RU2166661C1 - Способ работы жидкостного ракетного двигателя с турбонасосной подачей кислородно-метанового топлива - Google Patents

Способ работы жидкостного ракетного двигателя с турбонасосной подачей кислородно-метанового топлива Download PDF

Info

Publication number
RU2166661C1
RU2166661C1 RU99125745A RU99125745A RU2166661C1 RU 2166661 C1 RU2166661 C1 RU 2166661C1 RU 99125745 A RU99125745 A RU 99125745A RU 99125745 A RU99125745 A RU 99125745A RU 2166661 C1 RU2166661 C1 RU 2166661C1
Authority
RU
Russia
Prior art keywords
chamber
fuel
oxygen
methane
liquid
Prior art date
Application number
RU99125745A
Other languages
English (en)
Inventor
А.А. Бахмутов
В.Т. Буканов
И.А. Клепиков
В.В. Мирошкин
В.И. Прищепа
Т.Я. Ромасенко
Original Assignee
Бахмутов Аркадий Алексеевич
Буканов Владислав Тимофеевич
Клепиков Игорь Алексеевич
Мирошкин Вячеслав Васильевич
Прищепа Владимир Иосифович
Ромасенко Татьяна Яковлевна
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Бахмутов Аркадий Алексеевич, Буканов Владислав Тимофеевич, Клепиков Игорь Алексеевич, Мирошкин Вячеслав Васильевич, Прищепа Владимир Иосифович, Ромасенко Татьяна Яковлевна filed Critical Бахмутов Аркадий Алексеевич
Priority to RU99125745A priority Critical patent/RU2166661C1/ru
Application granted granted Critical
Publication of RU2166661C1 publication Critical patent/RU2166661C1/ru

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Изобретение относится к ракетной технике. 20-50% поступающего в двигатель метанового горючего расходуют на регенеративное охлаждение камеры, после чего сжигают в ней, а кислородный окислитель подают частично непосредственно в камеру и частично в восстановительный газогенератор, где в окислителе сжигают избыточное горючее, поступающее в газогенератор при давлении выше начального давления хладагента; полученный восстановительный газ срабатывают на турбине, после чего дожигают в камере. Технический результат состоит в обеспечении работоспособности кислородно-метанового ЖРД с дожиганием восстановительного газа в камере при высоком уровне давлений, позволяющем реализовать высокий удельный импульс тяги. 2 ил.

