RU2192551C2 - Газотурбинный двигатель с регенерацией тепла - Google Patents

Газотурбинный двигатель с регенерацией тепла Download PDF

Info

Publication number
RU2192551C2
RU2192551C2 RU2000113045/06A RU2000113045A RU2192551C2 RU 2192551 C2 RU2192551 C2 RU 2192551C2 RU 2000113045/06 A RU2000113045/06 A RU 2000113045/06A RU 2000113045 A RU2000113045 A RU 2000113045A RU 2192551 C2 RU2192551 C2 RU 2192551C2
Authority
RU
Russia
Prior art keywords
air
turbine
compressor
gas
power
Prior art date
Application number
RU2000113045/06A
Other languages
English (en)
Other versions
RU2000113045A (ru
Inventor
А.А. Пожаринский
С.В. Торопчин
В.А. Кузнецов
Original Assignee
Открытое акционерное общество "Авиадвигатель"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Авиадвигатель" filed Critical Открытое акционерное общество "Авиадвигатель"
Priority to RU2000113045/06A priority Critical patent/RU2192551C2/ru
Publication of RU2000113045A publication Critical patent/RU2000113045A/ru
Application granted granted Critical
Publication of RU2192551C2 publication Critical patent/RU2192551C2/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Газотурбинный двигатель с регенерацией тепла содержит компрессор, камеру сгорания, турбину высокого давления, силовые и воздушную турбины и теплообменник. Воздушная силовая турбина установлена на одном валу с газовой турбиной, соединенной на выходе с газовой полостью теплообменника. Вход воздушной турбины через воздушную полость теплообменника соединен с полостью отбора из промежуточной ступни компрессора. Отношение площади проточной части компрессора на входе в компрессор к площади проточной части компрессора в месте отбора воздуха равно 2-5. Отношение площади горла первого соплового аппарата воздушной силовой турбины к площади горла первого соплового аппарата газовой силовой турбины равно 0,5-1. Изобретение приводит к повышению мощности и кпд двигателя. 2 з.п. ф-лы, 3 ил.

