RU2172832C2 - Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах - Google Patents
Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах Download PDFInfo
- Publication number
- RU2172832C2 RU2172832C2 RU99106219/03A RU99106219A RU2172832C2 RU 2172832 C2 RU2172832 C2 RU 2172832C2 RU 99106219/03 A RU99106219/03 A RU 99106219/03A RU 99106219 A RU99106219 A RU 99106219A RU 2172832 C2 RU2172832 C2 RU 2172832C2
- Authority
- RU
- Russia
- Prior art keywords
- magnetic marks
- depth
- downhole tool
- magnetic
- cable
- Prior art date
Links
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
Abstract
Изобретение относится к геофизическим исследованиям скважин. Задачей изобретения является расширение функциональных возможностей путем повышения точности определения глубины спуска. В способе предварительно разбивают грузонесущий каротажный трос (ГКТ) на одинаковые отрезки. Для обозначения отрезков наносят на броню ГКТ магнитные метки (ММ), распределяя их по длине размечаемого отрезка. Указанные ММ представляют собой последовательность участков разной степени намагниченности брони ГКТ. Закрепляют скважинный прибор на конце ГКТ и спускают его в скважину. Обнаруживают ММ на движущемся ГКТ путем их считывания считывающим устройством. При обнаружении ММ на ГКТ регистрируют границы отрезков на записи каротажной кривой. Определяют количество обнаруженных ММ и рассчитывают глубину спуска скважинного прибора по предложенному математическому выражению. 2 ил.
Description
Изобретение относится к области геофизических исследований скважин и может быть использовано для построения устройств промера глубины спуска скважинного прибора при проведении каротажных исследований в нефтяных и газовых скважинах.
Известен способ промера глубины спуска скважинного прибора при проведении каротажных исследований в скважинах [1], включающий предварительное разбиение грузонесущего каротажного троса на одинаковые отрезки и обозначение упомянутых отрезков магнитными метками, путем нанесения на броню грузонесущего каротажного троса на границах указанных отрезков магнитных меток в виде одиночных магнитных импульсов, запоминание сигнала, соответствующего длине отрезка Δ L, закрепление на конце грузонесущего каротажного троса скважинного прибора на расстоянии Lн, от границы первого отрезка, запоминание сигнала, соответствующего расстоянию Lн, спуск скважинного прибора в скважину, обнаружение магнитных меток на движущемся грузонесущем каротажном тросе путем их считывания считывающим устройством, регистрацию границ упомянутых отрезков на записи каротажной кривой при обнаружении магнитных меток на грузонесущем каротажном тросе, определение количества обнаруженных магнитных меток n и расчет глубины спуска скважинного прибора Lпр по формуле
Lпр = Lн + Δ L(n-1).(1)
Недостатком прототипа-способа являются ограниченные функциональные возможности, связанные с недостаточной точностью определения глубины спуска скважинного прибора Lпр и недостаточной точностью регистрации на записи каротажной кривой границ упомянутых отрезков Δ L.
Lпр = Lн + Δ L(n-1).(1)
Недостатком прототипа-способа являются ограниченные функциональные возможности, связанные с недостаточной точностью определения глубины спуска скважинного прибора Lпр и недостаточной точностью регистрации на записи каротажной кривой границ упомянутых отрезков Δ L.
Указанный недостаток связан с недостаточной помехозащищенностью обнаружения магнитных меток, в качестве которых в прототипе-способе используются одиночные магнитные импульсы, представляющие собой намагниченные участки брони грузонесущего каротажного троса.
Действительно, если предположить, что грузонесущий каротажный трос движется относительно считывающего устройства со скоростью V, обработка считываемых магнитных меток в составе считывающего устройства осуществляется согласованным фильтром, который в классе линейных устройств обеспечивает наибольшее отношение сигнал/шум на входе решающей схемы [3], и что сигналы S(t), соответствующие считываемым меткам - одиночным магнитным импульсам, являются синусоидальными с амплитудой A, частотой ω и длительностью T [2].
