RU2187912C2 - Импульсная система питания индукционного ускорителя - Google Patents

Импульсная система питания индукционного ускорителя Download PDF

Info

Publication number
RU2187912C2
RU2187912C2 RU2000124599A RU2000124599A RU2187912C2 RU 2187912 C2 RU2187912 C2 RU 2187912C2 RU 2000124599 A RU2000124599 A RU 2000124599A RU 2000124599 A RU2000124599 A RU 2000124599A RU 2187912 C2 RU2187912 C2 RU 2187912C2
Authority
RU
Russia
Prior art keywords
winding
capacitor
diode
power supply
circuit
Prior art date
Application number
RU2000124599A
Other languages
English (en)
Inventor
В.А. Касьянов
Э.Г. Фурман
В.Л. Чахлов
А.С. Чертов
Original Assignee
Научно-исследовательский институт интроскопии при Томском политехническом университете
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Научно-исследовательский институт интроскопии при Томском политехническом университете filed Critical Научно-исследовательский институт интроскопии при Томском политехническом университете
Priority to RU2000124599A priority Critical patent/RU2187912C2/ru
Application granted granted Critical
Publication of RU2187912C2 publication Critical patent/RU2187912C2/ru

Links

Images

Landscapes

  • Particle Accelerators (AREA)

Abstract

Изобретение относится к области ускорительной техники и предназначено для генерации электронных пучков с большой энергией. Технический результат - повышение частоты следования циклов ускорения и коррекция радиуса равновесной орбиты в начале цикла ускорения. В импульсной системе питания индукционного ускорителя емкостной накопитель через ветви тиристоров, собранных по схеме инвертора тока, подключен к включенным последовательно и встречно обмоткам возбуждения и компенсационной, причем в цепи компенсационной обмотки включен диод. Источник питания подключен параллельно к обмотке возбуждения через коммутирующий дроссель и конденсатор. Конденсатор через тиристор подключен к диоду и обмотке, причем обмотка и диод зашунтированы диодом. Одна обкладка корректирующего конденсатора через переменный резистор подключена к общей точке подключения обмотки возбуждения, компенсационной обмотки и низковольтного источника питания, который через дроссель подключен к общей точке подключения обмотки и дросселя. Другая обкладка конденсатора через тиристор подключена к общей точке подключения диода и обмотки. Высоковольтный источник питания постоянного тока подключен параллельно к конденсатору. 4 ил.