Description

Изобретение может быть использовано преимущественно в наземных установках для механического привода, например нагнетателей природного газа или электрических генераторов.
Известен турбореактивный двухконтурный двигатель с регенерацией тепла, содержащий вентилятор, канал наружного контура и газогенератор, включающий в себя компрессор, камеру сгорания и турбину высокого давления, турбину низкого давления, а также теплообменник с воздушным и газовым трактами. Вход последнего подключен к выходу из турбины низкого давления, а выход сообщен с соплом [1].
В двигателе подогрев воздуха за компрессором теплом выхлопных газов позволяет снизить расход топлива, необходимый для получения заданной температуры газов перед турбиной. Турбина высокого давления установлена на одном валу с компрессором, а турбина низкого давления установлена на одном валу с вентилятором.
Недостатком известной конструкции является ограничение по степени сжатия в компрессоре, и, следовательно, относительно невысокая экономичность.
Наиболее близким к заявляемому по конструкции является газотурбинный двигатель с регенерацией тепла, включающий компрессор, камеру сгорания, турбину высокого давления, свободную турбину и теплообменник, установленный между турбинами [2].
Недостатками известной конструкции являются низкие термический кпд двигателя и полезная мощность на валу силовой свободной турбины, и, как следствие, низкая экономичность установки в целом.
Техническая задача, решаемая изобретением, заключается в повышении экономичности и мощности двигателя со снижением стоимости при использовании его в наземных приводных установках за счет увеличения полезной мощности на валу силовой свободной турбины, а также повышения термического кпд двигателя.
Сущность изобретения заключается в том, что в газотурбинном двигателе с регенерацией тепла, содержащем компрессор, камеру сгорания, турбину высокого давления, силовую газовую турбину и теплообменник, согласно изобретению двигатель снабжен воздушной силовой турбиной, установленной на одном валу с газовой силовой турбиной, соединенной на выходе с газовой полостью теплообменника, вход воздушной турбины через воздушную полость теплообменника соединен с полостью отбора из промежуточной ступени компрессора, причем F1:F2= 2-5, F3:F4=0,5-1, где
F1 - площадь проточной части компрессора на входе в компрессор,
F2 - площадь проточной части компрессора в месте отбора воздуха,
F3 - площадь горла первого соплового аппарата воздушной силовой турбины,
F4 - площадь горла первого соплового аппарата газовой силовой турбины.
Под площадью горла первого соплового аппарата подразумевается суммарная площадь минимальных сечений сопл, образованных лопатками соплового аппарата.
Выходы газовой и воздушной силовых турбин направлены навстречу друг к другу или в одну сторону, а компрессор может быть снабжен дополнительным теплообменником - охладителем воздуха, размещенным между ступенями компрессора перед полостью отбора воздуха.
Установка воздушной силовой турбины на одном валу с газовой турбиной позволяет использовать для привода нагнетателя газа или электрогенератора суммарную мощность обеих этих турбин и существенно упростить конструкцию двигателя, а значит и снизить ее стоимость при использовании двигателя в наземных приводных установках.
Газовая турбина соединена на выходе с газовой полостью теплообенника, а вход воздушной турбины через воздушную полость теплообменника соединен с полостью отбора из промежуточной ступени компрессора, что позволяет разделять сжатый воздух, выходящий из компрессора, на два потока. Часть воздуха из-за промежуточной ступени компрессора через полость отбора и трубопровод поступает в воздушную полость теплообменника, где нагревается за счет тепла газа, выходящего из газовой силовой турбины. Подогретый воздух, поступая в силовую воздушную турбину, расширяется в ней, совершая полезную работу и увеличивая полезную мощность на валу силовой свободной турбины, тем самым повышая мощность и кпд двигателя.
Соотношение площадей проточных частей компрессора на входе в компрессор (F1) и в месте отбора воздуха (F2) в интервале 2-5 позволяет обеспечить максимальную утилизацию тепла газа на выходе силовой турбины, тем самым получить максимальную мощность и кпд двигателя.
При соотношении F1:F2<2 уменьшается давление воздуха в месте его отбора на воздушную турбину, что приводит к уменьшению давления перед воздушной силовой турбиной, снижению ее мощности и кпд в целом.
При F1: F2>5 значительно повышается давление воздуха в месте его отбора на воздушную турбину, что приводит к значительному росту его температуры в процессе сжатия и уменьшает подогрев этого воздуха в газовоздушном теплообменнике теплом газов из газовой силовой турбины, что приводит к снижению мощности и кпд двигателя.