где T= lм/V, а lм - протяженность намагниченных участков брони троса - протяженность магнитных импульсов (меток глубины);
также предположить, что на вход считывающего устройства действует аддитивная гауссова помеха ξ (t) типа "белого" шума с нулевым математическим ожиданием и спектральной плотностью 2ν
С учетом этого на вход согласованного фильтра действует суммарный сигнал x(t)
x(t) = S(t)+ξ(t). (3)
Выходной сигнал Sвых(t) фильтра, согласованного с сигналом S(t), имеет вид:
Sвых(t)=c•B(t-T)+N0(t),(4)
где с - некоторая постоянная;
B(t - Т) - функция корреляции сигнала S(t);
N0(t) - отклик фильтра на поступающую на его вход помеху ξ (t).
x(t) = S(t)+ξ(t). (3)
Выходной сигнал Sвых(t) фильтра, согласованного с сигналом S(t), имеет вид:
Sвых(t)=c•B(t-T)+N0(t),(4)
где с - некоторая постоянная;
B(t - Т) - функция корреляции сигнала S(t);
N0(t) - отклик фильтра на поступающую на его вход помеху ξ (t).
Сигнал S(t) считается обнаруженным в момент времени t0, если выходной сигнал фильтра достигает некоторого порога Uпор. Величина порога определяется критерием приема (среднего риска, минимума вероятности пропуска цели, минимума вероятности ложного обнаружения...) [3]. Без потери общности можно использовать критерий идеального наблюдателя, для которого Uпор = с•B(0)/2.
Магнитная метка считается обнаруженной, если выполняется равенство
Из-за действия помех при считывании магнитных меток могут возникать ошибки двух видов:
1. При считывании метки вследствие действия помехи выходное напряжение согласованного фильтра Sвых(t) не достигает Uпор = с•B(0)/2, условие (5) не выполняется, магнитная метка не обнаруживается, ситуация "пропуска цели" [3] ;
2. При отсутствии магнитной метки напряжение помехи превышает значение порога Uпор = с • B(0)/2, фиксируется ложная метка, ситуация "ложной тревоги" [3].
Из-за действия помех при считывании магнитных меток могут возникать ошибки двух видов:
1. При считывании метки вследствие действия помехи выходное напряжение согласованного фильтра Sвых(t) не достигает Uпор = с•B(0)/2, условие (5) не выполняется, магнитная метка не обнаруживается, ситуация "пропуска цели" [3] ;
2. При отсутствии магнитной метки напряжение помехи превышает значение порога Uпор = с • B(0)/2, фиксируется ложная метка, ситуация "ложной тревоги" [3].
В случаях возникновения ситуаций "пропуска цели" и "ложной тревоги" происходит неверное определение границ упомянутых отрезков Δ L, неверный подсчет количества n сигналов, соответствующих магнитным меткам, и неверный расчет по формуле (1) глубины спуска скважинного прибора Lпр. При этом отклонения рассчитанной глубины Lпр скважинного прибора от истинного кратны длине Δ L упомянутых отрезков. Согласно [1] при каротаже нефтяных и газовых скважин длина Δ L упомянутых отрезков при разметке грузонесущего каротажного троса выбирается из ряда: 10, 20 или 40 м. Поэтому при пропуске или ложном обнаружении магнитной метки погрешность промера глубины может достигать десятков метров. В то время как требуемая точность промера глубины спуска скважинного прибора в скважину оценивается величиной 0,01 м [1]. Для устранения этого противоречия предпринимают дополнительные меры по повышению точности промера глубины спуска скважинного прибора, основанные на увеличении объема проводимых полевых измерений, что связано с большими затратами времени и средств.
Количественно частота появления указанных ситуаций "пропуска цели" и "ложной тревоги" оценивается средней вероятностью ошибки Pош, которая применительно к рассматриваемому случаю равна [3]
где Ф(t) - табулированная функция, интеграл вероятности [3];
h0 - отношение сигнал/шум на входе согласованного фильтра; h = Ps/2ν ;
Ps - энергия сигнала S(t).
