RU2213267C1 - Компрессионный блок воздушного охлаждения - Google Patents

Компрессионный блок воздушного охлаждения Download PDF

Info

Publication number
RU2213267C1
RU2213267C1 RU2002113862/06A RU2002113862A RU2213267C1 RU 2213267 C1 RU2213267 C1 RU 2213267C1 RU 2002113862/06 A RU2002113862/06 A RU 2002113862/06A RU 2002113862 A RU2002113862 A RU 2002113862A RU 2213267 C1 RU2213267 C1 RU 2213267C1
Authority
RU
Russia
Prior art keywords
conversion mechanism
compression
single housing
housing
movement conversion
Prior art date
Application number
RU2002113862/06A
Other languages
English (en)
Inventor
Н.А. Капитов
Original Assignee
Открытое акционерное общество "Научно-производственное предприятие "Микрон"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное предприятие "Микрон" filed Critical Открытое акционерное общество "Научно-производственное предприятие "Микрон"
Priority to RU2002113862/06A priority Critical patent/RU2213267C1/ru
Application granted granted Critical
Publication of RU2213267C1 publication Critical patent/RU2213267C1/ru

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

Изобретение может быть использовано в бессмазочных компрессионных блоках. Внутренняя рабочая зона части единого корпуса механизма преобразования движения и внутренняя рабочая зона части единого корпуса компрессионных элементов герметично изолированы между собой посредством уплотняющего элемента, размещенного в нижней части неподвижной эвольвентной спирали. В части единого корпуса механизма преобразования движения выполнены первые каналы, соединяющие полость кольцевого фильтрующего элемента, который является общим для единого корпуса, и полость части единого корпуса механизма преобразования движения, в эксцентриковом валу которого выполнены вторые каналы, соединяющие полость упорного противоповоротного узла с полостью второго вентилятора, установленного в режиме разряжения в части единого корпуса механизма преобразования движения на валу его привода. Между частью единого корпуса механизма преобразования движения и корпусом привода механизма преобразования движения имеются выходные каналы. Повышается интенсивность отвода тепла вынужденным конвективным теплообменом от элементов компрессионного блока и улучшаются условия его работы. 2 ил.

