RU2174239C1 - Passive transceiver - Google Patents
Passive transceiverInfo
- Publication number
- RU2174239C1 RU2174239C1 RU2000105941A RU2000105941A RU2174239C1 RU 2174239 C1 RU2174239 C1 RU 2174239C1 RU 2000105941 A RU2000105941 A RU 2000105941A RU 2000105941 A RU2000105941 A RU 2000105941A RU 2174239 C1 RU2174239 C1 RU 2174239C1
- Authority
- RU
- Russia
- Prior art keywords
- input
- output
- identification code
- modulator
- antenna
- Prior art date
Links
- 230000000051 modifying Effects 0.000 claims abstract description 35
- 230000005540 biological transmission Effects 0.000 abstract description 12
- 239000000969 carrier Substances 0.000 abstract description 11
- 230000036039 immunity Effects 0.000 abstract description 4
- 238000001514 detection method Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 230000004044 response Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 4
- 230000001360 synchronised Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 2
- 230000003111 delayed Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Images
Abstract
Description
Изобретение относится к радиолокации и предназначено для передачи сигналов опознавания и идентификации объектов наблюдения РЛС. Оно может быть использовано в системах управления воздушным движением, в системах идентификации удаленных объектов и в других областях. The invention relates to radar and is intended to transmit identification signals and identification of radar surveillance objects. It can be used in air traffic control systems, in identification systems of remote objects and in other areas.
Из патента США N 5247305 по фиг. 1 известен пассивный приемопередатчик, предназначенный для приема запросных сигналов и передачи ответных сигналов в системе опознавания подвижных объектов. Он содержит антенну, выпрямитель, модулятор и идентификационный кодогенератор. В пассивном приемопередатчике запросный сигнал от запросчика (активной РЛС) принимается антенной и подается на вход выпрямителя и на выход модулятора. Часть запросного сигнала поглощается выпрямителем и преобразуется им в постоянное напряжение. Постоянное напряжение с выхода выпрямителя подводится ко входу идентификационного кодогенератора. Идентификационный кодогенератор имеет память, в которой хранится идентификационная информация. При подаче на вход кодогенератора постоянного напряжения питания из его памяти считывается идентификационный код. Идентификационный код с выхода кодогенератора поступает на вход модулятора. Одновременно с идентификационным кодом на выход модулятора поступает другая часть запросного сигнала. В нем она модулируется идентификационным кодом так, что запросный сигнал преобразуется в ответный. Модулятор отражает сигнал и возвращает его в антенну. Антенна излучает ответный сигнал в сторону запросчика. From US Pat. No. 5,247,305 to FIG. 1, a passive transceiver is known for receiving request signals and transmitting response signals in a system for identifying moving objects. It contains an antenna, a rectifier, a modulator and an identification code generator. In a passive transceiver, a request signal from the interrogator (active radar) is received by the antenna and fed to the input of the rectifier and to the output of the modulator. Part of the request signal is absorbed by the rectifier and converted by it into a constant voltage. DC voltage from the output of the rectifier is supplied to the input of the identification code generator. The identification code generator has a memory in which identification information is stored. When a constant voltage is applied to the input of the code generator, an identification code is read from its memory. The identification code from the output of the code generator is fed to the input of the modulator. Simultaneously with the identification code, another part of the request signal arrives at the modulator output. In it, it is modulated by an identification code so that the request signal is converted into a response signal. The modulator reflects the signal and returns it to the antenna. The antenna emits a response signal to the interrogator.
Недостатком пассивного приемопередатчика является то, что его питания осуществляется за счет преобразования выпрямителем части электромагнитной энергии запросного сигнала. Это приводит к нарушению работоспособности приеопередатчика при приеме сигналов малой мощности. The disadvantage of a passive transceiver is that its power is supplied by the rectifier converting part of the electromagnetic energy of the interrogation signal. This leads to a malfunction of the transceiver when receiving low power signals.
