RU2184845C1 - Устройство для определения углов искривления скважины и положения отклонителя при бурении - Google Patents

Устройство для определения углов искривления скважины и положения отклонителя при бурении Download PDF

Info

Publication number
RU2184845C1
RU2184845C1 RU2001109367A RU2001109367A RU2184845C1 RU 2184845 C1 RU2184845 C1 RU 2184845C1 RU 2001109367 A RU2001109367 A RU 2001109367A RU 2001109367 A RU2001109367 A RU 2001109367A RU 2184845 C1 RU2184845 C1 RU 2184845C1
Authority
RU
Russia
Prior art keywords
switch
input
angle
output
accelerometers
Prior art date
Application number
RU2001109367A
Other languages
English (en)
Inventor
Г.Н. Ковшов
Г.Ю. Коловертнов
В.А. Бондарь
С.Н. Федоров
Original Assignee
Уфимский государственный нефтяной технический университет
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Уфимский государственный нефтяной технический университет filed Critical Уфимский государственный нефтяной технический университет
Priority to RU2001109367A priority Critical patent/RU2184845C1/ru
Application granted granted Critical
Publication of RU2184845C1 publication Critical patent/RU2184845C1/ru

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Earth Drilling (AREA)

Abstract

Изобретение относится к промысловой геофизике и может быть использовано при разработке инклинометрических устройств для измерения в процессе бурения азимута, зенитного угла скважины, а также измерения угла, установки отклонителя при ориентировании инструмента в скважине. Изобретение решает задачу повышения точности определения углов ориентации в процессе бурения в широком диапазоне температур и расширения области применения устройства при бурении в высоких широтах. Поставленная задача достигается тем, что устройство содержит генератор возбуждения, датчик азимута, выполненный в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, датчик угла установки отклонителя, выполненный в виде синусно-косинусного вращающегося трансформатора, установленного в поплавковом маятнике, два коммутатора, блок управления, аналого-цифровой преобразователь. Дополнительно устройство снабжено тремя акселерометрами, оси чувствительности которых взаимно ортогональны и соосны осям чувствительности феррозондов, низкочастотными фильтрами, датчиком температуры, последовательным адаптером. При этом выходы акселерометров через низкочастотные фильтры и датчик температуры соединены с дополнительными входами коммутатора. К выходу аналого-цифрового преобразователя подключен вход последовательного адаптера, выход которого через блок связи с наземным устройством и блок дешифрации подключен к персональной ЭВМ. 1 ил.