где Ф(t) - табулированная функция, интеграл вероятности [3];
h0 - отношение сигнал/шум на входе согласованного фильтра; h
Ps - энергия сигнала S(t).
Таким образом, для снижения вероятности ошибки Pош при считывании магнитных меток необходимо увеличивать энергию сигнала Ps, что эквивалентно увеличению интенсивности намагничивания брони грузонесущего каротажного троса в месте нанесения магнитной метки при проведении разметки последнего.
Однако увеличение интенсивности намагничивания в месте нанесения магнитных меток имеет предел, связанный с тем, что броня грузонесущего каротажного троса изготовляется из материала, обладающего ферромагнитными свойствами [1]. А у ферромагнетиков, как известно, кривая намагниченности имеет участки насыщения, что и определяет практический предел намагничивания брони троса [4].
Действие помех также приводит к погрешности момента регистрации границ упомянутых отрезков Δ L на записи каротажной кривой при обнаружении метки на каротажном тросе.
Как уже отмечалось, магнитная метка считается обнаруженной в момент времени t=t0, если выполняется условие (5). Принимая во внимание, что значение корреляционной функции B(0) сигнала S(t) соответствует его энергии Ps, можно записать
Решая равенство относительно t0, можно показать, что дисперсия σ2 (t0) момента обнаружения магнитной метки определяется дисперсией помехи σ2 [N(t)] , измеренной в момент времени t0. Откуда следует [3], что для случая аддитивной гауссовой помехи дисперсия момента обнаружения сигнала равна
Погрешность момента обнаружения магнитной метки оценивается величиной
что приводит к погрешности регистрации границ упомянутых отрезков на записи каротажной кривой, равной
Таким образом, для уменьшения погрешности регистрации границ упомянутых отрезков на записи каротажной кривой σ(ΔL) необходимо или повышать энергию сигнала Ps, что, как указывалось выше, имеет предел, либо уменьшать протяженность магнитных импульсов lм, что также является проблематичным, так как требует расширения диапазона частот, используемых для представления магнитных меток при разметке грузонесущего каротажного троса.
Решая равенство относительно t0, можно показать, что дисперсия σ2 (t0) момента обнаружения магнитной метки определяется дисперсией помехи σ2 [N(t)] , измеренной в момент времени t0. Откуда следует [3], что для случая аддитивной гауссовой помехи дисперсия момента обнаружения сигнала равна
Погрешность момента обнаружения магнитной метки оценивается величиной
что приводит к погрешности регистрации границ упомянутых отрезков на записи каротажной кривой, равной
Таким образом, для уменьшения погрешности регистрации границ упомянутых отрезков на записи каротажной кривой σ(ΔL) необходимо или повышать энергию сигнала Ps, что, как указывалось выше, имеет предел, либо уменьшать протяженность магнитных импульсов lм, что также является проблематичным, так как требует расширения диапазона частот, используемых для представления магнитных меток при разметке грузонесущего каротажного троса.
Целью заявляемого способа является расширение функциональных возможностей путем повышения точности определения глубины спуска скважинного прибора Lпр и повышения точности регистрации границ упомянутых отрезков на записи каротажной кривой.
Поставленная цель достигается тем, что в способе промера глубины спуска скважинного прибора при проведении каротажных исследований в скважинах, включающем предварительное разбиение грузонесущего каротажного троса на одинаковые отрезки и нанесение на броню грузонесущего каротажного троса магнитных меток, запоминание сигнала, соответствующего длине Δ L отрезка, закрепление скважинного прибора на конце грузонесущего каротажного троса на расстоянии Lн, от границы первого отрезка, запоминание сигнала, соответствующего расстоянию Lн, спуск скважинного прибора в скважину, обнаружение магнитных меток на движущемся грузонесущем каротажном тросе путем их считывания считывающим устройством, регистрацию границ упомянутых отрезков на записи каротажной кривой при обнаружении магнитных меток на грузонесущем каротажном тросе, определение количества обнаруженных магнитных меток и расчет глубины спуска скважинного прибора Lпр, обозначают упомянутые отрезки длиной Δ L путем нанесения по их длине магнитных меток, представляющих собой последовательность участков разной степени намагниченности брони грузонесущего каротажного троса, а глубину спуска скважинного прибора рассчитывают по формуле
Lпр = Lн + n Δ L,(11)
где n - количество сигналов, соответствующих обнаруженным магнитным меткам.