Из известных пассивных приемопередатчиков наиболее близким к заявляемому по технической сущности является пассивный приемопередатчик для приема запросных сигналов и передачи ответных сигналов в системе опознавания подвижных объектов, приведенный в патенте США N 5247305 на фиг. 14 и описанный на с. 13. Он содержит: последовательно соединенные антенну 1, детектор 2, решающее устройство 3, идентификационный кодогенератор 4 и модулятор 5; источник питания 6. Источник питания 6 подключен первым выходом ко второму входу решающего устройства 3, а вторым выходом соединен со вторым входом идентификационного кодогенератора 4. Выход модулятора 5 подключен ко входу антенны 1 и ко входу детектора 2. Of the known passive transceivers closest to the claimed technical essence is a passive transceiver for receiving interrogation signals and transmitting response signals in a system for identifying moving objects, is shown in US patent N 5247305 in FIG. 14 and described on p. 13. It contains: a series-connected
Пассивный приемопередатчик работает следующим образом. Passive transceiver operates as follows.
Запросный сигнал от запросчика (активной РЛС) принимается антенной 1 и подается на вход детектора 2 и выход модулятора 5. Часть запросного сигнала, поступившая на детектор 2, поглощается и детектируется им. В результате на выходе детектора 2 формируется напряжение огибающей запросного сигнала, которое подается на первый вход решающего устройства 3. Ко второму входу решающего устройства 3 подводится напряжение питания с первого выхода источника питания 6. Решающее устройство 3 осуществляет сравнение напряжения огибающей запросного сигнала с пороговым напряжением и на его основе вырабатывает сигналы управления идентификационным кодогенератором 4. С выхода решающего устройства 3 сигналы управления подаются на первый вход идентификационного кодогенератора 4. Ко второму входу идентификационного кодогенератора 4 подводится напряжение питания со второго выхода источника питания 6. Идентификационной кодогенератор 4 содержит память для хранения идентификационной информации. При поступлении на первый вход идентификационного кодогенератора сигналов управления с выхода решающего устройства 3, кодогенератор включает и генерирует идентификационный цифровой код на основе информации, считываемой из памяти. Цифровой код с выхода идентификационного кодогенератора 4 поступает на вход модулятора 5. Одновременно с идентификационным кодом к выходу модулятора 5 подводится вторая часть запросного сигнала. Под действием идентификационного кода модулятор 5 изменяет выходной импеданс так, что в результате амплитудной модуляции запросный сигнал преобразуется в ответный. Ответный сигнал, содержащий идентификационную информацию, отражается модулятором 5 и возвращается в антенну 1. Антенна 1 излучает ответный сигнал в сторону запросчика (активной РЛС). The request signal from the interrogator (active radar) is received by the
Таким образом, в приведенном пассивном приемопередатчике осуществляется амплитудная модуляция запросного сигнала и, следовательно, передача ответных сигналов ведется на несущей частоте запросного. Thus, in the given passive transceiver, the modulation of the interrogation signal is carried out and, therefore, the transmission of response signals is carried out at the carrier frequency of the interrogation.
Недостатком пассивного приемопередатчика, приведенного в патенте США N 5247305 на фиг. 14 является то, что он обеспечивает передачу ответных сигналов только на несущей частоте запросного сигнала. Это существенно снижает помехозащищенность идентификационной информации в условиях интенсивных отражений от подстилающей поверхности Земли и активных помех. The disadvantage of the passive transceiver described in US Pat. No. 5,247,305 in FIG. 14 is that it only provides response signals at the carrier frequency of the interrogation signal. This significantly reduces the noise immunity of identification information in conditions of intense reflections from the underlying surface of the Earth and active interference.
Целью изобретения является повышение помехозащищенности идентификационной информации за счет передачи ответных сигналов на несущей частоте, отличающейся от несущей частоты запросного сигнала. The aim of the invention is to increase the noise immunity of identification information by transmitting response signals at a carrier frequency different from the carrier frequency of the request signal.
Поставленная цель достигается тем, что в известном пассивном приемопередатчике, содержащем: антенну 1; последовательно соединенные детектор 2, решающее устройство 3 и идентификационный кодогенератор 4, подключенный вторым входом ко второму выходу источника питания 6, соединенного первым выходом со вторым входом решающего устройства 3; модулятор 5, подключенный выходом ко входу детектора 2, модулятор 5 соединен первой группой входов с группой выходов идентификационного кодогенератора 4, а вторым совмещенным входом - выходом - со входом антенны 1. This goal is achieved in that in a known passive transceiver, comprising:
На фиг. 1 представлена структурная схема пассивного приемопередатчика. In FIG. 1 is a structural diagram of a passive transceiver.
