RU2168145C2 - Стрелковый тренажер с оптико-электронным регистрирующим устройством - Google Patents

Стрелковый тренажер с оптико-электронным регистрирующим устройством Download PDF

Info

Publication number
RU2168145C2
RU2168145C2 RU99117071A RU99117071A RU2168145C2 RU 2168145 C2 RU2168145 C2 RU 2168145C2 RU 99117071 A RU99117071 A RU 99117071A RU 99117071 A RU99117071 A RU 99117071A RU 2168145 C2 RU2168145 C2 RU 2168145C2
Authority
RU
Russia
Prior art keywords
trainer
optoelectronic
training
trigger
weapon
Prior art date
Application number
RU99117071A
Other languages
English (en)
Other versions
RU99117071A (ru
Inventor
А.Ю. Веркиенко
Ю.В. Веркиенко
В.С. Казаков
А.С. Кузьмин
Original Assignee
Институт прикладной механики Уральского отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Институт прикладной механики Уральского отделения РАН filed Critical Институт прикладной механики Уральского отделения РАН
Priority to RU99117071A priority Critical patent/RU2168145C2/ru
Application granted granted Critical
Publication of RU2168145C2 publication Critical patent/RU2168145C2/ru
Publication of RU99117071A publication Critical patent/RU99117071A/ru

Links

Images

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

Изобретение относится к мишеням тренажеров для обучения стрельбе из стрелкового оружия без применения боеприпасов. Технический результат - повышение точности измерения координат и уменьшение времени между соседними измерениями с возможностью обучения ведению группового боя (взаимодействие солдат подразделения). Тренажер содержит вычислитель (ЭВМ), устройство отображения результатов (монитор), экран тренажера, на котором расположены в два ряда с постоянным шагом излучатели (ИК-диоды), подключенные к блоку управления. Тренажер также содержит несколько идентичных каналов (до восьми), каждый из которых содержит учебное оружие со спусковым механизмом, снабженных контактом, замыкающим электрическую цепь при нажатии на спусковой крючок, и оптико-электронным преобразователем, установленным на дульном срезе, а также усилители фототоков, схемы фиксации максимального уровня сигнала и аналого-цифровые преобразователи. Тренажер содержит прямоугольную диафрагму и расположенный за ней с зазором четырехсекционный фотоприемник (фотодиод). Шаг по вертикали и горизонтали обеспечивает одновременное нахождение в пределах угла поля зрения оптико-электронного преобразователя минимум четырех излучателей при наведении оружия в любую точку экрана (мишени). 3 ил.