Lпр = Lн + n Δ L,(11)
где n - количество сигналов, соответствующих обнаруженным магнитным меткам.
В результате использования для обозначения упомянутых отрезков магнитных меток, представляющих собой распределенные по длине отрезков последовательности участков разной степени намагниченности брони грузонесущего каротажного троса, происходит эквивалентное увеличение энергии сигнала в В раз по сравнению с энергией простых импульсных сигналов, используемых для магнитной разметки в прототипе; здесь B - база сигнала, равная произведению полосы частот сигнала 2 Δ f на его длительность Ts, много больше 1.
В = 2 Δ fTs >> 1.(12)
У простых сигналов, типа тех, что используются в прототипе для магнитной разметки границ отрезков грузонесущего каротажного троса, база В = 2 Δ fT ≈ 1.
У простых сигналов, типа тех, что используются в прототипе для магнитной разметки границ отрезков грузонесущего каротажного троса, база В = 2 Δ fT ≈ 1.
Увеличение эквивалентной энергии магнитных меток обеспечивает большую помехозащищенность их считывания. Это увеличение помехозащищенности считывания магнитных меток учитывается заменой h0 в формулах (6), (9) и (10) на Данный энергетический выигрыш получается за счет того, что в заявляемом способе магнитные метки, соответствующие составным сигналам (будем называть их составными метками), распределены по длине указанных отрезков и в пределе могут занимать их полностью; в прототипе импульсы магнитных меток ставятся только на границах отрезков.
Действительно, пусть Δ LB - протяженность составной магнитной метки. Предположим, что составные магнитные метки представляют последовательность магнитных импульсов, разделенных свободными от намагничивания интервалами, что протяженности магнитных импульсов и интервалов между ними кратны протяженности магнитных импульсов lм, используемых в прототипе в качестве магнитных меток. При этом база соответствующей составной магнитной метки равна
Средняя вероятность ошибки при считывании составных магнитных меток PошВ равна
Обычно протяженность магнитных импульсов, используемых для магнитной разметки грузонесущего каротажного троса способе - прототипе, lм измеряется величиной порядка 0,1 м; если считать протяженность составной магнитной метки в заявляемом способе, равной длине Δ L указанного отрезка, ΔLB= ΔL = 10 м, то выигрыш в отношении сигнал/шум вследствие использования составных магнитных меток достигает величины Такое увеличение отношения сигнал/шум обеспечивает значительное снижение средней вероятности ошибки считывания составных меток по сравнению с соответствующей средней вероятностью ошибки в способе - прототипе. Соответственно в = 10 уменьшается погрешность σ(ΔL) регистрации границ отрезков на записи каротажной кривой при обнаружении меток глубины на каротажном тросе.
Средняя вероятность ошибки при считывании составных магнитных меток PошВ равна
Обычно протяженность магнитных импульсов, используемых для магнитной разметки грузонесущего каротажного троса способе - прототипе, lм измеряется величиной порядка 0,1 м; если считать протяженность составной магнитной метки в заявляемом способе, равной длине Δ L указанного отрезка, ΔLB= ΔL = 10 м, то выигрыш в отношении сигнал/шум вследствие использования составных магнитных меток достигает величины Такое увеличение отношения сигнал/шум обеспечивает значительное снижение средней вероятности ошибки считывания составных меток по сравнению с соответствующей средней вероятностью ошибки в способе - прототипе. Соответственно в = 10 уменьшается погрешность σ(ΔL) регистрации границ отрезков на записи каротажной кривой при обнаружении меток глубины на каротажном тросе.