Description

Предлагаемое техническое решение относится к компрессорной технике объемного вытеснения и может быть использовано в бессмазочных компрессионных блоках, где компрессионные элементы самостоятельно замыкают пространство рабочей камеры.
Известен компрессионный блок воздушного охлаждения, содержащий компрессионные элементы, выполненные в виде пары эвольвентных спиралей - неподвижной и подвижной, образующих компрессионную камеру, подвижная эвольвентная спираль соединена с механизмом преобразования движения, при этом компрессионная камера и механизм преобразования движения размещены в едином корпусе, блок также снабжен вентилятором (WO 96/02761 A1, 01.02.1996 г., F 04 С 29/04).
Недостатком указанного компрессионного блока является возможность перенагрева его в процессе работы в результате поступления в компрессионную камеру постоянно нагреваемого от стенок корпуса и других деталей компрессионного блока воздуха ввиду выбора неоптимальной схемы организации вынужденного воздушного потока. С целью предотвращения выхода из строя компрессионного блока его останавливают для охлаждения, т.е. работа компрессионного блока в целом осуществляется в повторно-кратковременном режиме. Практически все компрессоры воздушного охлаждения работают в режиме повторяющегося включения и выключения. Конкретные значения периодов работы и останова указываются в технической документации, прилагаемой к каждому конкретному типу компрессора. В период останова компрессионного блока вынужденный конвективный теплообмен не осуществляется, а без него охлаждение компрессионного блока - это длительный процесс отвода тепла конвективным теплообменом от компрессионных элементов, который осуществляется за счет естественного конвективного теплообмена от внешней поверхности эвольвентных спиралей к внутренней поверхности и далее через стенку корпуса теплопроводностью к внешней поверхности корпуса. От внешней поверхности корпуса отвод тепла осуществляется естественной конвекцией, длительность процесса которой зависит от условий окружающей среды.
Известен также компрессионный блок воздушного охлаждения, выбранный в качестве прототипа, содержащий единый корпус, вентилятор, установленный в режиме разряжения, компрессионные элементы, выполненные в виде пары эвольвентных спиралей - неподвижной и подвижной, образующих компрессионную камеру, соединенную со штуцером-теплообменником, подвижная эвольвентная спираль соединена с механизмом преобразования движения, который размещен в части единого корпуса механизма преобразования движения, а компрессионная камера, штуцер-теплообменник и вентилятор размещены в части единого корпуса компрессионных элементов (Свидетельство на полезную модель RU 15592 U1 (Капитов Н. А., Сидоренков В.П.), 27.10.2000 г., Бюл. 30, F 04 С 23/02).
Недостатком известного компрессионного блока является низкая эффективность отвода тепла от платформы подвижной спирали и механизма преобразования движения.
Решаемой технической задачей предлагаемого технического решения является повышение интенсивности отвода тепла вынужденным конвективным теплообменом от элементов компрессионного блока и улучшение условий его работы.
Решаемая техническая задача в компрессионном блоке воздушного охлаждения, содержащем единый корпус, первый вентилятор, установленный в режиме разряжения, компрессионные элементы, выполненные в виде пары эвольвентных спиралей - неподвижной и подвижной, образующих компрессионную камеру, соединенную со штуцером-теплообменником, подвижная эвольвентная спираль соединена с механизмом преобразования движения, который размещен в части единого корпуса механизма преобразования движения, а компрессионная камера, штуцер-теплообменник и первый вентилятор размещены в части единого корпуса компрессионных элементов, достигается тем, что внутренняя рабочая зона части единого корпуса механизма преобразования и внутренняя рабочая зона части единого корпуса компрессионных элементов герметично изолированы между собой посредством уплотняющего элемента, размещенного в нижней части подвижной эвольвентной спирали, в части единого корпуса механизма преобразования движения выполнены первые каналы, соединяющие полость кольцевого фильтрующего элемента, который является общим для единого корпуса, и полость части единого корпуса механизма преобразования движения, в эксцентриковом валу которого выполнены вторые каналы, соединяющие полость упорного противоповоротного узла с полостью второго вентилятора, установленного в режиме разряжения в части единого корпуса механизма преобразования движения на валу его привода, причем между частью единого корпуса механизма преобразования движения и корпусом привода механизма преобразования движения имеются выходные каналы.
На фиг.1 изображен компрессионный блок воздушного охлаждения в разрезе.
На фиг.2 изображен компрессионный блок воздушного охлаждения в разрезе с движением потоков.
