RU2193748C1 - Взрыватель для малогабаритной зенитной управляемой ракеты - Google Patents

Взрыватель для малогабаритной зенитной управляемой ракеты Download PDF

Info

Publication number
RU2193748C1
RU2193748C1 RU2002103317/02A RU2002103317A RU2193748C1 RU 2193748 C1 RU2193748 C1 RU 2193748C1 RU 2002103317/02 A RU2002103317/02 A RU 2002103317/02A RU 2002103317 A RU2002103317 A RU 2002103317A RU 2193748 C1 RU2193748 C1 RU 2193748C1
Authority
RU
Russia
Prior art keywords
magnet
target
contact
sensor
fuse
Prior art date
Application number
RU2002103317/02A
Other languages
English (en)
Inventor
Г.А. Сулин
В.А. Брагин
И.А. Оськин
Н.А. Платонов
Л.С. Егоренков
Ю.А. Тульчин
Original Assignee
Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Поиск"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Поиск" filed Critical Федеральное государственное унитарное предприятие "Научно-исследовательский институт "Поиск"
Priority to RU2002103317/02A priority Critical patent/RU2193748C1/ru
Application granted granted Critical
Publication of RU2193748C1 publication Critical patent/RU2193748C1/ru
Priority to AU2003211782A priority patent/AU2003211782A1/en
Priority to PCT/RU2003/000031 priority patent/WO2003067179A1/ru

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C13/00Proximity fuzes; Fuzes for remote detonation
    • F42C13/08Proximity fuzes; Fuzes for remote detonation operated by variations in magnetic field

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Изобретение относится к военной технике, а именно к взрывателям малогабаритных зенитных ракет, предназначенных для поражения воздушных целей, которые представляют собой тонкостенные конструкции. Сущность изобретения: во взрывателе для малогабаритной зенитной управляемой ракеты, включающем систему из неконтактного и контактного магнитоэлектрических датчиков цели со схемой обработки сигналов и цепь инициирования, в отличие от прототипа согласно изобретению установлен токовихревой датчик, содержащий постоянный магнит трубчатой цилиндрической формы, намагниченный по продольной оси симметрии и расположенный коаксиально на наружной боковой поверхности устройства, и индуктивную катушку, размещенную коаксиально на наружной боковой поверхности магнита, причем параметры магнита и катушки заданы следующими соотношениями: h≤40δ2V; b = Eпδ2(WBмD)-1, где h - высота магнита, м; b - толщина магнита, м; δ - минимальная толщина предполагаемой немагнитной воздушной цели, м; V - скорость встречи ракеты с целью, м/сек; Еп - напряжение срабатывания схемы усиления, В; W - число витков катушки; Вм - магнитная индукция в теле магнита, Тл; D - наружный диаметр взрывателя, м, а в качестве контактного датчика установлен магнитоэлектрический датчик волнового действия, в цепь инициирования от которого введен формирователь задержки импульса подрыва, например, пиротехнический, причем контактный датчик жестко закреплен на внутренней торцевой стенке корпуса взрывателя со стороны боевой части ракеты. Изобретение позволяет повысить эффективность и надежность тонкостенных воздушных целей за счет обеспечения подрыва боевой части ракеты внутри преграды. 2 ил.