Description

Изобретение относится к стрелковым тренажерам для обучения стрельбе и может быть использовано в тренажерах для обучения приемам и навыкам стрельбы из стрелкового оружия без применения боеприпасов, в том числе группового ведения боя (взаимодействие солдат подразделения).
Известен способ слежения за источником излучения [1, 2], основанный на применении позиционно-чувствительных полупроводниковых элементов. Световой поток от источника излучения, сфокусированный объективом, вызывает изменение напряжений на токосъемных шинах в зависимости от координат светового пятна на поверхности фотоприемника.
Недостатком оптико-электронной мишени на основе полупроводникового позиционно-чувствительного элемента является низкая точность из-за нелинейности характеристики и температурной нестабильности. Кроме того, существовавший уровень технологии производства не позволил получить позиционно-чувствительные элементы с требуемыми и идентичными параметрами. Поэтому их серийный выпуск не был налажен.
Известна мишень [3] , содержащая лазерный излучатель, установленный на оружии, и телевизионный приемник (камеру), установленный стационарно напротив экрана тренажера. При нажатии на спусковой крючок на экране от лазера, работающего в импульсном режиме, образуется световое пятно в точке попадания. Координаты пятна определяются с помощью телекамеры.
Недостатком устройства является низкая точность из-за малой разрешающей способности телекамеры. Размеры поля регистрации (мишени) ограничены из-за ограниченного угла поля зрения телекамеры. Увеличение угла поля зрения приводит к увеличению погрешности (шага дискретизации). Кроме того, частота замеров равна частоте кадровой развертки (50 Гц) и недостаточна для измерений координат в момент спуска спускового крючка оружия. Наконец, в условиях группового ведения боя возможно совпадение выстрелов разных солдат. Одновременное определение координат их точек наведения невозможно. Даже в случае несовпадения выстрелов необходимо организовать функционирование регистрирующей аппаратуры так, чтобы идентифицировать, кому из стрелков соответствует данный выстрел.
Известен стрелковый тренажер Кудрякова [4], содержащий источник излучения, выполненный в виде секторной мишени, установленный на стрелковом оружии оптико-электронный приемник излучения, связанный с усилителем и схемой обработки сигнала. Мишень выполнена четырехсекторной с X-образным расположением секторов и промодулированным излучением каждого из ее секторов, что позволяет из общего сигнала на выходе приемника излучения выделять сигналы, соответствующие секторам мишени. Оптико-электронный приемник состоит из собирающей линзы, в главном фокусе которой установлена диафрагма с калиброванным отверстием и фотоэлемент (фотоприемник). Величины выделенных сигналов от каждой секции мишени (амплитуда) прямо пропорциональны проекции площади соответствующего сектора мишени на фотоэлемент оптико-электронного приемника. Смещение оптической оси оптико-электронного приемника от центра мишени вызывает перераспределение амплитудных значений, что позволяет определить величину этого смещения, т.е. координаты точки наведения. Источниками излучения являются диоды, например АЛ107Б. Фотоэлементом (фотоприемником) является фотодиод, например, ФД-24К.
Недостатками данного устройства являются: трудность обеспечения равномерной освещенности секторов мишени из-за неоднородности излучения в разных направлениях, например диодов АЛ107Б, особенно в случае больших габаритов мишени; из-за неоднородности просвечиваемого материала мишени; а также относительно небольшие размеры мишени (поля регистрации), ограниченные углом поля зрения оптико-электронного приемника.
Ближайшим аналогом является стрелковый тренажер с оптико-электронным регистрирующим устройством по US N 4583950, который содержит комплект учебного оружия со спусковым механизмом, выполненным с возможностью замыкания электрической цепи при нажатии на спусковой крючок, оптико-электронные преобразователи, источник и приемник излучения.
Недостатком известного тренажера является недостаточная точность измерения координат.
Задача изобретения заключается в устранении недостатков известных устройств путем создания оптико-электронной мишени стрелкового тренажера на базе серийных полупроводниковых приборов с высокой точностью измерения координат и малым временем между соседними измерениями при независимости измерений координат точки попадания из каждого оружия в случае тренировки группового ведения боя подразделением.
Задача решается тем, что стрелковый тренажер с оптико-электронным регистрирующим устройством, содержащий комплект учебного оружия со спусковым механизмом, выполненным с возможностью замыкания электрической цепи при нажатии на спусковой крючок, источник и приемник излучения, оптико-электронные преобразователи, снабжен несколькими комплектами учебного оружия, вычислителем, блоком управления, источниками излучения, усилителями фототока, схемами фиксации максимального уровня сигнала, аналого-цифровыми преобразователями, причем оптико-электронные преобразователи установлены на дульных срезах каждого оружия и через последовательно включенные усилитель фототока, схему фиксации максимального уровня сигнала и аналого-цифровой преобразователь соединены со входами вычислителя, выход которого через блок управления соединен с излучателями, причем оптико-электронный преобразователь содержит прямоугольную диафрагму, за которой с зазором установлен четырехсекционный фотоприемник излучения, а излучатели расположены с шагом по вертикали и горизонтали, при котором в пределах угла поля зрения оптико-электронного преобразователя одновременно находятся минимум четыре излучателя, спусковые механизмы электрически соединены с входами вычислителя.
На фиг. 1 изображена схема оптико-электронной мишени стрелкового тренажера. На фиг. 2, 3 приведены основные геометрические размеры простой оптической схемы без оптического усиления. Для оптического усиления сигналов между прямоугольной диафрагмой и фотоприемником устанавливается объектив.
Устройство содержит вычислитель (ЭВМ) 1, устройство отображения результатов (монитор) 2, экран 3 тренажера, на котором расположены в два ряда с постоянным шагом излучатели (ИК-диоды) 4, подключенные к блоку управления 5, и n идентичных каналов (до восьми), каждый из которых содержит учебное оружие 6 со спусковым механизмом, снабженным контактом, замыкающим электрическую цепь при нажатии на спусковой крючок, и оптико-электронным преобразователем 7, установленным на дульном срезе, а также усилители фототоков 8, схемы фиксации максимального уровня сигнала 9 и аналого-цифровые преобразователи 10. На фиг. 2 и 3 через L обозначено расстояние от оптико-электронного приемника 5 (прямоугольной диафрагмы 11) до экрана 3; 2a, 2b - размеры прямоугольной диафрагмы 11; Hy, Hz - размеры четырехсекционного фотоприемника (рабочая зона) 12; 2hy, 2hz - размеры светового прямоугольного пятна на чувствительных площадках I...IV секций фотоприемника 12 от излучения ИК-диода в точке (yi, zi) экрана 3, когда оружие наведено в точку (yэ, zэ), S1...S4 - площади засвечиваемых участков секций фотоприемника 12; 1 - расстояние между прямоугольной диафрагмой 11 и чувствительной площадкой фотоприемника 12.
В схемах фиг.2, 3 координаты (y, z) центра площадки 2hy•2hz на чувствительной площадке фотоприемника 12 зависят от координат пятна на экране (yэ, zэ). При этом площади SI...S4 засвечиваемых участков секций фотоприемника 12 пропорционально изменяются. В соответствии с фиг.3 напряжения на выходах усилителей фототоков секций фотодиода равны
Figure 00000002