Работа заявляемого способа поясняется схемой промера глубины спуска скважинного прибора, приведенной на фиг. 1, и примером конкретного выполнения устройства определения глубины спуска скважинного прибора, представленной на фиг. 2.
Скважинный прибор 1, закрепленный на конце предварительно размеченного грузонесущего каротажного троса 2, на расстоянии Lн, от границы 3 первого отрезка Δ L, спускается в скважину. Определение глубины спуска скважинного прибора в скважину Lпр осуществляется устройством определения глубины спуска скважинного прибора, состоящим из считывающего устройства 4, включающего в себя последовательно соединенные индукционную катушку 5, блок согласованной фильтрации 6, решающую схему 7, а также из счетчика 8, вычислителя 9 и блока памяти 10. Выход решающей схемы 7 служит выходом считывающего устройства 4. Выход считывающего устройства 4 служит первым выходом 11 устройства определения глубины спуска скважинного прибора, а также подключен к соединенным вместе входу счетчика 8 и первому входу вычислителя 9. Второй вход вычислителя 9 подключен к выходу счетчика 8, третий вход вычислителя 9 соединен с выходом блока памяти 10. Выход вычислителя 9 служит вторым выходом 12 устройства определения глубины спуска скважинного прибора.
Работа способа заключается в последовательной реализации следующих операций.
1. Предварительно разбивают грузонесущий каротажный трос на отрезки одинаковой длины Δ L и обозначают их магнитными метками, представляющими собой на длине каждого из упомянутых отрезков последовательность участков разной степени намагниченности брони грузонесущего каротажного троса.
2. Запоминают сигналы, соответствующие длине отрезков Δ L. Сигналы, соответствующие длине отрезков Δ L, запоминаются в блоке памяти 6.
3. Закрепляют на конце грузонесущего каротажного троса скважинный прибор на расстоянии Lн, от границы первого отрезка, запоминают сигнал, соответствующий расстоянию Lн. Информация о сигнале, соответствующем расстоянию Lн, запоминается в блоке памяти 6.
4. Спускают скважинный прибор в скважину, обнаруживают магнитные метки на движущемся грузонесущем каротажном тросе путем их считывания считывающим устройством.
При движении предварительно размеченного составными магнитными метками грузонесущего каротажного троса 2 около считывающего устройства 4, состоящего из последовательно соединенных индукционной катушки 5, согласованного фильтра 6, решающей схемы 7, на выходе индукционной катушки 5 в соответствии с законом намагниченности брони грузонесущего каротажного троса 2 формируется соответствующий сигнал, который подается в согласованный фильтр 6. Выходной сигнал согласованного фильтра 6 поступает в решающую схему 7, где осуществляется его сравнение с порогом. В момент завершения прохождения составной магнитной метки около считывающего устройства 4 на выходе согласованного фильтра 6 все частотные составляющие сигнала (составной магнитной метки) складываются в фазе. Напряжение выходного сигнала согласованного фильтра в данный момент времени превышает порог решающей схемы 7. На выходе решающей схемы 7 формируется соответствующий сигнал, который служит признаком обнаружения составной магнитной метки.
5. Регистрируют границы упомянутых отрезков на записи каротажной, определяют количества обнаруженных магнитных меток и рассчитывают глубину спуска скважинного прибора Lпр. Выполнение данных операций осуществляется по выходному сигналу считывающего устройства 4.
Сигнал с выхода решающей схемы 7 поступает на соединенные вместе вход счетчика 8, первый вход вычислителя 9 и первый выход 11 устройства определения глубины спуска скважинного прибора. Сигнал с первого выхода 11 устройства определения глубины спуска скважинного прибора подается в регистратор (на схеме не показан) для регистрации границ отрезков на записи каротажной кривой. В счетчике 8 осуществляется счет количество n обнаруженных считывающим устройством 4 составных магнитных меток, нанесенных на броню грузонесущего каротажного троса 2, продвигающегося мимо считывающего устройства 4. Данные о количестве n обнаруженных считывающим устройством 4 составных магнитных метках с выхода счетчика 8 поступают на второй вход вычислителя 9, на третий вход которого из устройства памяти 10 подаются сигналы, соответствующие упомянутым величинам длины отрезков Δ L, расстояния Lн. В вычислителе 9 осуществляется вычисление глубины спуска скважинного прибора Lпр по формуле Lпр = Lн + n Δ L. Результат вычисления глубины спуска скважинного прибора Lпр с выхода вычислителя 9 выдается на второй выход 12 устройства определения глубины спуска скважинного прибора.