На фиг. 2 показаны принципиальные электрические схемы детектора, модулятора и схема их подключения к антенне. In FIG. 2 shows the electrical circuits of the detector, modulator and the circuit for their connection to the antenna.
На фиг. 3 приведена схема идентификационного кодогенератора. In FIG. 3 shows a diagram of an identification code generator.
На фиг. 4 представлены эпюры сигналов, поясняющие принцип действия пассивного приемопередатчика. In FIG. 4 shows diagrams of signals explaining the principle of operation of a passive transceiver.
Антенна 1 пассивного приемопередатчика представляет собой, например, прямоугольную микрополосковую приемопередающую антенну (см. фиг. 2). Ее конструкция и принцип действия описаны в [2, с.81-89]. Вход антенны 1 соединен со вторым совмещенным входом - выходом модулятора 5 (см. фиг. 1, 2). Модулятор 5 выполнен по схеме, например, отражательного p-i-n диодного фазовращателя на микрополосковой линии передачи. Он содержит: разделительные конденсатор C2, C3, ..., C(K+1); p-i-n диоды VD2, VD3, ..., VD(K+1); ограничительные резисторы R2, R3, ..., R(K+1). Схемотехнические особенности построения отражательного p-i-n диодного фазовращателя изложены в [3, с. 349-350] , а схема его подключения к антенне 1 показана на фиг. 2. Выход модулятора соединен со входом детектора 2 микрополосковой линией передачи. В качестве детектора 2 в пассивном приемопередатчике используется, например, амплитудный детектор. Он содержит: СВЧ диод VD1; конденсатор C1; резистор R1; распределенную индуктивность L (см. в [4, с.59-60]). Особенности согласования амплитудного детектора 2 с модулятором 5 иллюстрирует фиг. 2. Выход детектора 2 подключен к первому входу решающего устройства 3 (см. фиг. 1), которое выполнено по двухпороговой схеме, например, по схеме триггера Шмитта на компараторе. Устройство и принцип действия триггера Шмитта на компараторе рассмотрены в [5, с. 223]. Второй вход решающего устройства 3 подклчюен к первому выходу источника питания 6. Источником питания 6 пассивного приемопередатчика является, например, аккумуляторная батарея. Выход решающего устройства 3 соединен с первым входом идентификационного кодогенератора 4 (см. фиг. 1). Идентификационный кодогенератор 4 представляет собой цифровой автомат с памятью. Он содержит (см. фиг. 3): двоичный счетчик DD1; постоянное запоминающее устройство DD2; логический элемент "И" DD3; многоотводную линию задержки; логические элементы исключающее "ИЛИ" DD4.1 - DD4.K; логические элементы "И" DD5.1 - DD5. K. В качестве названных логических элементов, счетчика и постоянного запоминающего устройства в пассивном приемопередатчике применяются микросхемы, например, серии 1533 и микросхемы КМ 1608 РТ1. Первый вход идентификационного кодогенератора 4 подключен к счетному входу C счетчика DD1 и первому входу логического элемента DD3. Выходы счетчика DD1 Q0 - QN соединены с одноименными адресными входами A0 - AN постоянного запоминающего устройства DD2. Выход DD2 подключен ко второму входу логического элемента DD3. Выход элемента DD3 соединен со входом многоотводной задержки, первым входом DD4.1 и первыми входами логических элементов DD5.1 - DD5.K. Выходы многоотводной линии задержки F, где F = 1, 2, ..., K, подключены ко входам логических элементов DD4.1 - DD4.K по правилу: выход линии задержки под номером F соединяются со вторым входом элемента DD4.F и с первым входом элемента DD4. (F+1). Выходы DD4.1 - DD4.K соединены со вторыми входами одноименных логических элементов DD5.1 - DD5.K. Выходы логических элементов DD5.1 - DD5.K образуют группу выходов 1, 2, 3, ..., K идентификационного кодогенератора 4, которая соединяется с одноименной группой входов модулятора 5. Второй вход идентификационного кодогенератора 4 подключен ко второму выходу источника питания 6 (на фиг.3 подключение микросхем по питанию не показано). The
Пассивный приемопередатчик работает следующим образом. Passive transceiver operates as follows.