Отношение площади горла первого соплового аппарата воздушной силовой турбины (F3) к площади горла первого соплового аппарата газовой силовой турбины (F4) в интервале 0,5-1 определяет соотношение расхода воздуха через силовую воздушную турбину и расхода газа через силовую газовую турбину, при котором кпд двигателя максимален при минимальной стоимости теплообменника и двигателя в целом.
При F3: F4<0,5 снижаются мощность и кпд двигателя из-за существенного снижения расхода воздуха, работающего в воздушной турбине, при этом тепло выхлопных газов из силовой газовой турбины не в полной мере утилизируется в воздушной турбине, а выбрасывается в атмосферу.
При F3: F4>1 значительно растет расход воздуха через воздушную силовую турбину и соответственно через воздушный тракт газовоздушного теплообменника, что приводит к существенному увеличению площади его теплообменной поверхности, его массы и стоимости, а также к снижению кпд двигателя из-за уменьшения подогрева воздуха в теплообменнике.
Кроме того, выходы газовой и воздушной силовых турбин могут быть направлены навстречу друг к другу или в одну сторону, что позволяет осуществлять взаимную компенсацию осевых газовых сил, действующих на роторы этих турбин, повышая экономичность двигателя. Такое конструктивное исполнение исключает необходимость наддува разгрузочных полостей воздухом высокого давления для компенсации этих сил, а также уменьшает габариты и стоимость выхлопной системы двигателя.
Еще более высокая экономичность двигателя достигается в том случае, если компрессор снабжен дополнительным теплообменником-охладителем воздуха, размещенным между ступенями компрессора перед полостью отбора воздуха. Такая конструкция позволяет уменьшить работу сжатия воздуха в компрессоре за счет снижения температуры воздуха за теплообменником-охладителем, увеличивает передачу тепла от газа к воздуху в теплообменнике и дополнительно увеличивает термический кпд и мощность двигателя.
На фиг.1 представлена принципиальная схема газотурбинного двигателя заявляемой конструкции, в котором выходы газовой и воздушной силовых турбин направлены навстречу друг к другу;
на фиг.2 представлена схема газотурбинного двигателя с выходом газовой и воздушной силовых турбин в одну сторону;
на фиг. 3 - схема заявляемого двигателя с дополнительным теплообменником-охладителем, размещенным между ступенями компрессора перед полостью отбора воздуха.
Газотурбинный двигатель 1 состоит из компрессора 2 с площадью F1 проточной части на входе в компрессор и площадью F2 проточной части в месте отбора воздуха, камеры сгорания 3 и турбины 4 высокого давления, а также силовой газовой турбины 5 с сопловым аппаратом 1-й ступени 6 с площадью F4 горла.
Силовая газовая турбина 5 установлена на одном валу 7 с силовой воздушной турбиной 8, которая содержит сопловой аппарат 1-й ступени 9 с площадью F3 горла.
Выход 10 силовой воздушной турбины 8 и выход 11 силовой газовой турбины 5 могут быть направлены в одну сторону (фиг.2), а также навстречу друг к другу (фиг.1).
Воздушная силовая турбина 8 на своем входе через воздушную улитку 12, воздушную полость теплообменника 14, трубопровод 15 соединена с полостью отбора воздуха 16 из-за промежуточной ступени компрессора 2. Выход 11 газовой турбины 5 соединен с газовой полостью газовоздушного теплообменника 14 и далее - с атмосферой.
Компрессор 2 двигателя 1 может быть выполнен состоящим из двух компрессоров: компрессора низкого давления 17 и компрессора высокого давления 18. В этом случае турбина 4 выполнена в виде двух турбин: турбины высокого давления 19 и турбины низкого давления 20.
Для повышения экономичности двигателя 1 между ступенями 21 и 22 компрессора 17 может быть размещен дополнительный теплообменник-охладитель 23 воздуха в компрессоре.
Заявляемое устройство работает следующим образом.
Воздух, поступающий в двигатель 1 на вход в компрессор 2, сжимается в компрессоре 17 и далее разделяется на два потока. Часть воздуха дополнительно сжимается в компрессоре 18 и подогревается в камере сгорания 3, а полученный газ расширяется в турбине 4, которая вращает компрессор 2, а также расширяется в силовой газовой турбине 5. С выхода 11 турбины 5 горячий газ 24 поступает в газовую полость теплообменника 14, где отдает свое тепло воздуху, текущему по воздушной полости теплообменника 14.
Площадь горла F4 1-го соплового аппарата 6 турбины 5 определяет расход газа 24 через турбину 5 и соответственно расход воздуха через компрессор 18.
Оставшаяся часть воздуха из-за компрессора 17 через полость отбора 16 и трубопровод 15 поступает в воздушную полость теплообменника 14, где нагревается за счет тепла газа 24 Подогретый воздух по трубопроводу 13 и через улитку 12 поступает в воздушную силовую турбину 8, установленную на одном валу 7 с газовой силовой турбиной 5, и расширяется в этой турбине 8, совершая полезную работу и увеличивая мощность на валу 7.
Повышение мощности и экономичности заявляемого газотурбинного двигателя может составлять 10-30%.
Источники информации
1. Патент Великобритании 1501879, F 02 С 7/10, 1978 г.
2. Патент США 4506502, F 02 С 7/10, 1983 г.