Источники информации
1. Техническая инструкция по проведению геофизических исследований скважин.- М.: Недра, 1985.
1. Техническая инструкция по проведению геофизических исследований скважин.- М.: Недра, 1985.
2. Заворотько Ю. М. Геофизические методы исследования скважин. Учебник для техникумов.- М.: Недра, 1983.
3. Возенкрафт Дж., Джекобс И. Теоретические основы техники связи. Пер. с англ. под ред. Р.Л. Добрушина.- М.: Мир, 1969.
4. Справочник по ядерной физике. Пер. с англ. Под ред. акад. Л.А. Арцимовича.- М.: Физматгиз, 1963.
Claims (1)
- Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах, включающий предварительное разбиение грузонесущего каротажного троса на одинаковые отрезки и нанесение на броню грузонесущего каротажного троса магнитных меток, запоминание сигнала, соответствующего длине ΔL отрезка, закрепление скважинного прибора на конце грузонесущего каротажного троса на расстоянии Lн от границы первого отрезка, запоминание сигнала, соответствующего расстоянию Lн, спуск скважинного прибора в скважину, обнаружение магнитных меток на движущемся грузонесущем каротажном тросе путем их считывания считывающим устройством, регистрацию границ упомянутых отрезков на записи каротажной кривой при обнаружении магнитных меток на грузонесущем каротажном тросе, определение количества обнаруженных магнитных меток и расчет глубины спуска скважинного прибора Lпр, отличающийся тем, что обозначают упомянутые отрезки длиной ΔL путем нанесения по их длине магнитных меток, представляющих собой последовательность участков разной степени намагниченности брони грузонесущего каротажного троса, а глубину спуска скважинного прибора рассчитывают по формуле Lпр = Lн + nΔL, где n - количество сигналов, соответствующих обнаруженным магнитным меткам.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99106219/03A RU2172832C2 (ru) | 1999-03-24 | 1999-03-24 | Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU99106219/03A RU2172832C2 (ru) | 1999-03-24 | 1999-03-24 | Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах |
Publications (2)
Publication Number | Publication Date |
---|---|
RU99106219A RU99106219A (ru) | 2000-12-27 |
RU2172832C2 true RU2172832C2 (ru) | 2001-08-27 |
Family
ID=37863556
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU99106219/03A RU2172832C2 (ru) | 1999-03-24 | 1999-03-24 | Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2172832C2 (ru) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2504608C2 (ru) * | 2012-02-17 | 2014-01-20 | Владимир Михайлович Палецких | Трос для повышения точности измерений, оборудованный магнитной нитью |
CN104299394A (zh) * | 2013-07-19 | 2015-01-21 | 电子科技大学 | 网络测井模拟方法 |
RU2618487C1 (ru) * | 2016-02-29 | 2017-05-03 | Публичное акционерное общество "Татнефть" им. В.Д. Шашина | Устройство для измерения глубины спуска кабеля в скважину |
RU2622468C1 (ru) * | 2016-02-29 | 2017-06-15 | Публичное акционерное общество "Татнефть" им. В.Д. Шашина | Устройство для измерения глубины спуска кабеля в скважину |
CN116044381A (zh) * | 2023-02-07 | 2023-05-02 | 南方海洋科学与工程广东省实验室(广州) | 一种测井电缆的无线磁记号采集系统 |
-
1999
- 1999-03-24 RU RU99106219/03A patent/RU2172832C2/ru not_active IP Right Cessation
Non-Patent Citations (2)
Title |
---|
ЗАВОРОТЬКО Ю.М. Геофизические методы исследования скважин. - М.: Недра, 1983, с. 33 - 34. ВОЗЕНКРАФТ ДЖ., ДЖЕКОБС И. Технические основы техники связи. - М.: Мир, 1969, с. 217 - 225. * |