Description

Изобретение относится к области ускорительной техники и предназначено для генерации электронных пучков с большой энергией для последующего использования энергии ускоренных электронов для целей дефектоскопии, лечения онкологических заболеваний и т.д.
Наиболее близка к изобретению импульсная система питания индукционного ускорителя [1], содержащая магнитопровод, обмотку возбуждения, компенсационную обмотку, уложенную на сплошном центральном сердечнике магнитопровода, емкостной накопитель, подключенный к обмоткам возбуждения и компенсационной по схеме инвертора тока, низковольтный источник питания.
В такой системе питания с целью уменьшения величины энергии, необходимой для возбуждения электромагнита ускорителя, компенсационная обмотка включена последовательно и встречно с обмоткой возбуждения. Для получения исходного состояния центрального сердечника магнитопровода (размагничивания) в паузе между импульсами от низковольтного источника питания в компенсационную обмотку заводится постоянный ток (ток размагничивания), что ограничивает частоту следования циклов ускорения. В паузе между импульсами требуется подключение еще одного источника питания для подзарядки конденсатора, в котором запасается энергия, вводимая в колебательный контур для компенсации потерь энергии в нем за цикл ускорения.
Кроме того, необходима коррекция радиуса равновесной орбиты в начале цикла ускорения, вызванная нелинейностью петли гистерезиса в начале перемагничивания ферромагнитного материала магнитопровода, для устранения влияния вихревых токов в пластинах центрального сердечника, вызванных как конечной проводимостью пластин ферромагнитного материала магнитопровода, так и наличием возможных короткозамкнутых контуров, образованных при замыкании пластин между собой. Время установления вихревых токов в центральном сердечнике магнитопровода может составлять десятки÷сотни микросекунд и зависит от толщины ферромагнитного материала. В течение этого времени происходит демпфирование центрального магнитного потока вихревыми токами и захват электронов в ускорение в этом интервале времени может быть невозможен. Из вышесказанного следует, что для нормальной работы ускорителя необходимо исправление магнитного поля в начале цикла ускорения.
Задача изобретения - повышение частоты следования циклов ускорения и коррекция радиуса равновесной орбиты в начале цикла ускорения.
Поставленная задача достигается тем, что в импульсной системе питания индукционного ускорителя, содержащей магнитопровод, обмотку возбуждения, компенсационную обмотку, уложенную на сплошном центральном сердечнике магнитопровода, емкостной накопитель, подключенный к обмоткам возбуждения и компенсационной по схеме инвертора тока, низковольтный источник питания, в цепь последовательно и встречно включенных обмоток возбуждения и компенсационной включен диод, низковольтный источник питания параллельно подключен к дросселю и обмотке возбуждения, к которой через коммутирующий дроссель и конденсатор подключен источник питания, причем конденсатор через тиристор подключен к компенсационной обмотке и диоду, а компенсационная обмотка с диодом дополнительно зашунтирована диодом, параллельно к компенсационной обмотке подключена цепь коррекции радиуса равновесной орбиты, состоящая из последовательно соединенных между собой тиристора, переменного резистора и корректирующего конденсатора, к которому параллельно подключен высоковольтный источник питания постоянного тока.
При таком исполнении импульсной системы питания индукционного ускорителя будет обеспечиваться, как накопление энергии в конденсаторе от источника питания через коммутирующий дроссель и обмотку возбуждения и в последующем ввод этой энергии в колебательный контур для компенсации потерь в нем за цикл ускорения, так и размагничивание центрального сердечника магнитопровода суммой токов коммутирующего дросселя в цепи источника питания и дросселя в цепи низковольтного источника питания, что позволит обеспечить высокую частоту следования циклов ускорения и улучшить тепловой режим компенсационной обмотки из-за исключения тока размагничивания в паузе между импульсами. Введенная в импульсную систему питания индукционного ускорителя цепь коррекции радиуса равновесной орбиты, состоящая из тиристора, переменного резистора и корректирующего конденсатора, обеспечит появление дополнительного магнитного потока через центральный сердечник магнитопровода током разряда корректирующего конденсатора, который при вышеописанной схеме соединения между собой компенсационной обмотки, тиристора, переменного резистора и корректирующего конденсатора будет направлен встречно току компенсационной обмотки, что приведет к уменьшению ее магнитодвижущей силы и скомпенсирует начальное сжатие равновесной орбиты, при этом также снизится отрицательное влияние вихревых токов в пластинах центрального сердечника магнитопровода.
