RU2197629C2 - Способ работы жидкостного ракетного двигателя с турбонасосной подачей топлива на основе горючего и кислородного окислителя и жидкостный ракетный двигатель для осуществления способа - Google Patents

Способ работы жидкостного ракетного двигателя с турбонасосной подачей топлива на основе горючего и кислородного окислителя и жидкостный ракетный двигатель для осуществления способа Download PDF

Info

Publication number
RU2197629C2
RU2197629C2 RU2001107629/06A RU2001107629A RU2197629C2 RU 2197629 C2 RU2197629 C2 RU 2197629C2 RU 2001107629/06 A RU2001107629/06 A RU 2001107629/06A RU 2001107629 A RU2001107629 A RU 2001107629A RU 2197629 C2 RU2197629 C2 RU 2197629C2
Authority
RU
Russia
Prior art keywords
fuel
chamber
turbine
steam
rocket engine
Prior art date
Application number
RU2001107629/06A
Other languages
English (en)
Other versions
RU2001107629A (ru
Inventor
А.А. Бахмутов
В.Т. Буканов
И.А. Клепиков
В.В. Мирошкин
В.И. Прищепа
Т.Я. Ромасенко
Original Assignee
Бахмутов Аркадий Алексеевич
Буканов Владислав Тимофеевич
Клепиков Игорь Алексеевич
Мирошкин Вячеслав Васильевич
Прищепа Владимир Иосифович
Ромасенко Татьяна Яковлевна
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бахмутов Аркадий Алексеевич, Буканов Владислав Тимофеевич, Клепиков Игорь Алексеевич, Мирошкин Вячеслав Васильевич, Прищепа Владимир Иосифович, Ромасенко Татьяна Яковлевна filed Critical Бахмутов Аркадий Алексеевич
Priority to RU2001107629/06A priority Critical patent/RU2197629C2/ru
Application granted granted Critical
Publication of RU2197629C2 publication Critical patent/RU2197629C2/ru
Publication of RU2001107629A publication Critical patent/RU2001107629A/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Способ работы жидкостного ракетного двигателя с турбонасосной подачей криогенного топлива на основе горючего и кислородного окислителя, при котором восстановительный газ после использования для получения пара непосредственно дожигают в камере с остальной частью топлива. Реализующий способ жидкостный ракетный двигатель с турбонасосной подачей топлива на основе горючего и кислородного окислителя содержит газогенератор, рассчитанный на вырабатывание восстановительного газа, и подключен непосредственно к форсуночной головке камеры. Изобретение позволяет повысить эффективность жидкостного ракетного двигателя путем повышения удельного импульса тяги. 2 с. и 3 з.п. ф-лы, 3 ил.