Description

Предлагаемое изобретение относится к контролю за пространственным положением ствола скважины и положения отклонителя в процессе бурения нефтяных и газовых скважин.
Известны способ и устройство определения азимута и зенитного угла наклонной скважины измерением трех проекций векторов гравитационного и магнитного полей Земли на трехгранник ортогональных осей скважинного снаряда посредством трехосных акселерометров и магнитометров. Выходные сигналы с датчиков поступают в ЭВМ, а после обработки и вычисления выдаются в виде азимутальных и зенитных углов на дисплее ЭВМ. Патенты Великобритании 2205166, 1988 г.
Недостатком устройств, реализованных по этому способу, является зависимость результатов измерений от вибрационных и ударных перегрузок, сопровождающих процесс бурения. При этом ошибки акселерометров от вибраций достигают значительных величин и требуют остановки процесса бурения для измерений азимута, зенитного угла, угла положения отклонителя. Если азимутальный и зенитный углы наклонной скважины изменяются во времени медленно и могут быть измерены в момент прекращения процесса бурения, то положение отклонителя при бурении должно контролироваться непрерывно, т.к. реактивный момент от долота и упругий момент колонны труб стремится развернуть отклонитель от заданного направления. Неконтролируемое положение отклонителя приводит к изменению плановой траектории скважины.
Применимое в некоторых случаях определение положения отклонителя при бурении посредством феррозондов по магнитному полю Земли при известном азимутальном и зенитном углах, измеренных при остановках бурения, также имеет ограничение. Так при бурении наклонно-направленной скважины, совпадающей с вектором напряженности магнитного поля Земли (МПЗ), положение отклонителя по МПЗ не может быть определено. Особенно это существенно при бурении в высоких широтах, где вектор напряженности МПЗ близок к вертикали. Именно в этих областях в настоящее время бурится наибольшее количество скважин.
Известно устройство для контроля комплекса параметров траектории скважин и угла установки отклонителя, содержащее генератор возбуждения, датчик азимута, выполненный в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, датчик зенитного угла и угла установки отклонителя, выполненный в виде двух синусно-косинусных вращающихся трансформаторов, установленных в рамках-маятниках, два коммутатора, блок управления, аналого-цифровой преобразователь. Авт. свид. СССР 1078041, Е 21 В 47/02, Б. И. 9, 1984.
Недостатком известного устройства является невысокая точность определения азимута (до±2% в диапазоне 0÷360o). Из-за сил сухого трения в опорах подвеса маятников и нелинейности статических характеристик электрических датчиков их углов поворота, а также зависимости результатов измерений от температуры, достигающих значительной величины на больших глубинах.
Наиболее близким техническим решением к заявляемому изобретению является устройство для определения углов искривления скважины, содержащее блок возбуждения, датчики азимута с тремя ортогональными феррозондами, неподвижно закрепленными относительно корпуса устройства, датчик угла отклонения, два коммутатора, блок управления, аналого-цифровой преобразователь. Устройство имеет реверсивный счетчик, блок памяти, что позволяет уменьшить ошибки, возникающие вследствие влияния температуры. Авт. свид. СССР 1139835, Е 21 В 47/02, Б.И. 6, 1985.
Недостатками известного устройства являются невысокая точность определения азимута и зенитного углов особенно при малых зенитных углах от влияния сил сухого трения в опорах датчиков угла отклонения, а также сложность схемных решений при компенсации влияния температуры.
Изобретение решает техническую задачу повышения точности определения углов в процессе бурения.
Поставленная цель достигается тем, что устройство для определения углов искривления скважины и положения отклонителя при бурении, содержащее наземный блок, соединенный со скважинным снарядом, включающим генератор возбуждения, подключенный к одному из входов первого коммутатора, ко второму входу которого и к первому входу второго коммутатора подключены выходы блока управления, а выходы первого коммутатора соединены со входами датчика азимута, выполненного в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, и датчика угла установки отклонителя, выполненного в виде синусно-косинусного вращающегося трансформатора, установленного в поплавковом маятнике, выходы которых через детекторы подключены ко второму и третьему входам второго коммутатора, соединенного выходом со входом аналого-цифрового преобразователя, отличающееся тем, что скважинный снаряд снабжен тремя акселерометрами, оси чувствительности которых взаимно ортогональны и соосны осям чувствительности феррозондов, низкочастотными фильтрами, датчиком температуры, последовательным адаптером и блоком связи, а наземный блок снабжен узлом дешифрации и связи и персональной ЭВМ, соединенной узлом дешифрации и связи, который через блок связи соединен с входом блока управления скважинного снаряда и с выходом последовательного адаптера, вход которого соединен с выходом аналого-цифрового преобразователя, при этом выходы акселерометров через соответствующие низкочастотные фильтры и выход датчика температуры подключены соответственно к четвертому, пятому, шестому и седьмому входам второго коммутатора.
На чертеже представлена блок-схема устройства.
Устройство содержит скважинный снаряд, 1, включающий датчик азимута 2 на трех взаимно ортогональных феррозондах 3, 4, 5, датчик угла установки отклонителя 6, выполненного в виде синусно-косинусного вращающегося трансформатора (СКВТ), установленного в поплавковом маятнике, 7 - статорные обмотки СКВТ, 8 - роторная обмотка СКВТ, трехосного акселерометра 9, состоящего, например, из трех линейных акселерометров 10, 11, 12, датчик температуры 13. Оси чувствительности феррозондов и акселерометров ортогональны и образуют трехгранник координатных осей, неподвижно связанных со скважинным снарядом. При этом оси чувствительности феррозондов соосны осям чувствительности соответствующих акселерометров. Электрический нуль датчика угла установки отклонителя совмещен с нулем положения отклонителя, вычисленного по показаниям акселерометров. Кроме того, в скважинном снаряде размещены генератор возбуждения 14, первый 15 и второй 16 детекторы, первый 17 и второй 18 коммутаторы, низкочастотные фильтры 19, 20, 21 акселерометров, блок управления коммутатором 22, аналого-цифровой преобразователь (АЦП) 23, последовательный адаптер 24, блок связи с наземным устройством 25. Наземный блок 26 содержит источники питания скважинного снаряда, узел дешифрации сигналов и связи 27 с персональной ЭВМ 28.
Устройство работает следующим образом.
Для измерения азимута, зенитного угла, угла установки отклонителя и температуры с наземного блока 26 на блок управления 22 и коммутаторы 17, 18 поступает запускающий импульс. Генератор 14 формирует сигнал возбуждения, который через коммутатор 17 подается попеременно на обмотки возбуждения феррозондов 3, 4, 5 и статорные обмотки 7 СКВТ. При наличии магнитного поля Земли (МПЗ) в сигнальных обмотках феррозондов появляется выходное напряжение, пропорциональное проекции вектора напряженности МПЗ на оси чувствительности феррозондов. Напряжения с сигнальных обмоток феррозондов поочередно подаются на фазочувствительный детектор 15 и через второй коммутатор 18 на аналого-цифровой преобразователь 23. Напряжение с генератора 14 подается и на статорные обмотки 7 СКВТ, при этом напряжение с роторной обмотки 8, функционально связанное с углом поворота маятника, датчика 6, после детектирования в блоке 16 также через коммутатор 18 поступает на вход аналого-цифрового преобразователя 23. На вход коммутатора 18 по сигналам с блока управления 22 последовательно поступают сигналы с акселерометров 10, 11, 12 через низкочастотные фильтры 19, 20, 21 и датчик температуры 13 скважинного снаряда.
Число-импульсный код, соответствующий сигналу с каждого первичного датчика, с выхода аналого-цифрового преобразователя 23 поступает на вход последовательного адаптера 24, преобразующего параллельный код в последовательный формат, и через блок связи 25 с наземным устройством поступает в оперативную память персональной ЭВМ 28. После окончания полного цикла измерения и записи в памяти ЭВМ измерения накапливаются, осредняются и после алгоритмической обработки и вычислений высвечиваются на дисплее ЭВМ в виде цифровой, графической и текстовой информации.
Для точных измерений азимута, зенитного угла, угла установки отклонителя используются сигналы с феррозондов и акселерометров при кратковременных остановках процесса бурения, вычисляемые по формулам, приведенным в монографии: Ковшов Г.Н., Алимбеков Р.И., Жибер А.В. Инклинометры (основы теории и проектирования), Уфа, Гилем, 1998, 380 с.:
Figure 00000002
Figure 00000003
Figure 00000004