На фиг.1 приведена магнитная система индукционного ускорителя.
Магнитная система индукционного ускорителя содержит магнитопровод 1 электромагнита ускорителя, обмотку 2 возбуждения, компенсационную обмотку 3, уложенную на сплошном центральном сердечнике магнитопровода 1 электромагнита ускорителя. На фиг.1 пунктиром показано положение вакуумной камеры в межполюсном пространстве.
На фиг. 2 приведена принципиальная схема импульсной системы питания индукционного ускорителя.
Импульсная система питания индукционного ускорителя, включает магнитопровод 1 электромагнита ускорителя, обмотку 2 возбуждения, компенсационную обмотку 3, уложенную на сплошном центральном сердечнике магнитопровода 1 электромагнита ускорителя. Емкостной накопитель 4 через ветви тиристоров 5 и 6, собранных по схеме инвертора тока, подключен к включенным последовательно и встречно обмоткам 2 и 3, причем в цепи компенсационной обмотки 3 включен диод 7. Источник питания 8 подключен параллельно к обмотке 2 возбуждения через коммутирующий дроссель 9 и конденсатор 10. Конденсатор 10 через тиристор 11 подключен к диоду 7 и обмотке 3, причем обмотка 3 и диод 7 зашунтированы диодом 12. Одна обкладка корректирующего конденсатора 13 через переменный резистор 14 подключена к общей точке подключения обмотки 2 возбуждения, компенсационной обмотки 3 и низковольтного источника питания 15, который через дроссель 16 подключен к общей точке подключения обмотки 2 и коммутирующего дросселя 9. Другая обкладка конденсатора 13 через тиристор 17 подключена к общей точке подключения диода 7 и обмотки 3. Высоковольтный источник питания 18 постоянного тока подключен параллельно к конденсатору 13.
На фиг.3 приведены эпюры изменения магнитных потоков, токов и напряжений в импульсной системе питания индукционного ускорителя, где цифрами обозначено:
19 - изменение магнитного потока в области ускорительной камеры,
20 - изменение магнитного потока в центральном сердечнике магнитопровода 1 электромагнита ускорителя,
21 - изменение напряжения емкостного накопителя 4,
22 - изменение напряжения конденсатора 10,
23 - изменение магнитодвижущей силы обмотки 2 возбуждения,
24 - изменение магнитодвижущей силы компенсационной обмотки 3,
25 - изменение напряжения обмотки 2 возбуждения,
26 - изменение напряжения компенсационной обмотки 3,
27 - изменение тока корректирующего конденсатора 13.
На фиг.4 приведена предельная петля гистерезиса 28 ферромагнитного материала центрального сердечника магнитопровода 1 электромагнита ускорителя.
Рассмотрим работу импульсной системы питания индукционного ускорителя на фиг.2.
В исходном состоянии емкостной накопитель 4 заряжен до требуемого напряжения. Конденсатор 10 заряжается от источника питания 8 через коммутирующий дроссель 9 и обмотку 2 возбуждения постоянным током. От низковольтного источника питания 15 через дроссель 16 по обмотке 2 возбуждения также протекает постоянный ток, который совместно с током дросселя 9 задает магнитное состояние центрального сердечника магнитопровода 1 электромагнита ускорителя. К моменту времени t1 магнитное состояние центрального сердечника магнитопровода 1 определяется магнитодвижущей силой обмотки 2 возбуждения (фиг. 3, кривая 23) и характеризуется точкой "1" на предельной петле гистерезиса ферромагнитного материала центрального сердечника магнитопровода 1 электромагнита ускорителя (фиг.4, кривая 28).
В момент времени t1 с приходом управляющих импульсов на тиристоры 5 или 6, емкостной накопитель 4 начинает разряжаться (фиг.3, кривая 21) на включенные последовательно и встречно обмотку 2 возбуждения и компенсационную обмотку 3. Начинают формироваться магнитные потоки в области ускорительной камеры (фиг. 3, кривая 19) и в центральном сердечнике магнитопровода 1 электромагнита ускорителя (фиг.3, кривая 20). Поток в области ускорительной камеры формируется потоком рассеяния обмоток 2 и 3, а поток в центральном сердечнике магнитопровода 1 формируется за счет разницы магнитодвижущих сил обмоток 2 (фиг.3, кривая 23) и 3 (фиг.3, кривая 24). Происходит инжекция электронов в вакуумную камеру, условно показанную пунктиром на фиг.1.