Description

Изобретение относится к жидкостным ракетным двигателям (ЖРД), конкретно к ЖРД с турбонасосной подачей топлива, состоящего из раздельно хранимых окислителя и горючего; по крайней мере, один из этих топливных компонентов (кислородный окислитель) является криогенным.
Известен способ работы ЖРД с турбонасосной подачей топлива на основе горючего и кислородного окислителя, при котором приводную турбину топливных насосов вращают паром, полученным из сконденсированного продукта с использованием теплоты от продуктов сгорания тяговой камеры и от газа, получаемого при сгорании части топлива с избыточным компонентом вне камеры сгорания тяговой камеры, причем массу генерируемого газа используют впоследствии для создания тяги камеры, а отработавший на турбине пар охлаждают, используя для этого хладоресурс окислителя, и полученный при этом конденсат возвращают в соответствующий насос: см. пат. RU 2155273 С1, 18.08.1999 - прототип изобретения.
Известен ЖРД с турбонасосной подачей топлива на основе горючего и кислородного окислителя, включающий камеру с форсуночной головкой и охлаждаемым корпусом, газогенератор, турбонасосный агрегат из паровой турбины и насосов подачи окислителя, горючего и конденсата отработавшего пара, причем вход турбины соединен с выходом насоса конденсата через магистраль, включающую охлаждающий тракт камеры и смонтированный на выходе газогенератора теплообменник-нагреватель для получения пара турбины, а выход турбины сообщен с входом насоса конденсата через магистраль с теплообменником-конденсатором для охлаждения отработавшего пара кислородным окислителем: см. пат. RU 2155273 C1, 18.08.1999 - прототип изобретения.
Принципиальным достоинством указанных способа-прототипа и устройства-прототипа является отсутствие потерь удельного импульса тяги (Iу) двигателя на привод турбонасосного агрегата (ТНА), поскольку отработавший (то есть энергетически обесценившийся) пар турбины подают повторно - после охлаждения - в рабочий контур, а не выбрасывают из двигателя через выхлопную систему. Благодаря этому величины Iу для двигателя и для камеры (синоним понятия "тяговая камера") совпадают. Однако при осуществлении способа-прототипа и устройства-прототипа на практике оказывается невозможным в полной мере использовать потенциальную химическую энергию ракетного топлива для получения высоких значений Iy.
Указанный недостаток обусловлен в первую очередь тем, что в известных решениях для получения рабочего пара турбины используют теплоту окислительного газа, получаемого от сгорания части топлива с избытком окислителя. По условиям сохранения целостности конструкции газогенерирующего устройства и последующего газового тракта ЖРД температура окислительного газа ограничена величиной около 900 К. Кроме того, окислительный газ имеет низкие характеристики, относящиеся к процессу теплопередачи. Наконец, на получение окислительного газа необходимо расходовать значительную долю общей массы окислителя, поступающей в ЖРД, и поскольку эта доля согласно решению-прототипу не используется для конденсации отработавшего на турбине пара, то оставшегося хладоресурса топлива хватает на конденсирование лишь небольшой массы пара. В итоге, невозможно нагреть достаточное количество рабочего тела турбины до высокой температуры, и поэтому обеспечить энергетический баланс системы подачи (равенство между располагаемой мощностью турбины и суммарной мощностью насосов) для решений-прототипов при высоком давлении в камере (рк) не представляется возможным. Достижимый уровень рк ограничен для решений-прототипов величиной около 10 МПа, что обусловливает невысокие значения параметра Iy.
Изобретение решает техническую задачу повышения эффективности ЖРД, а именно повышения параметра Iy путем поднятия уровня рк. Задача сводится к тому, чтобы в начале рабочего цикла получить достаточное количество высокотемпературного пара для совершения необходимой работы на турбине, а в конце цикла отдать поступающему в ЖРД холодному топливу неиспользованную теплоту от пара, с тем чтобы охладить (сконденсировать) его до степени, гарантирующей бескавитационную работу насоса.
Поставленная техническая задача решается тем, что в способе работы ЖРД с турбонасосной подачей топлива на основе горючего и кислородного окислителя, при котором приводную турбину топливных насосов вращают паром, полученным из сконденсированного продукта с использованием теплоты от продуктов сгорания тяговой камеры и от газа, получаемого при сгорании части топлива с избыточным компонентом вне камеры сгорания тяговой камеры, причем массу генерируемого газа используют впоследствии для создания тяги камеры, а отработавший на турбине пар охлаждают, используя для этого хладоресурс окислителя, и полученный при этом конденсат возвращают в соответствующий насос, согласно изобретению генерируемый газ содержит избыток горючего, и этот восстановительный газ после использования для получения пара непосредственно дожигают в камере с остальной частью топлива.
В частных случаях изобретения:
- часть общей массы рабочего пара турбины получают, используя теплоту продуктов сгорания топлива в камере, а часть массы - используя теплоту восстановительного газа;
- теплоту от продуктов сгорания топлива в камере используют для предварительного нагрева части рабочего тела турбины, нагревая затем всю массу рабочего тела теплотой восстановительного газа;
- при получении рабочего пара турбины используют вначале теплоту восстановительного газа, а затем теплоту продуктов сгорания топлива в камере.
Поставленная техническая задача решается также тем, что в ЖРД с турбонасосной подачей топлива на основе горючего и кислородного окислителя, включающем камеру с форсуночной головкой и охлаждаемым корпусом, газогенератор, турбонасосный агрегат из паровой турбины и насосов подачи окислителя, горючего и конденсата отработавшего пара, причем вход турбины соединен с выходом насоса конденсата через магистраль, включающую охлаждающий тракт камеры и смонтированный на выходе газогенератора теплообменник-нагреватель для получения пара турбины, а выход турбины сообщен с входом насоса конденсата через магистраль с теплообменником-конденсатором для охлаждения отработавшего пара кислородным окислителем, согласно изобретению газогенератор рассчитан на вырабатывание восстановительного газа и подключен непосредственно к форсуночной головке камеры.
При осуществлении изобретения ожидается технический результат, совпадающий с существом решаемой задачи.
Изобретение поясняется при помощи фиг.1, 2, 3, где представлена функциональная схема ЖРД, выполненного согласно изобретению.