Здесь обозначено α, θ, φ - соответственно, азимут, зенитный угол и угол установки отклонителя, ai, bi (i=1,2,3) - приведенные безразмерные сигналы с феррозондов и акселерометров, В - магнитное наклонение.
Положение отклонителя на вертикальном участке в процессе бурения, вычисленное по магнитному полю Земли, определяется по формуле
Figure 00000005

Положение отклонителя в процессе бурения вычисляется по сигналам с маятникового датчика угла установки отклонителя:
Figure 00000006

где b1*, b2* - приведенные безразмерные сигналы с роторной обмотки СКВТ при последовательном подключении статорных обмоток СКВТ.
Несмотря на специальные схемные решения, применяемые при разработке первичных датчиков (феррозондов, акселерометров, СКВТ), температурный дрейф последних оказывается значительным. Это приводит к недопустимым погрешностям измерения азимута и зенитного углов при изменении окружающей температуры до +120oС, в котором должно работать устройство. Измерение температуры специальным датчиком, расположенным в скважинном снаряде, позволяет применить алгоритмические методы компенсации с помощью ЭВМ, если закон изменения температурного дрейфа первичных датчиков определен по предварительным температурным испытаниям устройства. Это повышает точность измерения углов в широком диапазоне температур, а также упрощает конструкцию скважинного снаряда, исключающего реверсивный счетчик и блок памяти.
Предлагается следующая последовательность использования устройства при бурении наклонно-направленных скважин. Вначале, на вертикальном участке положение отклонителя определяется посредством феррозондов по магнитному полю Земли с использованием формулы (4). Феррозонды, неподвижно закрепленные в скважинном снаряде, не реагируют на вибрационные и ударные перегрузки, сопровождающие процесс бурения, поэтому установка отклонителя проводится непосредственно при бурении. При наборе кривизны θ≥5÷10°, положение отклонителя в процессе бурения определяется уже с использованием поплавкового маятникового датчика угла установки отклонителя, вычисленное по формулам (5). Осевые вибрационные и ударные перегрузки, направленные по оси вращения маятника, на показаниях его не сказываются.
Таким образом, предложенное устройство позволяет осуществить ориентирование отклонителя в вертикальных и наклонных стволах скважин в процессе бурения и в высоких широтах, увеличить проходку на долото и упростить процесс ориентирования. При кратковременном прекращении процесса бурения азимут и зенитный углы скважины определяются уже с большой точностью по сигналам феррозондов и акселерометров, вычисленные по формулам (1), (2), и не требуют контроля положения скважины геофизическими инклинометрами.
Таким образом, предлагаемое устройство обеспечивает повышение производительности труда при бурении наклонно-направленных скважин за счет повышения точности и надежности результатов измерений.
Стендовые и полевые испытания устройства показали, что основная погрешность измерения азимута наклонной скважины лежит в пределах ±2o, зенитного угла ±0,2o, угла установки отклонителя ±0,2o.
Предлагаемое изобретение может быть использовано для бурения нефтяных и газовых наклонно-направленных и горизонтальных скважин, а также для прокладки пилот-скважин, бурящихся под реками для проводки газо- и нефтетрубопроводов.