Description

Изобретение относится к области военной техники, а именно к взрывателям малогабаритных зенитных ракет, предназначенных для поражения воздушных целей, которые представляют собой тонкостенные конструкции.
Поражение воздушных целей: самолетов, дирижаблей, дистанционно пилотируемых летательных аппаратов малогабаритными зенитными управляемыми ракетами с взрывателями, построенными на механическом принципе, напрямую связано с их чувствительностью при взаимодействии с целью. Вследствие малой прочности конструкций воздушных целей малогабаритная зенитная управляемая ракета пробивает их практически без потери скорости, в связи с чем чувствительность механических взрывателей реакционного или инерционного действия должна быть очень высокой. Однако увеличение чувствительности механических взрывателей вызывает затруднения из-за того, что зенитные управляемые ракеты обладают повышенными вибрациями на полете, в связи с чем высокая чувствительность может привести к несанкционированному срабатыванию механических взрывателей и подрыву боевой части ракеты на траектории полета.
Наиболее оптимально решают поставленную задачу взрыватели, использующие магнитные поля, то есть взрыватели предконтактного действия.
Известен магнитный взрыватель по патенту США 3001476, класс 102-70.2. Взрыватель размещается в головной части ракеты и состоит из индукционной катушки, или постоянного магнита (второй вариант), создающими магнитное поле, электронной схемы усиления сигнала и детонатора. На наружной поверхности ракеты в носовой ее части размещается антенна для приема электрического сигнала, обусловленного встречей с металлической преградой. В схему антенны включен конденсатор, образующий резонансный контур для усиления сигнала. При встрече ракеты с металлической целью в результате взаимодействия с ней происходит искажение магнитного поля, которое улавливается антенной и преобразуется в электрический сигнал. После усиления электронной схемой сигнал поступает на детонатор, вызывая его подрыв.
Общими признаками с предлагаемым изобретением во взрывателе-аналоге является наличие постоянного магнита, создающего магнитное поле, индукционной катушки, электронной схемы усиления (обработки) сигнала и детонатора.
Наиболее близким по технической сущности и достигаемому техническому результату является взрыватель для ракет по патенту США 4417518 (опубликован 29 ноября 1983), принятое за прототип, которое содержит систему из неконтактного и контактного магнитоэлектрических датчиков цели со схемой обработки сигналов и цепью инициирования.
Устройство, принятое за прототип, размещается в головной части ракеты. Срабатывание устройства по металлической, ферромагнитной преграде происходит от неконтактного магнитоэлектрического датчика цели при изменении его магнитного поля, обусловленном сближением с ферромагнитной преградой. Срабатывание взрывателя от контактного датчика цели происходит при соударении с целью.
Задачей данного технического решения (прототипа) являлось повышение эффективности поражения различных целей, включая ферромагнитные, с использованием системы датчиков предконтактного и контактного действия.
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного устройства, принятого за прототип, относится то, что известный взрыватель для ракет не обеспечивает максимальный разрушительный эффект при поражении цели, в связи с тем, что он не может обеспечить проникающего действия боевой части ракеты (подрыва внутри цели), а поражение осуществляется только осколками, образующимися при взрыве боевой части ракеты при приближении к цели или в момент встречи с ней.
Общими признаками с предлагаемым изобретением во взрывателе-прототипе является наличие системы из неконтактного и контактного магнитоэлектрических датчиков цели со схемой обработки сигналов и цепи инициирования.
Задачей предлагаемого изобретения является создание взрывателя для малогабаритной зенитной управляемой ракеты, обеспечивающего максимальное поражение цели путем достижения оптимального момента подрыва боевой части ракеты внутри цели как ферромагнитной, так и немагнитной и любой другой.
Это достигается тем, что во взрывателе для малогабаритной зенитной управляемой ракеты, включающем систему из неконтактного и контактного магнитоэлектрических датчиков цели со схемой обработки сигналов и цепь инициирования, согласно изобретению в качестве неконтактного магнитоэлектрического датчика цели установлен токовихревой датчик, содержащий постоянный магнит трубчатой цилиндрической формы, намагниченный по продольной оси симметрии и расположенный коаксиально на наружной боковой поверхности устройства, и индуктивную катушку, размещенную коаксиально на наружной боковой поверхности магнита, причем параметры магнита и катушки заданы следующими соотношениями:
h≤40δ2V,
b = Eпδ2(WBмD)-1,
где h - высота магнита, м;
b - толщина магнита, м;
δ - минимальная толщина предполагаемой немагнитной воздушной цели, м;
V - скорость встречи ракеты с целью, м/сек;
Еп - напряжение срабатывания схемы усиления, В;
W - число витков катушки;
Вм - магнитная индукция в теле магнита, Тл;
D - наружный диаметр взрывателя, м,
а в качестве контактного датчика установлен магнитоэлектрический датчик волнового действия, в цепь инициирования от которого введен формирователь задержки импульса подрыва, например, пиротехнический, причем контактный датчик жестко закреплен на внутренней торцевой стенке корпуса взрывателя со стороны боевой части ракеты.