Согласно фиг.1 ЖРД содержит создающую тяговое усилие камеру 1 с форсуночной головкой 1А, камерой сгорания 1Б и сверхзвуковым реактивным соплом 1В; корпус камеры образован двумя соосными оболочками (внешней и внутренней), формирующими тракт 1Г для протока охладителя. Для подачи топлива в двигателе предусмотрен ТНА, который содержит двухступенчатый насос кислородного окислителя (сжиженного кислорода) 2, насос горючего (например, углеводородного) 3, насос 4 для подачи конденсированного рабочего тела турбины (например, аммиака) и паровую турбину 5. Насос 3 соединен посредством питающего трубопровода 6 с форсуночной головкой 7А газогенератора 7. Последний сообщен также с форсуночной головкой 1А камеры через газовый тракт 8 с встроенным в него теплообменником-нагревателем 9 для получения рабочего пара турбины (см. ниже). Таким образом, газовый тракт газогенератора, теплообменника-нагревателя и камеры являются участками общего газодинамического канала.
В форсуночную головку 7А газогенератора поступают, наряду с горючим, окислитель от второй ступени насоса 2 по трубопроводу 10. Первая же ступень указанного насоса соединена с форсуночной головкой 1А камеры посредством трубопроводов 11 и 12, между которыми расположен теплообменник-конденсатор 13 для охлаждения отработавшего пара турбины. Он поступает в теплообменник-конденсатор по трубопроводу 14 и отводится по трубопроводу 15 в насос 4. Выход его сообщен посредством разветвляющейся магистрали 16 с входами теплообменника-нагревателя 9 и охлаждающего тракта 1Г камеры. Их выходы сообщены с входом турбины 5 посредством трубопроводов 17 и 18 соответственно. Таким образом, насос 4 вместе с турбиной 5, теплообменниками 9, 13 и соединяющими их расходными магистралями образуют замкнутый контур для циркуляции рабочего тела, претерпевающего фазовые превращения.
Описанный ЖРД работает следующим образом. Кислородный окислитель ракетного топлива поступает в насос 2, из которого часть массы подается второй ступенью насоса по магистрали 10 в форсуночную головку 7А газогенератора. Туда же по магистрали 6 насосом 3 подается горючее ракетного топлива, которое сгорает в окислителе при избыточном горючем. При этом генерируется восстановительный газ (с температурой 1000-1500 К и более), который поступает в теплообменник-нагреватель 9 и далее в форсуночную головку 1А камеры. Туда же первой ступенью насоса 2 по магистрали 11-12 с встроенным в нее теплообменником 13 подается окислитель, который по пути охлаждает отработавший газ турбины 5 (см. ниже). В камере сгорания 1Б эта масса окислителя дожигает поступивший восстановительный газ, и образовавшиеся высокотемпературные продукты сгорания топлива поступают в реактивное сопло 1В, создавая тягу камеры 1 (и ЖРД в целом).
Циркулирующее в замкнутом контуре рабочее тело для привода турбины 5 подается насосом 4 по магистрали 16 в теплообменник-нагреватель 9 и в охлаждающий тракт 1Г камеры. После их прохождения рабочее тело, находящееся в состоянии пара с закритическими параметрами, поступает по трубопроводам 17, 18 на турбину 5, которая приводит топливные насосы 2, 3, 4 через общий с ними вал (обычно состоит из двух частей, соединенных рессорой). Отработавший пар турбины поступает по магистрали 14 в теплообменник 13, где охлаждается (конденсируется) жидким кислородом (см. выше), после чего по трубопроводу 15 направляется в насос 4. Далее описанный цикл рабочего тела в замкнутом контуре повторяется.
В том случае, когда в качестве рабочего тела турбины используется тот же продукт, что и горючее ракетного топлива (например, сжиженные метан или природный газ), можно трубопровод 15 переключить на вход насоса 3, его выход сообщить с входом насоса 4 и образовать таким образом один двухступенчатый насос: соответствующие магистрали изображены на фиг.1 штриховыми линиями. В этом случае контур рабочего тела турбины, претерпевающего фазовые превращения, получается разомкнутым.
На фиг.2 показана модифицированная по сравнению с фиг.1 схема получения рабочего пара турбины. Согласно этой схеме в охлаждающий тракт 1Г камеры по трубопроводу 16а поступает часть конденсата из насоса 4, а затем полученный пар смешивается с оставшимся "свежим" продуктом и поступает в теплообменник-нагреватель 9. Из него по трубопроводу 17 пар поступает на турбину.
На фиг. 3 показана еще одна модифицированная схема получения рабочего пара турбины. Согласно этой схеме вся масса конденсата поступает из насоса 4 по трубопроводу 16б вначале в теплообменник-нагреватель 9, а затем по трубопроводу 19 - в охлаждающий тракт 1Г камеры. Из него полученный пар поступает по трубопроводу 18 на турбину.
Необходимо отметить, что существо изобретения не исчерпывается приведенными конкретными схемами:
- для охлаждения отработавшего пара турбины можно использовать не только окислитель, но и горючее ракетного топлива (особенно если оно является криогенным);
- при необходимости горючее может использоваться в целях охлаждения корпуса газогенератора и внешней поверхности газового тракта;
- насос окислителя может выполняться одноступенчатым;
- количество рабочих колес в насосах и турбине может быть различным;
- для настройки и регулирования тяги ЖРД может предусматриваться байпасная магистраль рабочего тела турбины с регулятором расхода в ней;
- в линии подачи окислителя или горючего может устанавливаться дроссель для регулирования соотношения топливных компонентов;
- в линиях питания газогенератора могут устанавливаться регулирующие органы для управления температурой вырабатываемого газа и т.д.
Пример осуществления изобретения: ЖРД на топливе "кислород - углеводородное горючее", с тягой 1 МН при рк=17 МПа. Эти технические характеристики обеспечиваются при следующих параметрах рабочего контура турбины:
- расход аммиака 35 кг/с;
- параметры аммиака на входе в насос 4: давление 0,6 МПа, температура 273 К;
- давление на выходе аммиачного насоса 25 МПа;
- параметры аммиачного пара на входе в турбину 5: 530К/20 МПа;
- на турбине пар срабатывается до параметров 300 К /1,1 МПа;
- в газогенераторе 7 вырабатывается восстановительный газ с температурой 1200 К при давлении 20 МПа;
- температура жидкого кислорода на входе/выходе теплообменника-конденсатора 13: 100 К/230 К.
Полученное в конкретном примере значение рк=17 МПа примерно вдвое превышает этот параметр для аналогичного ЖРД, выполненного в соответствии с решениями-прототипами, что обеспечивает существенный прирост удельного импульса тяги. Таким образом, ожидаемый технический результат подтвержден.