Компрессионный блок воздушного охлаждения содержит единый корпус, в верхней части которого закреплен первый вентилятор 1, установленный в режиме разряжения, компрессионные элементы, выполненные в виде пары эвольвентных спиралей - неподвижной 2 и подвижной 3, образующих компрессионную камеру, соединенную со штуцером-теплообменником 4, подвижная эвольвентная спираль 3 соединена с механизмом преобразования движения 5, который размещен в части единого корпуса 6 механизма преобразования движения. Компрессионная камера, штуцер-теплообменник 4 и первый вентилятор 1 размещены в части единого корпуса 7 компрессионных элементов, которая в области расположения компрессионной камеры имеет форму полного цилиндра со сквозными окнами 8, а в области расположения штуцера-теплообменника 4 переходит в конфузор, в конечной части которого закреплен первый вентилятор 1. Внутренняя рабочая зона части единого корпуса 6 механизма преобразования движения и внутренняя рабочая зона части единого корпуса 7 компрессионных элементов герметично изолированы между собой посредством уплотняющего элемента 9, размещенного в нижней части подвижной эвольвентной спирали 3, в части единого корпуса 6 механизма преобразования движения выполнены первые каналы 10, соединяющие полость кольцевого фильтрующего элемента 11, который является общим для единого корпуса, и полость части единого корпуса 6 механизма преобразования движения, в эксцентриковом валу 12 которого выполнены вторые каналы 13, соединяющие полость упорного противоповоротного узла 14 с полостью второго вентилятора 15, установленного в режиме разряжения в части единого корпуса 6 механизма преобразования движения на валу 16 его привода, причем между частью единого корпуса 6 механизма преобразования движения и корпусом 17 привода механизма преобразования движения имеются выходные каналы 18. Приводом механизма преобразования движения может являться как электродвигатель, так и другой механизм, передающий вращающий момент. Компрессионный блок воздушного охлаждения предполагает при своей работе временный останов, т.е. режим "паузы". В период останова компрессионного блока первый вентилятор 1, установленный в режиме разряжения, не выключен.
Компрессионный блок работает следующим образом.
Включаем первый вентилятор 1, выключаем привод вала 16, первый вентилятор 1 создает разряжение в узкой конфузорной части единого корпуса 7 компрессионных элементов, второй вентилятор 15 создает разряжение над вентиляторной полостью в части единого корпуса 6 механизма преобразования движения, а компрессионные элементы - эвольвентные спирали - неподвижная 2 и подвижная 3 создают разряжение в зоне сквозных окон 8 части единого корпуса 7 компрессионных элементов, т.е. в зоне всасывания компрессионной камеры, тем самым создаются три вынужденных воздушных потока, начало которых формируется в полости кольцевого фильтрующего элемента 11 (фиг.2).
Воздушный поток, созданный первым вентилятором 1, пройдя полость кольцевого фильтрующего элемента 11 и сквозные окна 8 в цилиндрической части единого корпуса 7 компрессионных элементов, обдувает внешнюю поверхность эвольвентных спиралей - неподвижной 2 и подвижной 3 и далее через продолжение сквозных окон 8, цилиндрической части единого корпуса 7 компрессионных элементов, направлен в конфузорную часть на обдув штуцера-теплообменника 4 и на обдув платформы неподвижной эвольвентной спирали 2, в последствии обдувая центральную часть штуцера-теплообменника 4, далее отработанный воздушный поток первым вентилятором 1 выбрасывается в атмосферу.
Воздушный поток, созданный вторым вентилятором 15, пройдя полость кольцевого фильтрующего элемента 11 и первые каналы 10, выполненные в части единого корпуса 6 механизма преобразования движения, обдувает платформу подвижной эвольвентной спирали 3 и упорно-противоповоротный узел 14 и далее через вторые каналы 13, выполненные в эксцентриковом валу 12, поступает в полость второго вентилятора 15, попутно обдувая эксцентриковый вал 12, далее вентилятором 15 выбрасывается в атмосферу через выходные каналы 18, предусмотренные в местах крепления части единого корпуса 6 механизма преобразования движения с корпусом 17 привода механизма преобразования движения.
Воздушный поток, создаваемый в зоне всасывания компрессионной камеры эвольвентными спиралями - неподвижной 2 и подвижной 3, пройдя полость кольцевого фильтрующего элемента 11 и сквозные окна 8 в цилиндрической части единого корпуса 7 компрессионных элементов, поступает в компрессионную камеру, где постепенно сжимается и транспортируется от периферии к центру, и далее через центральное отверстие в неподвижной эвольвентной спирали 2 поступает в штуцер-теплообменник 4, а затем в линию нагнетания компрессора, которая на фиг.1, 2 не изображена.
Во время останова компрессионного блока работает только первый вентилятор 1. Второй вентилятор 15, установленный на валу 16 привода механизма преобразования движения, и подвижная эвольвентная спираль 3 не работают. Следовательно, во время останова компрессионного блока существует только воздушный поток, создаваемый первым вентилятором 1, продвижение которого ранее рассмотрено. Продолжительность работы первого вентилятора 1 во время останова компрессионного блока определяется значением необходимой температуры охлаждения, которая задается конструктором.
Рассмотрим пример охлаждения компрессионного блока по предлагаемому техническому решению.
Охлаждают элементы компрессионного блока: компрессионные элементы, выполненные в виде пары эвольвентных спиралей - неподвижной 2 и подвижной 3; штуцер-теплообменник 4; механизм преобразования движения 5.
Производительность компрессионного блока - 120 л/мин при давлении в линии нагнетания компрессора 0,5 МПа. Воздух, имея начальную температуру 20oС, при сжатии его от 0,1 до 0,5 МПа нагревается до температуры порядка 180oС.
Количество теплоты, которое необходимо отвести от компрессионного блока для обеспечения нормальной его работы, составляет примерно 1000 Вт. С этой целью в компрессионном блоке установлены первый вентилятор 1 электрического исполнения, обеспечивающий расход воздушного потока порядка 5 м3/мин, и второй вентилятор 15, обеспечивающий расход воздушного потока порядка 2,5 м3/мин.
Проведение процесса охлаждения компрессионного блока по предлагаемому техническому решению позволяет обеспечить постоянство температуры всасываемого в компрессионную камеру воздуха и непрерывную работу компрессионного блока при нормальных условиях окружающей среды без его перегрева.