Антенная 1 пассивного приемопередатчика принимает запросный сигнал от запросчика. Запросный сигнал имеет вид, как показано на фиг. 4,а. В момент поступления запросного сигнала, например, t1 все p-i-n диоды модулятора 5 находятся в выключенном состоянии. По этой причине большая часть мощности радиоимпульса запросного сигнала проходит через модулятор 5 и поглощается детектором 2 (согласованная нагрузка), а ее меньшая (незначительная) часть отражается антенной 1 в сторону запросчика. Детектор 2 выделяет огибающую радиоимпульса запросного сигнала и подводит напряжение огибающей к первому входу решающего устройства 3. Форма напряжения огибающей на первом входе решающего устройства 3 зависит от информации в разряде ответного сигнала. В случае передачи логического нуля все p-i-n диоды модулятора 5 находятся в выключенном состоянии на всем интервале τи, например от t2 до t2+ τи (см. фиг. 4,a), т.е. практически вся мощность запросного сигнала поглощается детектором 2. Это приводит к тому, что огибающая запросного сигнала на первом входе решающего устройства 3 имеет вид прямоугольного импульса (см. фиг. 4, б). В случае передачи единицы в разряде ответного сигнала, амплитуда напряжения огибающей на первом входе решающего устройства 3 изменяется по сложному закону, т. е. через малый промежуток времени, обусловленный инерционностью схемы пассивного приемопередатчика, вначале p-i-n диод VD2, а затем, поочередно, и диоды VD3, VD4, ..., VD4(K+1) переводятся во включенное состояние. Это приводит к резкому уменьшению мощности запросного сигнала, поступающей на вход детектора 2, и, следовательно, к уменьшению амплитуды напряжения огибающей на первом входе решающего устройства 3 (см. на фиг. 4,б участки 1, 2). Чтобы избежать в данной ситуации потери запросного сигнала, рещающее устройство 3 выполнено по двухпороговой схеме на триггере Шмитта. При превышении напряжения огибающей величины Uпор.1 триггер Шмитта переводится из состояния логического нуля в состояние единицы по своему выходу (см. фиг. 4, в). Состояние логической единицы на выходе триггера Шмитта и, следовательно, на выходе решающего устройства 3, сохраняется до тех пор, пока напряжение огибающей запросного сигнала превышает напряжение Uпор.2. С выхода решающего устройства 3 логические сигналы поступают на первый вход идентификационного кодогенератора 4 и далее на счетный вход C двоичного счетчика DD1 и первый вход логического элемента DD3 (см. фиг. 3). Счетчик DD1 из последовательности логических сигналов осуществляет формирование двоичного кода, который, в свою очередь, передается с его выходов Q0 - QN на одноименные адресные входы A0 - AN постоянного запоминающего устройства DD2. В DD2 двоичный код преобразуется в идентификационный код. Идентификационный код с выхода DD2 подводится ко второму входу логического элемента DD3 (см. фиг. 4,г). Элемент DD3 осуществляет логическое умножение сигналов, поступивших с выходов решающего устройства 3 и постоянного запоминающего устройства DD2 (см. фиг. 4,д). В результате этого на выходе DD3 формируется синхронный с запросным сигналом идентификационный код. Синхронный код с выхода DD3 подается на вход многоотводной линии задержки, первый вход логического элемента исключающее "ИЛИ" DD4.1 и первые входы логических элементов DD5.1 - DD5.K. На выходах 1, 2, .. . , K многоотводной линии задержки вырабатываются задержанные на время FΔt1= FΔt/K, где Δt1 - время задержки сигнала между выводами F и F+1 линии задержки, сигналы логической единицы синхронного идентификационного кода (см. фиг. 4, е-з). С выходов F, ult F = 1,2,... K, они подаются на вторые входы элементов DD4. F и первые входы элементов DD4.