В этот же момент времени (в начале цикла ускорения) включается тиристор 17 и корректирующий конденсатор 13, заряженный до требуемого напряжения от высоковольтного источника питания 18 постоянного тока, начинает разряжаться на компенсационную обмотку 3 через переменный резистор 14, который позволяет регулировать радиус равновесной орбиты. Ток разряда корректирующего конденсатора 13 (фиг.3, кривая 27) направлен встречно току обмотки 3 и ее магнитодвижущая сила уменьшаетя, что вызывает появление дополнительного потока через центральный сердечник магнитопровода 1. Тем самым компенсируется начальное сжатие равновесной орбиты, снижается отрицательное влияние вихревых токов.
В момент времени t2, когда начинается перемагничивание ферромагнитного материала центрального сердечника магнитопровода 1 по линейному участку предельной петли гистерезиса (фиг.4, кривая 28, участок 2-3), разрядный ток корректирующего конденсатора 13 спадает до нуля, тиристор 17 выключается, и в дальнейшем на оставшейся части цикла ускорения выполнение бетатронного соотношения (значение индукции на равновесной орбите равно удвоенному среднему значению изменения индукции в круге, ограниченном равновесной орбитой) на расчетном радиусе полностью осуществляется за счет выбранного соотношения витков обмоток 2 и 3.
В момент времени t3, после окончания процесса ускорения, включается тиристор 11 и подключает конденсатор 10, заряженный током дросселя 9 до максимального напряжения (фиг.3, кривая 22), к диоду 7. Ток разряда конденсатора 10 направлен встречно току обмотки 3. Ток компенсационной обмотки 3 начинает уменьшаться, а ток обмотки 2 возбуждения переходит в цепь конденсатора 10 и тиристора 11.
В течение интервала времени t3-t4 происходит ввод энергии от конденсатора 10 в колебательный контур для компенсации потерь энергии в нем за цикл ускорения, ток обмотки 3 спадает до нуля. Обесточивание компенсационной обмотки 3 приводит к насыщению центрального сердечника магнитопровода 1 (фиг.4, кривая 28, точка "4"), магнитный поток в области ускорительной камеры будет уменьшаться, а магнитный поток в центральном сердечнике магнитопровода 1 наоборот резко возрастать, что приведет к сбросу электронов на внешнюю мишень или их можно вывести из вакуумной камеры.
В момент времени t4, после выключения тиристора 11 конденсатор 10 вновь заряжается током дросселя 9, а ток обмотки 2 возбуждения переходит в цепь диода 12, диод 7 отключает цепь питания компенсационной обмотки 3.
К моменту времени t5, когда ток обмотки 2 спадает до значения тока насыщения, определяемого магнитодвижущей силой обмотки 2 возбуждения (фиг.3, кривая 23), центральный сердечник магнитопровода 1 выходит из насыщения и в интервале времени t5-t6 перемагничивается вновь в исходное состояние, определяемое точкой "1" на предельной петле гистерезиса ферромагнитного материала (фиг.4, кривая 28, участок 4-3-1).
В момент времени t6 тиристоры 5 или 6 выключаются и магнитное состояние центрального сердечника магнитопровода 1 определяется суммой токов дросселей 9 и 16, протекающих по обмотке 2, и цикл работы ускорителя заканчивается.
Таким образом, в рассмотренной импульсной системе питания индукционного ускорителя обеспечивается как накопление энергии в конденсаторе 10 через дроссель 9 и обмотку 2 возбуждения и в последующем ввод этой энергии в колебательный контур для компенсации потерь в нем за цикл ускорения, так и размагничивание центрального сердечника магнитопровода 1 суммой токов дросселей 9 и 16, что позволяет обеспечить высокую частоту следования циклов ускорения и улучшить тепловой режим компенсационной обмотки 3 из-за исключения тока размагничивания в паузе между импульсами и уменьшения длительности тока обмотки 3 на спадающей части импульса.
Введенная в импульсную систему питания индукционного ускорителя цепь коррекции радиуса равновесной орбиты, состоящая из тиристора 17, переменного резистора 14 и корректирующего конденсатора 13, обеспечивает исправление магнитного поля в начале цикла ускорения и позволяет регулировать радиус равновесной орбиты, при этом также снижается отрицательное влияние вихревых токов в пластинах центрального сердечника магнитопровода 1 электромагнита ускорителя.
Литература
1. Васильев В. В., Фурман Э.Г. Магнитная система индукционного ускорителя. - Авт. свидетельство 619071.