Claims (1)

  1. Устройство для определения углов искривления скважины и положения отклонителя при бурении, содержащее наземный блок, соединенный со скважинным снарядом, включающим генератор возбуждения, подключенный к одному из входов первого коммутатора, ко второму входу которого и к первому входу второго коммутатора подключены выходы блока управления, а выходы первого коммутатора соединены со входами датчика азимута, выполненного в виде трех ортогональных феррозондов, жестко закрепленных в корпусе, и датчика угла установки отклонителя, выполненного в виде синусно-косинусного вращающегося трансформатора, установленного в поплавковом маятнике, выходы которых через детекторы подключены ко второму и третьему входам второго коммутатора, соединенного выходом со входом аналого-цифрового преобразователя, отличающееся тем, что скважинный снаряд снабжен тремя акселерометрами, оси чувствительности которых взаимно ортогональны и соосны осям чувствительности феррозондов, низкочастотными фильтрами, датчиком температуры, последовательным адаптером и блоком связи, а наземный блок снабжен узлом дешифрации и связи и персональной ЭВМ, соединенной с узлом дешифрации и связи, который через блок связи соединен с входом блока управления скважинного снаряда и с выходом последовательного адаптера, вход которого соединен с выходом аналого-цифрового преобразователя, при этом выходы акселерометров через соответствующие низкочастотные фильтры и выход датчика температуры подключены соответственно к четвертому, пятому, шестому и седьмому входам второго коммутатора.
RU2001109367A 2001-04-06 2001-04-06 Устройство для определения углов искривления скважины и положения отклонителя при бурении RU2184845C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2001109367A RU2184845C1 (ru) 2001-04-06 2001-04-06 Устройство для определения углов искривления скважины и положения отклонителя при бурении

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2001109367A RU2184845C1 (ru) 2001-04-06 2001-04-06 Устройство для определения углов искривления скважины и положения отклонителя при бурении

Publications (1)

Publication Number Publication Date
RU2184845C1 true RU2184845C1 (ru) 2002-07-10

Family

ID=20248148

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2001109367A RU2184845C1 (ru) 2001-04-06 2001-04-06 Устройство для определения углов искривления скважины и положения отклонителя при бурении

Country Status (1)

Country Link
RU (1) RU2184845C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2610957C1 (ru) * 2015-12-09 2017-02-17 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Способ определения комплекса угловых параметров пространственной ориентации бурового инструмента

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2610957C1 (ru) * 2015-12-09 2017-02-17 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Способ определения комплекса угловых параметров пространственной ориентации бурового инструмента

Similar Documents

Publication Publication Date Title
US6651496B2 (en) Inertially-stabilized magnetometer measuring apparatus for use in a borehole rotary environment
CA2187487C (en) Rotating magnet for distance and direction measurements
US7414405B2 (en) Measurement tool for obtaining tool face on a rotating drill collar
US20030085059A1 (en) Relative drill bit direction measurement
US6480119B1 (en) Surveying a subterranean borehole using accelerometers
US10316642B2 (en) Tool face orientation system for drilling boreholes
AU2005220213B2 (en) Method and apparatus for mapping the trajectory in the subsurface of a borehole
Segalini et al. Underground landslide displacement monitoring: a new MMES based device
US11299979B2 (en) Magnetic distance and direction measurements from a first borehole to a second borehole
CN109882157B (zh) 井下多分量测量仪器的光纤惯导系统及其数据处理方法
CN109681189A (zh) 一种井径扇区固井质量及轨迹一体化测量仪
RU2184845C1 (ru) Устройство для определения углов искривления скважины и положения отклонителя при бурении
RU2610957C1 (ru) Способ определения комплекса угловых параметров пространственной ориентации бурового инструмента
RU2291294C1 (ru) Феррозондовый скважинный инклинометр
NO342787B1 (en) Method and apparatus for well-bore proximity measurement while drilling
RU2269001C1 (ru) Способ измерения траектории скважины по азимуту и двухрежимный бесплатформенный гироскопический инклинометр для его осуществления
RU2111454C1 (ru) Инклинометр
Ding et al. Geotechnical instruments in structural monitoring
RU2459951C1 (ru) Устройство для измерения зенитных и азимутальных углов скважин
RU2112876C1 (ru) Инклинометр
RU2503810C1 (ru) Способ определения углов искривления скважины
RU2206737C1 (ru) Способ измерения параметров траектории скважины
SU744414A1 (ru) Измерительное устройство дл геоэлектроразведки
Melekhin et al. Telemetry system based on fiber-optic gyroscopes
Smart et al. A borehole instrumentation system for monitoring strata displacement in three dimensions