Claims (3)

1. Газотурбинный двигатель с регенерацией тепла, содержащий компрессор, камеру сгорания, турбину высокого давления, силовую газовую турбину и теплообменник, отличающийся тем, что двигатель снабжен воздушной силовой турбиной, установленной на одном валу с газовой турбиной, соединенной на выходе с газовой полостью теплообменника, вход воздушной турбины через воздушную полость теплообменника соединен с полостью отбора из промежуточной ступени компрессора, причем F1: F2= 2-5, F3: F4= 0,5-1, где F1 - площадь проточной части компрессора на входе в компрессор; F2 - площадь проточной части компрессора в месте отбора воздуха; F3 - площадь горла первого соплового аппарата воздушной силовой турбины; F4 - площадь горла первого соплового аппарата газовой силовой турбины.
2. Газотурбинный двигатель с регенерацией тепла по п. 1, отличающийся тем, что выходы газовой и воздушной силовых турбин направлены навстречу друг к другу или в одну сторону.
3. Газотурбинный двигатель с регенерацией тепла по п. 1, отличающийся тем, что компрессор снабжен дополнительным теплообменником-охладителем воздуха, размещенным между ступенями компрессора перед полостью отбора воздуха.
RU2000113045/06A 2000-05-24 2000-05-24 Газотурбинный двигатель с регенерацией тепла RU2192551C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000113045/06A RU2192551C2 (ru) 2000-05-24 2000-05-24 Газотурбинный двигатель с регенерацией тепла

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000113045/06A RU2192551C2 (ru) 2000-05-24 2000-05-24 Газотурбинный двигатель с регенерацией тепла

Publications (2)

Publication Number Publication Date
RU2000113045A RU2000113045A (ru) 2002-04-10
RU2192551C2 true RU2192551C2 (ru) 2002-11-10

Family

ID=20235082

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000113045/06A RU2192551C2 (ru) 2000-05-24 2000-05-24 Газотурбинный двигатель с регенерацией тепла

Country Status (1)

Country Link
RU (1) RU2192551C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669420C1 (ru) * 2017-04-12 2018-10-11 Владимир Леонидович Письменный Двухконтурный турбореактивный двигатель

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2669420C1 (ru) * 2017-04-12 2018-10-11 Владимир Леонидович Письменный Двухконтурный турбореактивный двигатель

Similar Documents

Publication Publication Date Title
US6901759B2 (en) Method for operating a partially closed, turbocharged gas turbine cycle, and gas turbine system for carrying out the method
CN103758578B (zh) 燃气轮机及燃气轮机的运转方法
US6584779B2 (en) Combustion turbine cooling media supply method
EP2669492B1 (en) Gas turbine compressor inlet pressurization and flow control system
US5148670A (en) Gas turbine cogeneration apparatus for the production of domestic heat and power
US5081832A (en) High efficiency, twin spool, radial-high pressure, gas turbine engine
US5722241A (en) Integrally intercooled axial compressor and its application to power plants
US6079197A (en) High temperature compression and reheat gas turbine cycle and related method
US9470150B2 (en) Gas turbine power augmentation system
US20070256424A1 (en) Heat recovery gas turbine in combined brayton cycle power generation
US20110162386A1 (en) Ejector-OBB Scheme for a Gas Turbine
US5771678A (en) Water-injected stoichiometric-combustion gas turbine engine
EP1967717A1 (en) Gas turbine with a bypass conduit system
US8448447B2 (en) Gas turbine engine with fuel booster
RU2192551C2 (ru) Газотурбинный двигатель с регенерацией тепла
RU82778U1 (ru) Газотурбинный привод с регенерацией тепла выхлопных газов
RU2707105C2 (ru) Турбореактивный двухконтурный двигатель
EP0452642B1 (en) High efficiency, twin spool, radial-high pressure, gas turbine engine
AU2003266435A1 (en) Turbo recuperator device
RU2008480C1 (ru) Силовая установка
RU2192552C2 (ru) Газотурбинный двигатель с регенерацией тепла
SU891990A1 (ru) Энерготехнологическа установка компрессорной станции
JPH06280797A (ja) ガスタービンの冷却装置
RU2095606C1 (ru) Двигатель, использующий энергию нагретого пара горючего
RU2029117C1 (ru) Газотурбинный двигатель

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20050525