Claims (5)

1. Способ работы жидкостного ракетного двигателя с турбонасосной подачей топлива на основе горючего и кислородного окислителя, при котором приводную турбину топливных насосов вращают паром, полученным из сконденсированного продукта, с использованием теплоты от продуктов сгорания тяговой камеры и от газа, получаемого при сгорании части топлива с избыточным компонентом вне камеры сгорания тяговой камеры, причем массу генерируемого газа используют впоследствии для создания тяги камеры, а отработавший на турбине пар охлаждают, используя для этого хладоресурс окислителя, и полученный при этом конденсат возвращают в соответствующий насос, отличающийся тем, что генерируемый газ содержит избыток горючего и этот восстановительный газ после использования для получения пара непосредственно дожигают в камере с остальной частью топлива.
2. Способ работы жидкостного ракетного двигателя по п. 1, отличающийся тем, что часть общей массы рабочего пара турбины получают, используя теплоту продуктов сгорания топлива в камере, а часть массы - используя теплоту восстановительного газа.
3. Способ работы жидкостного ракетного двигателя по п. 1, отличающийся тем, что теплоту от продуктов сгорания топлива в камере используют для предварительного нагрева части рабочего тела турбины, нагревая затем всю массу рабочего тела теплотой восстановительного газа.
4. Способ работы жидкостного ракетного двигателя по п. 1, отличающийся тем, что при получении рабочего пара турбины используют вначале теплоту восстановительного газа, а затем теплоту продуктов сгорания топлива в камере.
5. Жидкостный ракетный двигатель с турбонасосной подачей топлива на основе горючего и кислородного окислителя, включающий камеру с форсуночной головкой и охлаждаемым корпусом, газогенератор, турбонасосный агрегат из паровой турбины и насосов подачи окислителя, горючего и конденсата отработавшего пара, причем вход турбины соединен с выходом насоса конденсата через магистраль, включающую охлаждающий тракт камеры и смонтированный на выходе газогенератора теплообменник-нагреватель для получения пара турбины, а выход турбины сообщен с входом насоса конденсата через магистраль с теплообменником-конденсатором для охлаждения отработавшего пара кислородным окислителем, отличающийся тем, что газогенератор рассчитан на вырабатывание восстановительного газа и подключен непосредственно к форсуночной головке камеры.
RU2001107629/06A 2001-03-26 2001-03-26 Способ работы жидкостного ракетного двигателя с турбонасосной подачей топлива на основе горючего и кислородного окислителя и жидкостный ракетный двигатель для осуществления способа RU2197629C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001107629/06A RU2197629C2 (ru) 2001-03-26 2001-03-26 Способ работы жидкостного ракетного двигателя с турбонасосной подачей топлива на основе горючего и кислородного окислителя и жидкостный ракетный двигатель для осуществления способа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001107629/06A RU2197629C2 (ru) 2001-03-26 2001-03-26 Способ работы жидкостного ракетного двигателя с турбонасосной подачей топлива на основе горючего и кислородного окислителя и жидкостный ракетный двигатель для осуществления способа