Время задержки замедлителя должно быть не менее величины
t=L/V,
где L - расстояние от носика ракеты до среднего сечения магнита токовихревого датчика, м;
V - скорость встречи ракеты с целью, м/сек.
Сущность изобретения поясняется чертежами.
На фиг.1 изображена конструктивная схема расположения взрывателя в ракете и размещения датчиков цели во взрывателе.
На фиг.2 изображена электрическая схема взрывателя.
На фиг.1 показан взрыватель, который расположен между боевой частью 2 и двигательной установкой ракеты 3 и включающий систему из двух датчиков, неконтактного токовихревого датчика цели 4, содержащего постоянный магнит трубчатой цилиндрической формы 5 и индукционную катушку 6, расположенные коаксиально на наружной боковой поверхности 7 взрывателя 1 и контактного магнитоэлектрического датчика волнового действия 8, жестко закрепленного на внутренней торцевой стенке 9 взрывателя 1.
Электрическая схема предлагаемого изобретения, изображенная на фиг.2, состоит из двух параллельных цепей обработки сигналов - цепи токовихревого датчика цели 4, цепи магнитоэлектрического датчика 8 и цепи инициирования. Цепь токовихревого датчика 4 включает накопительный конденсатор С1, усилительный транзистор VT1, электровоспламенитель 10. Цепь магнитоэлектрического датчика 8 включает накопительный конденсатор С2, усилительный транзистор VT2, электровоспламенитель 11 и формирователь задержки импульса подрыва 12 цепи инициирования. Цепь инициирования включает капсюль-детонатор 13 лучевого действия и детонатор 14. Через переключатель 15, диоды D1 и D2 электрические цепи соединены с бортовым источником питания.
Взрыватель работает следующим образом. После пуска ракеты и истечения некоторого времени (времени дальнего взведения) ее полета взрыватель готов к действию, а конденсаторы С1 и С2 через переключатель 15 заряжены до напряжения источника питания. При встрече ракеты с целью, независимо от типа преграды (цели), под воздействием волны механического напряжения, возникающей в ракете и направленной противоположно силам инерции (так называемый "отскок" в соответствии с принципом Гопкинсона), во взрывателе 1 срабатывает контактный магнитоэлектрический датчик волнового действия 8 и вырабатывается электрический импульс тока. Импульс тока с датчика усиливается транзистором VT2 и поступает на электровоспламенитель 11. От луча огня электровоспламенителя 11 воспламеняется формирователь задержки импульса 12 - пиротехнический замедлитель. Время задержки замедлителя 12 превышает время, необходимое для подхода токовихревого датчика к цели (преграде), и обычно составляет 3-15 мсек (Так, при расположении токовихревого датчика на расстоянии L=0,3 м от носика ракеты, при скоростях V=100 м/сек (встреча на встречных курсах) и при V=20 м/сек (встреча на догонных курсах), Т имеет следующие значения: при V=100 м/сек, Т=0,3/100=3 мсек; при V=20 м/сек, Т=0,3/20=15 мсек).
Пример расчета параметров магнита и катушки токовихревого датчика по заявляемой в формуле изобретения зависимости приводится для токовихревого датчика при соударении с воздушной целью типа самолета F-15 "Игл" (США) при скорости V= 100 м/сек. Для данного самолета δ=2 мм. Типовые данные датчика (см. Учебное пособие "Автоматические приборы управления взрывом". БГТУ. С-Петербург. 1992 г.):
наружный диаметр взрывателя D=0,07 м;
число витков W=200;
магнитная индукция в теле магнита Вм=0,2 Тл.
Исходя из соотношения сигнал/помеха выбирается напряжение срабатывания схемы усиления Еп=2В.
После подстановки выбранных параметров в зависимость:
Высота магнита
h≤40δ2V = 40•0,0022•100 = 16 мм;
Толщина магнита
b = Eпδ2(WBмD)-1 = 2•0,0022/200•0,2•0,07 = 3 мм.
В момент прохождения взрывателем мимо среза металлической преграды при ее пробитии или прохождения вдоль металлической преграды срабатывает токовихревой датчик 4 и в индукционной катушке 6 датчика возникает импульс электрического тока. Появляется он под воздействием вихревых токов, наводимых в металлической преграде (например, дюралюминиевой обшивке фюзеляжа) при движении постоянного магнита 5, или вследствие искажения магнитного поля ферромагнитной (стальной) преградой. Импульс тока усиливается транзистором VT1 и поступает на электровоспламенитель 10.
Дальнейшая работа взрывателя состоит в срабатывании цепи инициирования: капсюля -детонатора 13 и детонатора 14, которая вызывает подрыв боевой части ракеты. При этом капсюль-детонатор 13 срабатывает или от луча огня электровоспламенителя 10, т. е. от токовихревого датчика 4, или от луча огня формирователя задержки импульса 12 - контактного магнитоэлектрического датчика волнового действия 8, вызывая срабатывание детонатора 14 и подрыв боевой части ракеты, причем подрыв боевой части ракеты произойдет в любом случае внутри тонкостенной воздушной цели независимо от типа преграды.
Таким образом предлагаемым взрывателем с системой из неконтактного токовихревого и контактного магнитоэлектрического датчика волнового действия достигается увеличение эффективности и надежности поражения тонкостенных воздушных целей вследствие обеспечения подрыва боевой части ракеты после проникания ее внутрь преграды независимо от типа цели.
Технический результат заявляемого изобретения подтвержден результатами многочисленных натурных испытаний.