Claims (1)

  1. Импульсная система питания индукционного ускорителя, содержащая магнитопровод, обмотку возбуждения, компенсационную обмотку, уложенную на сплошном центральном сердечнике магнитопровода, емкостной накопитель, подключенный к обмоткам возбуждения и компенсационной по схеме инвертора тока, низковольтный источник питания, отличающаяся тем, что в цепь последовательно и встречно включенных обмоток возбуждения и компенсационной включен диод, низковольтный источник питания параллельно подключен к дросселю и обмотке возбуждения, к которой через коммутирующий дроссель и конденсатор подключен источник питания, причем конденсатор через тиристор подключен к компенсационной обмотке и диоду, а компенсационная обмотка с диодом дополнительно зашунтирована диодом, параллельно к компенсационной обмотке подключена цепь коррекции радиуса равновесной орбиты, состоящая из последовательно соединенных между собой тиристора, переменного резистора и корректирующего конденсатора, к которому параллельно подключен высоковольтный источник питания постоянного тока.
RU2000124599A 2000-09-27 2000-09-27 Импульсная система питания индукционного ускорителя RU2187912C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000124599A RU2187912C2 (ru) 2000-09-27 2000-09-27 Импульсная система питания индукционного ускорителя

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000124599A RU2187912C2 (ru) 2000-09-27 2000-09-27 Импульсная система питания индукционного ускорителя

Publications (1)

Publication Number Publication Date
RU2187912C2 true RU2187912C2 (ru) 2002-08-20

Family

ID=20240450

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000124599A RU2187912C2 (ru) 2000-09-27 2000-09-27 Импульсная система питания индукционного ускорителя

Country Status (1)

Country Link
RU (1) RU2187912C2 (ru)

Similar Documents

Publication Publication Date Title
US4577156A (en) Push-pull betatron pair
RU2187912C2 (ru) Импульсная система питания индукционного ускорителя
RU2187913C2 (ru) Импульсная система питания индукционного ускорителя
RU2187914C2 (ru) Импульсная система питания индукционного ускорителя
RU2229773C1 (ru) Импульсная система питания бетатрона с размагничиванием магнитопровода
RU30480U1 (ru) Импульсная система питания бетатрона с размагничиванием магнитопровода
RU2172574C1 (ru) Импульсная система питания индукционного ускорителя
RU2228580C1 (ru) Импульсная система питания бетатрона с размагничиванием магнитопровода
RU2229772C1 (ru) Импульсная система питания бетатрона с размагничиванием магнитопровода
US2491345A (en) Accelerator magnet structure
RU2173035C1 (ru) Индукционный ускоритель
RU2231938C1 (ru) Импульсная система питания бетатрона с размагничиванием магнитопровода
RU2218678C1 (ru) Импульсная система питания бетатрона с размагничиванием магнитопровода
SU430808A1 (ru) Устройство дл формировани импульсных магнитных полей
RU32956U1 (ru) Импульсная система питания двойного бетатрона с размагничиванием магнитопровода
RU31088U1 (ru) Импульсная система питания бетатрона с размагничиванием магнитопровода
RU2230441C1 (ru) Импульсная система питания двойного бетатрона
SU736388A1 (ru) Магнитна система
SU670085A1 (ru) Магнитна система индукцинного ускорител
US20230420171A1 (en) Electronic switching device for demagnetizing ferromagnetic material
SU746964A1 (ru) Магнитна система бетатрона"
RU2242850C1 (ru) Импульсная система питания малогабаритного бетатрона с размагничиванием магнитопровода
RU31089U1 (ru) Импульсная система питания двойного бетатрона
RU2050044C1 (ru) Способ ускорения электронов в цилиндрическом бетатроне и устройство для его осуществления
SU637043A1 (ru) Устройство дл формировани импульсных магнитных полей

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20100928