Техническая инструкция по проведению геофизических исследований в скважинах. - М.: Недра, 1985, с. 152 - 153. * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2504608C2 (ru) * | 2012-02-17 | 2014-01-20 | Владимир Михайлович Палецких | Трос для повышения точности измерений, оборудованный магнитной нитью |
CN104299394A (zh) * | 2013-07-19 | 2015-01-21 | 电子科技大学 | 网络测井模拟方法 |
CN104299394B (zh) * | 2013-07-19 | 2017-05-24 | 电子科技大学 | 网络测井模拟方法 |
RU2618487C1 (ru) * | 2016-02-29 | 2017-05-03 | Публичное акционерное общество "Татнефть" им. В.Д. Шашина | Устройство для измерения глубины спуска кабеля в скважину |
RU2622468C1 (ru) * | 2016-02-29 | 2017-06-15 | Публичное акционерное общество "Татнефть" им. В.Д. Шашина | Устройство для измерения глубины спуска кабеля в скважину |
CN116044381A (zh) * | 2023-02-07 | 2023-05-02 | 南方海洋科学与工程广东省实验室(广州) | 一种测井电缆的无线磁记号采集系统 |
CN116044381B (zh) * | 2023-02-07 | 2024-03-19 | 南方海洋科学与工程广东省实验室(广州) | 一种测井电缆的无线磁记号采集系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2427196C (en) | System and method for evaluation of thinly laminated earth formations | |
US4278941A (en) | High frequency induction log for determining resistivity and dielectric constant of the earth | |
US11435304B2 (en) | Estimating downhole fluid volumes using multi-dimensional nuclear magnetic resonance measurements | |
US20030144796A1 (en) | Method of distinguishing types of geologic sedmentation | |
US6072314A (en) | NMR interpretation technique using error minimization with variable T2 cutoff | |
SA117380286B1 (ar) | تسجيل أداء بئر برنين مغناطيسي منخفض التدرج لقياس خزانات هيدروكربونات خفيفة | |
US6366088B1 (en) | Method to enhance vertical resolution of time-decay log using forward modeling deconvolution of time-decay spectra | |
RU2172832C2 (ru) | Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах | |
US6522138B2 (en) | Resolution enhancement for sequential phase alternated pair nuclear magnetic resonance measurements | |
US5124952A (en) | Formation fracture detection using instantaneous characteristics of sonic waveforms | |
US4360778A (en) | High frequency induction log for locating formation interfaces | |
US6591673B1 (en) | Methods for identifying fluid types of underground formations | |
RU2172831C2 (ru) | Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах | |
RU2172830C2 (ru) | Способ промера глубины спуска скважинного прибора при каротажных исследованиях в скважинах | |
CN109991661A (zh) | 油气检测方法及装置 | |
RU2213218C2 (ru) | Способ обнаружения составных магнитных меток и устройство для его осуществления | |
US3209134A (en) | Interpretation of geophysical data | |
SU651287A1 (ru) | Устройство дл разметки каротажного кабел | |
RU2272131C2 (ru) | Способ определения глубины спуска скважинного прибора при каротажных исследованиях в скважинах и устройство для его осуществления | |
Belougne et al. | Real time speed correction of logging data | |
RU2068089C1 (ru) | Устройство для определения глубины скважины | |
RU2013536C1 (ru) | Устройство для считывания и регенерации магнитных меток глубины | |
RU2232883C2 (ru) | Способ определения границ мерных отрезков на броне движущегося грузонесущего каротажного троса и устройство для его осуществления | |
Keller | Principles of time-domain electromagnetic (TDEM) sounding | |
SU1059156A1 (ru) | Способ исследовани скважины |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20060325 |