Claims (1)

  1. Взрыватель для малогабаритной зенитной управляемой ракеты, включающий систему из неконтактного и контактного магнитоэлектрических датчиков цели со схемой обработки сигналов и цепь инициирования, отличающийся тем, что в качестве неконтактного магнитоэлектрического датчика установлен токовихревой датчик, содержащий постоянный магнит трубчатой цилиндрической формы, намагниченный по продольной оси симметрии и расположенный коаксиально на наружной боковой поверхности взрывателя, и индукционную катушку, размещенную коаксиально на наружной боковой поверхности магнита, причем параметры магнита и катушки заданы следующими соотношениями:
    h≤40δ2V,
    b = Eпδ2(WBмD)-1,
    где h - высота магнита, м;
    b - толщина магнита, м;
    δ - минимальная толщина предполагаемой немагнитной воздушной цели, м;
    V - скорость встречи ракеты с целью, м/с;
    Еп - напряжение срабатывания схемы усиления, В;
    W - число витков катушки;
    Вм - магнитная индукция в теле магнита, Тл;
    D - наружный диаметр взрывателя, м,
    а в качестве контактного датчика установлен магнитоэлектрический датчик волнового действия, в цепь инициирования от которого введен формирователь задержки импульса подрыва, например, пиротехнический, причем контактный датчик жестко закреплен на внутренней торцевой стенке корпуса взрывателя со стороны боевой части ракеты, а время задержки замедлителя должно быть не менее величины t= L/V, где L - расстояние от носика ракеты до среднего сечения магнита токовихревого датчика, м; V - скорость встречи ракеты с целью, м/с.
RU2002103317/02A 2002-02-08 2002-02-08 Взрыватель для малогабаритной зенитной управляемой ракеты RU2193748C1 (ru)

Priority Applications (3)

Application Number Priority Date Filing Date Title
RU2002103317/02A RU2193748C1 (ru) 2002-02-08 2002-02-08 Взрыватель для малогабаритной зенитной управляемой ракеты
AU2003211782A AU2003211782A1 (en) 2002-02-08 2003-02-04 Detonator for a small-sized guided ground-to-air missile
PCT/RU2003/000031 WO2003067179A1 (fr) 2002-02-08 2003-02-04 Detonateur de missile sol-air guide de petite taille

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2002103317/02A RU2193748C1 (ru) 2002-02-08 2002-02-08 Взрыватель для малогабаритной зенитной управляемой ракеты

Publications (1)

Publication Number Publication Date
RU2193748C1 true RU2193748C1 (ru) 2002-11-27

Family

ID=20255240

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002103317/02A RU2193748C1 (ru) 2002-02-08 2002-02-08 Взрыватель для малогабаритной зенитной управляемой ракеты

Country Status (3)

Country Link
AU (1) AU2003211782A1 (ru)
RU (1) RU2193748C1 (ru)
WO (1) WO2003067179A1 (ru)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3001476A (en) * 1945-06-04 1961-09-26 John R Boykin Magnetic fuze
DE7806953U1 (de) * 1978-03-08 1982-10-21 Diehl GmbH & Co, 8500 Nürnberg Zuendvorrichtung fuer flugkoerper
RU2149348C1 (ru) * 1997-09-12 2000-05-20 Российский Федеральный Ядерный Центр - Всероссийский Научно-Исследовательский Институт Экспериментальной Физики Магнитный дистанционный взрыватель

Also Published As

Publication number Publication date
WO2003067179A1 (fr) 2003-08-14
AU2003211782A1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
US3893368A (en) Device for the protection of targets against projectiles
US6622629B2 (en) Submunition fuzing and self-destruct using MEMS arm fire and safe and arm devices
US20030140811A1 (en) Medium caliber high explosive dual-purpose projectile with dual function fuze
US5415105A (en) Tandem warhead with piezoelectric percussion fuses
US4567829A (en) Shaped charge projectile system
US3136251A (en) Electrically controlled directional warhead
US4815385A (en) Blast focusing method and apparatus
US8151712B2 (en) Projectile in particular an anti-infrastructure penetrating bomb and method for penetration of said projectile through a wall
US6053109A (en) Triggering arrangement for the priming of an anti-shelter projectile
RU2193748C1 (ru) Взрыватель для малогабаритной зенитной управляемой ракеты
US11761739B2 (en) Projectile construction, launcher, and launcher accessory
US4967667A (en) Method and system for preventing salvage fusing of nuclear attack weapons
RU2356008C2 (ru) Контактное взрывательное устройство
US7878121B2 (en) Penetration assisting kit and method for use
RU2400700C1 (ru) Противотанковая электромагнитная мина
RU2250433C1 (ru) Импульсный магнитоэлектрический генератор
RU2219487C1 (ru) Взрывательное устройство для управляемой ракеты
US3416448A (en) Control system for stand-off functioning of a projectile in flight over a target area
RU2046281C1 (ru) Управляемая ракета
US20240230292A1 (en) Projectile Construction, Launcher, and Launcher Accessory
GB1584305A (en) Proximity detectors
RU219069U1 (ru) Противотанковая авиабомба комбинированного действия
RU2125228C1 (ru) Снаряд
US3385214A (en) Two body fuzing system
EP4237787A1 (en) Projectile construction, launcher, and launcher accessory

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 33-2002

MM4A The patent is invalid due to non-payment of fees

Effective date: 20080209