(F+1). В результате преобразования элементами исключающее "ИЛИ" сигнала логической единицы с выхода DD3 и задержанных сигналов с выходов линии задержки, на выходах DD4.1 - DD4. K последовательно формируется импульсные сигналы несовпадения (см. в [6, с.56-62]). Импульсные сигналы несовпадения с выходов DD4.1 - DD4.K поступают на вторые входы одноименных элементов DD5.1 - DD5.K, которые осуществляют селекцию импульсов синхронным идентификационным кодом с выхода DD3. Отселектированные элементами DD5.1 - DD5.K импульсные сигналы с амплитудами логической единицы и длительностями Δt1 (см. фиг. 4,и-л) последовательно подаются на выводы 1, 2, ... K группы выходов идентификационного кодогенератора 4. Эти сигналы поступают на одноименные выводы первой группы входов модулятора 5. В модуляторе 5 импульсные сигналы задают последовательность переключения p-i-n диодов фазовращателя, и, следовательно, определяют фазу отраженного от модулятора запросного сигнала в пределах дискрета Δt1 Величина сдвига фазы p-i-n диодом фазовращателя определяется как (см. [3, с.349-350] ).The
где lF - расстояние от места соединения антенны 1 с микрополосковой линии передачи до места подключения VD(F+1) p-i-n диода; λв - длина волны в микрополосковой линии передачи. Поэтому для обеспечения модулятором 5 линейного дискретного сдвига фазы от 0 до 2π расстояния l между соседними p-i-n диодами выбираются одинаковыми, а диод VD2 размещается в месте подключения антенны 1 к микрополосковой линии передачи (см. фиг. 2).
where l F is the distance from the junction of the
Из [7, с.73-76] известно, что изменение фазы запросного сигнала Q-раз от 0 до 2π за время T, где Q - целое число, большее единицы, в пределах длительности логической единицы идентификационного кода τu = QT) с шагом
(см. фиг. 4,м) приводит к изменению несущей частоты ответного сигнала на величину т.е. частота ответного сигнала
где f0 - несущая частота запросного сигнала. Тогда, задаваясь требуемым для РЛС значением несущей частоты f, нетрудно определить параметры элементов схем идентификационного кодогенератора 4 и модулятора 5.From [7, pp. 73-76] it is known that the phase change of the request signal Q times from 0 to 2π during time T, where Q is an integer greater than one, within the duration of the logical unit of the identification code τ u = QT) s step
(see Fig. 4, m) leads to a change in the carrier frequency of the response signal by those. response frequency
where f 0 is the carrier frequency of the interrogation signal. Then, given the carrier frequency f required by the radar, it is easy to determine the parameters of the elements of the
Современные РЛС, как правило, содержат в своем составе несколько приемных каналов. В данной ситуации реализация передачи запросного сигнала на одной несущей частоте, а прием ответного сигнала на другой несущей частоте не представляет технической сложности и не требует доработки трактов типовых РЛС. При этом наличие в известные моменты времени ответного сигнала на известной частоте может рассматриваться как передача логической единицы в разряде ответного сигнала (кода), а его отсутствие - эквивалентно передаче нуля. Modern radars, as a rule, contain several receiving channels. In this situation, the implementation of the transmission of the interrogation signal on one carrier frequency, and the reception of a response signal on another carrier frequency does not present technical complexity and does not require refinement of the typical radar paths. At the same time, the presence of a response signal at known times at a known frequency can be considered as the transmission of a logical unit in the category of a response signal (code), and its absence is equivalent to zero transmission.
Таким образом, использование в заявляемом пассивном приемопередатчике принципа передачи запросного и ответного сигналов на разных несущих частотах приводит к разносу спектров ответного сигнала, пассивных и активных помех. Это позволяет существенно повысить помехозащищенность идентификационной информации в канале опознавания и идентификации объектов наблюдения РЛС. Thus, the use in the inventive passive transceiver of the principle of transmitting the interrogation and response signals at different carrier frequencies leads to the separation of the spectra of the response signal, passive and active interference. This allows you to significantly increase the noise immunity of identification information in the channel recognition and identification of radar surveillance objects.