Publications (2)

Publication Number Publication Date
RU2197629C2 true RU2197629C2 (ru) 2003-01-27
RU2001107629A RU2001107629A (ru) 2003-02-10

Family

ID=20247417

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001107629/06A RU2197629C2 (ru) 2001-03-26 2001-03-26 Способ работы жидкостного ракетного двигателя с турбонасосной подачей топлива на основе горючего и кислородного окислителя и жидкостный ракетный двигатель для осуществления способа

Country Status (1)

Country Link
RU (1) RU2197629C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481550C1 (ru) * 2012-03-07 2013-05-10 Николай Борисович Болотин Жидкостный ракетный двигатель (варианты)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481550C1 (ru) * 2012-03-07 2013-05-10 Николай Борисович Болотин Жидкостный ракетный двигатель (варианты)

Similar Documents

Publication Publication Date Title
EP3623602B1 (en) Hybrid expander cycle with intercooling and turbo-generator
EP3978738B1 (en) Hydrogen fuel vaporiser
EP3623604B1 (en) Hybrid expander cycle with pre-compression cooling and turbo-generator
US7784268B1 (en) Partial superheat cycle for operating a pump in a rocket system
US8250853B1 (en) Hybrid expander cycle rocket engine
JP2005337261A (ja) ガスタービンエンジンを運転するための方法及び装置
US8381508B2 (en) Closed-cycle rocket engine assemblies and methods of operating such rocket engine assemblies
US5095693A (en) High-efficiency gas turbine engine
US20080229751A1 (en) Cooling system for gas turbine engine having improved core system
RU2641791C2 (ru) Способ и устройство для питания ракетного двигателя
US5233823A (en) High-efficiency gas turbine engine
US5267437A (en) Dual mode rocket engine
RU2155273C1 (ru) Жидкостный ракетный двигатель (жрд) на криогенном топливе с замкнутым контуром привода турбины турбонасосного агрегата (варианты)
US20130186097A1 (en) Liquid Fuel Heating System
RU2197628C2 (ru) Способ работы жидкостного ракетного двигателя с турбонасосной подачей криогенного топлива на основе кислородного окислителя и углеводородного горючего и жидкостный ракетный двигатель для осуществления способа
RU2302547C1 (ru) Жидкостный ракетный двигатель
RU2299345C1 (ru) Жидкостный ракетный двигатель и способ его запуска
RU2095607C1 (ru) Жидкостный ракетный двигатель на криогенном топливе
RU2197629C2 (ru) Способ работы жидкостного ракетного двигателя с турбонасосной подачей топлива на основе горючего и кислородного окислителя и жидкостный ракетный двигатель для осуществления способа
JP2868524B2 (ja) ガスタービン機関とその動力出力を増加する方法
RU2300657C1 (ru) Жидкостный ракетный двигатель
RU2233990C2 (ru) Кислородно-керосиновый жидкостный ракетный двигатель с тепловым модулем, тепловой модуль и способ получения бессажевого газа в тепловом модуле
RU2202703C2 (ru) Жидкостный ракетный двигатель с турбонасосной подачей криогенного топлива
RU2531833C1 (ru) Жидкостный ракетный двигатель
RU2001107628A (ru) Способ работы жидкостного ракетного двигателя с турбонасосной подачей криогенного топлива на основе кислородного окислителя и углеводородного горючего и жидкостный ракетный двигатель для осуществления способа

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050327