Claims (1)

  1. Компрессионный блок воздушного охлаждения, содержащий единый корпус, первый вентилятор, установленный в режиме разряжения, компрессионные элементы, выполненные в виде пары эвольвентных спиралей - неподвижной и подвижной, образующих компрессионную камеру, соединенную со штуцером-теплообменником, подвижная эвольвентная спираль соединена с механизмом преобразования движения, который размещен в части единого корпуса механизма преобразования движения, а компрессионная камера, штуцер-теплообменник и первый вентилятор размещены в части единого корпуса компрессионных элементов, отличающийся тем, что внутренняя рабочая зона части единого корпуса механизма преобразования движения и внутренняя рабочая зона части единого корпуса компрессионных элементов герметично изолированы между собой посредством уплотняющего элемента, размещенного в нижней части неподвижной эвольвентной спирали, в части единого корпуса механизма преобразования движения выполнены первые каналы, соединяющие полость кольцевого фильтрующего элемента, который является общим для единого корпуса, и полость части единого корпуса механизма преобразования движения, в эксцентриковом валу которого выполнены вторые каналы, соединяющие полость упорного противоповоротного узла с полостью второго вентилятора, установленного в режиме разряжения в части единого корпуса механизма преобразования движения на валу его привода, причем между частью единого корпуса механизма преобразования движения и корпусом привода механизма преобразования движения имеются выходные каналы.
RU2002113862/06A 2002-05-27 2002-05-27 Компрессионный блок воздушного охлаждения RU2213267C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2002113862/06A RU2213267C1 (ru) 2002-05-27 2002-05-27 Компрессионный блок воздушного охлаждения

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002113862/06A RU2213267C1 (ru) 2002-05-27 2002-05-27 Компрессионный блок воздушного охлаждения

Publications (1)

Publication Number Publication Date
RU2213267C1 true RU2213267C1 (ru) 2003-09-27

Family

ID=29777748

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002113862/06A RU2213267C1 (ru) 2002-05-27 2002-05-27 Компрессионный блок воздушного охлаждения

Country Status (1)

Country Link
RU (1) RU2213267C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU173413U1 (ru) * 2016-06-15 2017-08-28 Общество с ограниченной ответственностью "Компания "КОРД" Жидкостно-кольцевая машина

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU173413U1 (ru) * 2016-06-15 2017-08-28 Общество с ограниченной ответственностью "Компания "КОРД" Жидкостно-кольцевая машина

Similar Documents

Publication Publication Date Title
JP2008502842A (ja) エンジン
JPH0135259B2 (ru)
CN101324235B (zh) 恒低温冷却全无油涡旋空气压缩机
RU2213267C1 (ru) Компрессионный блок воздушного охлаждения
KR20070012545A (ko) 회전식 유체 기계
RU25916U1 (ru) Компрессионный блок воздушного охлаждения
CN210660571U (zh) 一种涡旋无油螺杆压缩机
JP2004514089A (ja) 単段式または多段式のピストン圧縮機および単段式または多段式のピストン圧縮機のための電気モータを冷却するための方法
KR100454814B1 (ko) 스털링 엔진 또는 냉동기로 활용할 수 있는 스크롤형 열교환 시스템
RU2213266C1 (ru) Способ охлаждения компрессионного блока
RU2193690C2 (ru) Способ охлаждения компрессионного блока, работающего в режиме "работа-пауза"
RU2343317C2 (ru) Спиральная машина
CN211370693U (zh) 一种双头打气泵
RU2193114C2 (ru) Компрессионный блок воздушного охлаждения
RU15591U1 (ru) Компрессионный блок воздушного охлаждения
JP2000097507A (ja) 空気サイクル式冷却装置及びスクロール流体機械
RU2194192C2 (ru) Компрессионный блок воздушного охлаждения
RU15592U1 (ru) Компрессионный блок воздушного охлаждения
CN215057989U (zh) 一种八缸真空泵
KR100424795B1 (ko) 자체순환 냉각시스템 진공펌프
KR100735900B1 (ko) 액분사식 스크롤형 열교환 시스템
CN218030517U (zh) 一种球类生产用空压机冷却水自动循环装置
CN216788663U (zh) 一种微型冷却器结构
CN212337641U (zh) 一种直联驱动的无油螺杆压缩机整机结构
CN217055523U (zh) 一种空气压缩机用散热装置

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040528

NF4A Reinstatement of patent
MM4A The patent is invalid due to non-payment of fees

Effective date: 20060528