Источники информации
1. Патент США N 5247305 МКИ5 G 01 S 13/74.Sources of information
1. US patent N 5247305 MKI 5 G 01
2. Панченко Б.А., Нефедов Е.И. Микрополосные антенны. - М.: Радио и связь, 1986. 2. Panchenko B.A., Nefedov E.I. Microband antennas. - M .: Radio and communications, 1986.
3. Антенны и устройства СВЧ. Проектирование фазированных антенных решеток: Учебное пособие для ВУЗов/ В.С.Филиппов, Л.Н.Пономарев, А.Ю.Гринев и др. ; Под ред. Д.И. Воскресенского - 2-е изд., доп. и перераб. - М.: Радио и связь, 1994. 3. Antennas and microwave devices. Designing phased antenna arrays: Textbook for high schools / V.S. Filippov, L.N. Ponomarev, A.Yu. Grinev and others; Ed. DI. Voskresensky - 2nd ed., Ext. and reslave. - M .: Radio and communications, 1994.
4. Малорацкий Л.Г.Микроминиатюризация элементов и устройств СВЧ. - М.: Советское радио, 1976. 4. Maloratsky L. G. Microminiaturization of microwave elements and devices. - M.: Soviet Radio, 1976.
5. Гутников В.С. Интегральная электроника в измерительных устройствах. - Л.: Энергоатомиздат, 1988. 5. Gutnikov V.S. Integrated electronics in measuring devices. - L .: Energoatomizdat, 1988.
6. Шило В. Л. Популярные цифровые микросхемы: Справочник - 2-е изд. исправленное. - М.: Радио и связь, 1989. 6. Shilo V. L. Popular digital circuits: a Handbook - 2nd ed. corrected. - M .: Radio and communications, 1989.
7. Максимов Е.Р. Спектр сигнала на выходе дискретного фазовращателя. - Радиотехника, 1990, N 2, с.73-76. 7. Maksimov E.R. The spectrum of the signal at the output of a discrete phase shifter. - Radio engineering, 1990,
Claims (1)
Publications (1)
Publication Number | Publication Date |
---|---|
RU2174239C1 true RU2174239C1 (en) | 2001-09-27 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0333025Y2 (en) | ||
EP0901642B1 (en) | Pulse homodyne field disturbance sensor | |
AU692921B2 (en) | Range-gated field disturbance sensor with range-sensitivity compensation | |
EP0718637B1 (en) | Radar system | |
US5519400A (en) | Phase coded, micro-power impulse radar motion sensor | |
CA1316238C (en) | Weather radar with turbulence detection | |
US5726657A (en) | Phase coherent radar system using fast frequency agile waveform synthesis | |
CN103608694A (en) | Analog baseband circuit for terahertz phased array system | |
US10929620B2 (en) | Harmonic RFID tag-reader system for long range sensing identification and security | |
US5793309A (en) | Short range electromagnetic proximity detection | |
KR100697642B1 (en) | Radar apparatus | |
RU2174239C1 (en) | Passive transceiver | |
JPH06138215A (en) | Radar signal processing method | |
US4214240A (en) | Coded pulse radar fuze | |
US8111188B2 (en) | Radar system | |
US20060220947A1 (en) | Compact low power consumption microwave distance sensor obtained by power measurement on a stimulated receiving oscillator | |
RU2301429C2 (en) | Passive transceiver | |
RU2178897C2 (en) | Passive transceiver | |
RU37236U1 (en) | PASSIVE TRANSMITTER | |
RU2803413C1 (en) | Method of pulse-doppler radiolocation and device with autodyne transmitter for its implementation | |
RU2234109C1 (en) | Radar interrogator | |
RU2801740C1 (en) | Radio frequency identification system for municipal solid waste containers | |
RU2822284C1 (en) | Method of pulse-doppler radar and device with autodyne transceiver for monitoring two zones of target selection by range | |
SU1504657A1 (en) | Apparatus for identifying moving objects | |
RU31861U1 (en) | Passive transceiver |