где ky - коэффициент усиления усилителей фототока, kД - коэффициенты чувствительности секций фотоприемника, E - освещенность площадок. Из (1) имеем
Figure 00000003

Figure 00000004

где через uв, uн, uп и uл обозначены суммы соответствующих напряжений, заключенных в скобки.
С помощью оптико-электронного преобразователя определяются угловые координаты установленных на экране излучателей относительно точки наведения. Из геометрических соображений справедливы соотношения
Figure 00000005

Figure 00000006

Figure 00000007

где yi, zi - координаты источника излучения на экране, yэ, zэ - координаты точки наведения, yp, zp - координаты позиции (оружия) относительно центра экрана.
Система уравнений (4) разрешается относительно координат точки наведения yэ, zэ. В случае известных координат yi, zi и неизвестных координат положения позиции yp, zp и дальности L необходимо 5 уравнений, т.е. минимальное количество излучателей в пределах угла поля зрения должно быть при этом равно трем. Если позиция постоянна (yp, zp и L - известны), то в пределах угла поля зрения должен быть хотя бы один из излучателей. В случае избытка уравнений обработка результатов осуществляется по методу наименьших квадратов для сглаживания погрешностей измерения.
Устройство работает следующим образом. По сигналам от генератора тактовой частоты вычислителя 1, поступающим на блок 5 управления излучающими ИК-диодами 4, последние периодически последовательно излучают короткие световые импульсы, воспринимаемые оптико-электронными преобразователями 7, установленными на оружии каждого из обучаемых подразделения. В момент нажатия спускового крючка оружия замыкается электрический контакт и на вход вычислителя 1 поступает сигнал "выстрел произведен", по которому синхронно с сигналами управления излучающими ИК-диодами последовательно осуществляется ввод и преобразование сигналов, образуемых на выходах секций фотоприемника от излучения ИК-диодов, находящихся в пределах угла поля зрения оптико-электронного преобразователя. Эти сигналы с выходов секций фотоприемника поступают на усилители фототоков 8, а с их выходов - на входы схем фиксации максимальных величин сигналов 9. Эти амплитудные значения аналоговых сигналов цифро-аналоговыми преобразователями 10 преобразуются в цифровую форму и вводятся в вычислитель 1, в котором осуществляется вычисление координат точки наведения. Результат выводится на монитор 2. По желанию пользователя на экране монитора показывается цель с точками попадания, высвечивается средняя точка попадания по нескольким выстрелам, дисперсия или другие параметры, принятые в Наставлении по стрелковому делу для соответствующего вида оружия.
Предложенная оптико-электронная мишень стрелкового тренажера построена на основе серийных полупроводниковых приборов, имеет высокую точность и малое время между соседними измерениями при независимости измерений координат точек попадания из каждого оружия в случае тренировки групповому ведению боя подразделением.
Источники информации
1. Авт.св. N 225331 (СССР). Способ слежения за источником светового излучения // В.Д. Зотов, Г.П. Катыс, Н.В. Кравцов, В.В. Широков, по заявке N 1112698/26-25 от 14.11.66. - Бюл. N 27, 1968.
2. Авт.св. N 213213 (СССР). Способ слежения за источником светового излучения // Г.П. Катыс, В.Д. Зотов, по заявке N 1069106/26-25 от 24.03.66. - Бюл. N 7, 1969.
3. US patent 4583950 by James E. Schroeder "Light pen marksmanship trainer", Apr. 22, 1986.
4. Патент N 2060437 C1, кл. F 41 G 3/26 (Россия). Стрелковый тренажер Кудрякова по заявке N 92006402/08 от 16.11.92, Бюл. N 14. 1996.

