R2 и R3 соответственно.
Устройство, которым может быть реализован предложенный способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем, с предпочтительным вариантом реализации резистора с регулируемым сопротивлением функционирует следующим образом.
В момент начала измерения по сигналам 11 и 12 с блока управления и вычисления 5 аналоговые ключи 9 и 10 резистора с регулируемым сопротивлением 3 разомкнуты. В средней точке делителя напряжения, образованного двухполюсником 2 и первым постоянным резистором 6, формируется напряжение U1 в соответствии с уравнением (21).
Напряжение U1 подается на вход аналого-цифрового преобразователя напряжения 4 и подвергается аналого-цифровому преобразованию. Код результата аналого-цифрового преобразования поступает в блок управления и вычислений 5 и запоминается.
После этого блок управления и вычислений 5 формирует сигнал 11 на замыкание аналогового ключа 9. При этом второй постоянный резистор 7 подключается параллельно первому постоянному резистору 6, образуя резистор с общим сопротивлением R2.
В средней точке делителя напряжения формируется напряжение U2 в соответствии с (22).
Напряжение U2 также подвергается аналого-цифровому преобразованию, и код результата запоминается в блоке управления и вычислений 5.
После этого по сигналу 12 с блока управления и вычислений 5 замыкается аналоговый ключ 10. При этом третий постоянный резистор 8 подключается параллельно первому 6 и второму 7 постоянным резисторам, образуя резистор с общим сопротивлением R3.
В средней точке делителя напряжения при этом формируется напряжение U3 в соответствии с (23).
Напряжение U3 также подвергается аналого-цифровому преобразованию, и код результата запоминается в блоке управления и вычислений 5.
На основе результатов измерения напряжений U1, U2, U3 при известных значениях сопротивления резистора с регулируемым сопротивлением R1, R2, R3 блоком управления и вычислений 5 производится вычисление значений активной Х и реактивной Y составляющих комплексного сопротивления согласно (8) и (9) соответственно, а также значений напряжения на измеряемом двухполюснике UZ1, UZ2, UZ3 в соответствии с уравнениями (10), (11), (12).
Значения параметров R1, R2, R3 заносятся в память блока измерений и вычислений 9 при изготовлении устройства и корректируются при его поверках. Параметры А1, А2, a1, а2, b1, b2, c1, c2 вычисляются в каждом цикле измерения по результатам измерения напряжений U1, U2, U3 с использованием констант R1, R2, R3.
Блок управления и вычислений 9 может быть реализован на основе обычных средств вычислительной техники, например, персональной ЭВМ семейства IBM PC, соединенной с аналого-цифровым преобразователем и аналоговыми ключами стандартным интерфейсом.
Рабочая программа блока управления и вычислений может быть написана на любом языке высокого уровня, например, Паскаль, с включением в нее подпрограмм на языке Ассемблер.

Claims (1)

  1. Способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем, заключающийся в том, что двухполюсник включают в измерительную цепь последовательно с резистором с регулируемым сопротивлением, подают на измерительную цепь синусоидальное переменное напряжение, измеряют напряжение на резисторе, регулируют сопротивление резистора, отличающийся тем, что напряжение измеряют при трех значениях сопротивления резистора, а значения составляющих комплексного сопротивления двухполюсника и приложенного к нему напряжения определяют из выражений
    Figure 00000017

    Figure 00000018

    Figure 00000019

    Figure 00000020

    Figure 00000021

    где Х - активная составляющая комплексного сопротивления двухполюсника;
    Y - реактивная составляющая комплексного сопротивления двухполюсника;
    а11-1;
    а22-1;
    b1=A1•R1-R2;
    b2=A2•R1-R2;
    c1=R2-A1•R1;
    c2=R32-A2•R12;
    Figure 00000022

    Figure 00000023

    R1 - первое значение сопротивления резистора;
    R2 - второе значение сопротивления резистора;
    R3 - третье значение сопротивления резистора.
RU2001124545A 2001-09-04 2001-09-04 Способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем RU2214609C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001124545A RU2214609C2 (ru) 2001-09-04 2001-09-04 Способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001124545A RU2214609C2 (ru) 2001-09-04 2001-09-04 Способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем

Publications (2)

Publication Number Publication Date
RU2001124545A RU2001124545A (ru) 2003-07-27
RU2214609C2 true RU2214609C2 (ru) 2003-10-20

Family

ID=31988366

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001124545A RU2214609C2 (ru) 2001-09-04 2001-09-04 Способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем

Country Status (1)

Country Link
RU (1) RU2214609C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636697A (zh) * 2012-05-11 2012-08-15 湘潭电机股份有限公司 一种动态测量绝缘介质性能的装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
СВИ П.М. Методы средства диагностики оборудования высокого напряжения. - М.: Энергоатомиздат, 1992, с.78. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102636697A (zh) * 2012-05-11 2012-08-15 湘潭电机股份有限公司 一种动态测量绝缘介质性能的装置
CN102636697B (zh) * 2012-05-11 2015-02-04 湘潭电机股份有限公司 一种动态测量绝缘介质性能的装置

Similar Documents

Publication Publication Date Title
PL222066B1 (pl) Adaptacyjny dzielnik napięcia o skorygowanej charakterystyce częstotliwościowej do pomiaru wysokich napięć
JPH09511056A (ja) 物質特性の測定システム
JP2003028900A (ja) 非接触電圧測定方法およびその装置
Igarashi et al. An impedance-measurement setup optimized for measuring relaxations of glass-forming liquids
US4646248A (en) Insulation analyzer apparatus and method of use
Freeborn et al. Numerical extraction of Cole-Cole impedance parameters from step response
Muciek Digital impedance bridge based on a two-phase generator
RU2214609C2 (ru) Способ измерения составляющих комплексного сопротивления двухполюсника и напряжения на нем
CA2376732C (en) A current-comparator-based four-terminal resistance bridge for power frequencies
US3448378A (en) Impedance measuring instrument having a voltage divider comprising a pair of amplifiers
US6483318B1 (en) Electric circuit providing selectable short circuit for instrumentation applications
Malarić et al. Method for nonlinear fitting and impedance analysis with lcr meter
Torrents et al. Compensation of impedance meters, when using an external front-end amplifier
Liu et al. On the application of special self-calibration algorithm to improve impedance measurement by standard measuring systems
Koffman et al. Uncertainty analysis for four terminal-pair capacitance and dissipation factor characterization at 1 and 10 MHz
Blad et al. A current injecting device for electrical impedance tomography
Ramm et al. Calibration of electronic capacitance and dissipation factor bridges
Zampilis et al. Characterization of absolute phase angle in wideband current shunts at Inmetro
Ouameur et al. A double precision arbitrary waveform generator based calibration system for low-value AC resistors up to 20 kHz
JP2573789B2 (ja) 絶縁抵抗測定装置
JP2871505B2 (ja) インピーダンス測定方法
Simonson et al. Loading errors in low voltage ac measurements
SU1541532A1 (ru) Способ определени составл ющих внутреннего сопротивлени электрической сети
Konjevod et al. Ac-Dc Characterization of Coaxial Current Shunts and Application of the hunt in the Digital Sampling Wattmeter
RU2462185C1 (ru) Устройство для измерения импеданса биологических сред

Legal Events

Date Code Title Description
PC43 Official registration of the transfer of the exclusive right without contract for inventions

Effective date: 20130419