Claims (1)

  1. Стрелковый тренажер с оптико-электронным регистрирующим устройством, содержащий комплект учебного оружия со спусковым механизмом, выполненным с возможностью замыкания электрической цепи при нажатии на спусковой крючок, источник и приемник излучения, оптико-электронные преобразователи, отличающийся тем, что он снабжен несколькими комплектами учебного оружия, вычислителем, блоком управления, источниками излучения, усилителями фототока, схемами фиксации максимального уровня сигнала, аналого-цифровыми преобразователями, причем оптико-электронные преобразователи установлены на дульных срезах каждого оружия и через последовательно включенные усилитель фототока, схему фиксации максимального уровня сигнала и аналого-цифровой преобразователь соединены со входами вычислителя, выход которого через блок управления соединен с излучателями, причем оптико-электронный преобразователь содержит прямоугольную диафрагму, за которой с зазором установлен четырехсекционный фотоприемник излучения, а излучатели расположены с шагом по вертикали и горизонтали, при котором в пределах угла поля зрения оптико-электронного преобразователя одновременно находятся минимум четыре излучателя, спусковые механизмы электрически соединены с входами вычислителя.
RU99117071A 1999-08-02 1999-08-02 Стрелковый тренажер с оптико-электронным регистрирующим устройством RU2168145C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99117071A RU2168145C2 (ru) 1999-08-02 1999-08-02 Стрелковый тренажер с оптико-электронным регистрирующим устройством

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99117071A RU2168145C2 (ru) 1999-08-02 1999-08-02 Стрелковый тренажер с оптико-электронным регистрирующим устройством

Publications (2)

Publication Number Publication Date
RU2168145C2 true RU2168145C2 (ru) 2001-05-27
RU99117071A RU99117071A (ru) 2001-05-27

Family

ID=20223516

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99117071A RU2168145C2 (ru) 1999-08-02 1999-08-02 Стрелковый тренажер с оптико-электронным регистрирующим устройством

Country Status (1)

Country Link
RU (1) RU2168145C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627019C2 (ru) * 2015-12-11 2017-08-02 Акционерное общество Центральное конструкторское бюро аппаратостроения Способы определения точки наведения оружия на изображении фоно-целевой обстановки в стрелковых тренажерах и устройство для их осуществления

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2627019C2 (ru) * 2015-12-11 2017-08-02 Акционерное общество Центральное конструкторское бюро аппаратостроения Способы определения точки наведения оружия на изображении фоно-целевой обстановки в стрелковых тренажерах и устройство для их осуществления

Similar Documents

Publication Publication Date Title
US9593912B2 (en) Dynamic targeting and training system
US4619616A (en) Weapon aim-training apparatus
US8493573B2 (en) High-resolution optical position sensing with sparse, low-resolution detectors
EP0344153A1 (en) LOCATION DETECTING SYSTEM.
ES2665552T3 (es) Corrección de ganancia basada en una fuente de luz embarcada para buscadores de láser semi-activos
CN103443648A (zh) 用于借助光学测量射线来测量在测量装置和目标对象之间的距离的测量装置
US20120236286A1 (en) Accurate gun boresighting system
CN107430193A (zh) 距离测量仪器
KR101405115B1 (ko) 다중 분할 검출 영역을 이용한 레이저 탐색기 및 그 방법
TW571071B (en) Target device and light detecting device
US20080309916A1 (en) Auto Aim Reticle For Laser range Finder Scope
RU2168145C2 (ru) Стрелковый тренажер с оптико-электронным регистрирующим устройством
US3591292A (en) Optical control device
RU2147112C1 (ru) Оптико-электронная мишень стрелкового тренажера
Li et al. Study and analysis on a new optical detection design method for photoelectric detection target
Expert et al. A mouse sensor and a 2-pixel motion sensor exposed to continuous illuminance changes
GB2260188A (en) Target acquisition training apparatus
RU2151361C1 (ru) Датчик координат стрелкового тренажера
FI84753C (fi) Foerfarande foer skjutoevning och analysering av skytteprocessen.
JP3456337B2 (ja) 受光装置
CN113064137A (zh) 一种定距离的高空间分辨率激光雷达及探测方法
Mäkynen et al. Small angle measurement in a turbulent environment using position-sensitive detectors
RU2310150C2 (ru) Стрелковый тренажер
RU2075029C1 (ru) Способ ведения прицельной стрельбы по подвижной цели
SU563658A1 (ru) Светолокационный измеритель высоты нижней границы облаков