Description

Изобретение относится к жидкостным ракетным двигателям (ЖРД), конкретно к ЖРД с турбонасосной подачей кислородно-метанового топлива.
ЖРД, работающие на двухкомпонентном топливе из раздельно хранимых окислителя и горючего, составляют энергетическую основу ракетно-космической техники. В современных ракетах-носителях широко используется топливо, состоящее из сжиженного кислорода и керосина. В целях получения высокого удельного импульса тяги сгорание топливных компонентов осуществляют в тяговой камере ЖРД при высоком давлении (pк). Его создает предусмотренный в конструкции ЖРД турбонасосный агрегат (ТНА) с осецентробежными топливными насосами и газовой турбиной. Рабочее тело для нее получают в газогенераторе (ГГ) при сгорании всей массы кислородного окислителя, расходуемого ЖРД, в сочетании с небольшой долей керосинового горючего (основная масса которого расходуется на регенеративное проточное охлаждение камеры). Полученный в ГГ окислительный газ после срабатывания на турбине дожигают в камере с охладившим ее горючим. Такая функциональная схема позволила реализовать в кислородно-керосиновых ЖРД высокий уровень pк - до 25 МПа, благодаря чему энергетические возможности применяемого топлива используются в полной мере. Дальнейшее повышение pк лимитируется жаропрочностью неохлаждаемого ротора турбины, возможностями охлаждения камеры и ее конструкционной прочностью.
Кислородно-керосиновые ЖРД получили широкое применение в ракетно-космической технике по экологическим соображениям. Однако указанные двигатели перестают соответствовать сегодняшним потребностям, когда становятся насущными проблемы достаточности сырьевой базы топливных компонентов, стоимости вывода космических объектов, мест базирования стартовых комплексов и отчуждения территорий под падение отработавших ракетных ступеней. Перечисленные проблемы могут быть решены переводом ЖРД с высококипящего керосинового горючего на криогенное углеводородное: сжиженные метан (природный газ) или пропан. Наибольшие перспективы связываются с метановым горючим. В России сосредоточено 40% мировых запасов газа (который на 96-98% состоит из метана), его сжижение не представляет трудностей, и при развитой технической базе метановое ракетное горючее обещает быть вдвое дешевле керосина.
Метановое горючее (в сочетании с кислородным окислителем) превосходит керосин по удельному импульсу тяги на 200 м/с и существенно лучше по охлаждающей способности - при меньшей на ≈200 K температуре продуктов сгорания. Указанные преимущества нового горючего позволяют создать эффективные и высоконадежные ЖРД. Этому весьма способствует возможность перевода ГГ с окислительного на восстановительный газ: при надлежащей организации рабочего процесса в кислородно-метановом ГГ наличие избыточного метана не вызывает сажеобразования (в отличие от избыточного керосина). В этом случае температуру газа перед турбиной можно поднять с ≈850 K (соответствует окислительному газу) до ≈1300 K, а восстановительный газ (тем более кислородно-метановый) уже сам по себе обладает повышенной работоспособностью. При прочих равных условиях это позволяет поднять уровень pк.
Далее, ЖРД с дожиганием восстановительного газа не подвержен опасности возгорания турбинного тракта (которая весьма вероятна для окислительного газа высокого давления, что требует целого комплекса дорогостоящих материаловедческих и конструктивных мероприятий), небольшие повреждения тракта восстановительного газа не приведут к аварии, а возникшие аварийные ситуации будут развиваться сравнительно медленно. Следовательно, в кислородно-метановом ЖРД можно предусмотреть специальную систему защиты, которая оперативно отключит неисправный двигатель без ущерба для испытательного стенда или стартового комплекса, для выполнения полета и сохранности полезного груза.
Важным является то обстоятельство, что после выключения кислородно-метанового ЖРД остатки топлива быстро испаряются из его магистралей (в то время как керосин приходится удалять принудительно, что является длительной процедурой, требующей специального оборудования и рабочих веществ). Благодаря этому снижается стоимость изготовления кислородно-метанового ЖРД, наряду с повышением его надежности (поскольку после контрольно-технологического испытания не требуется переборка материальной части), облегчается и удешевляется повторная эусплуатация ЖРД. Снимаются также (присущие керосиновому горючему) ограничения по многократному включению ЖРД в космосе.
Высокая надежность кислородно-метанового ЖРД обеспечит его длительный рабочий ресурс и безопасность ракеты-носителя в полете, что позволит многократно использовать ЖРД и, следовательно, реально снизит стоимость выведения полезных грузов.
Наконец, кислородно-метановые двигатели превосходят кислородно-керосиновые ЖРД и в экологическом отношении.
В итоге, концепция кислородно-метанового ЖРД создает хорошие предпосылки к появлению в недалеком будущем сравнительно недорогих ракетных аппаратов многократного использования, в том числе - возвращаемых крылатых ступеней с воздушным стартом (с борта самолета-носителя). Однако для этого необходимо решить ряд существенных вопросов и, в первую очередь, предложить такой способ работы ЖРД, который позволит эффективно реализовать потенциальные достоинства рабочего цикла с дожиганием восстановительного газа в тяговой камере применительно к кислородно-метановому топливу.
Известен способ работы ЖРД с турбонасосной подачей кислородно-метанового топлива, при котором метановое горючее используют в качестве хладагента для проточного охлаждения камеры, кислородный окислитель подают частично непосредственно в камеру, а частично расходуют на сжигание горючего в восстановительном газогенераторе, и полученный газ после срабатывания на турбине дожигают в камере - см. Acta Astronautica, vol. 41, Nos 4-10, p. 211, fig. 2 - аналог изобретения.
В известном способе-аналоге для охлаждения камеры используют все метановое горючее, расходуемое ЖРД; после охлаждения камеры подогретое горючее подают непосредственно на сжигание в ГГ. Вследствие этого необходимый напор метанового насоса включает суммарные потери давления в регенеративном проточном тракте охлаждения камеры и на турбине. Как показали расчеты, при уровне pк ≈ 20 МПа в способе-аналоге необходимый напор метанового насоса достигает 50 МПа, и столь высокое давление в охлаждающей рубашке камеры разрушает механические связи между внутренней и внешней оболочками рубашки. Во избежание этого приходится идти на снижение pк, что не позволяет реализовать в достаточной степени энергетические преимущества кислородно-метанового топлива.
Известен способ работы ЖРД с турбонасосной подачей кислородно-метанового топлива, при котором часть расходуемого метанового горючего используют в качестве хладагента для проточного охлаждения камеры, кислородный окислитель подают частично непосредственно в камеру, а частично расходуют на сжигание горючего в восстановительном газогенераторе, и полученный газ после срабатывания на турбине дожигают в камере - см. Acta Astronautica, vol. 41, Nos 4-10, p. 211, fig. 3 - прототип изобретения.
В способе-прототипе на охлаждение камеры расходуют лишь часть жидкого горючего; нагретый в рубашке хладагент смешивают затем с оставшейся частью горючего, повышают давление смеси в подкачивающей насосной ступени и подают на сгорание в ГГ. Использование способа-прототипа позволяет снизить давление хладагента в камерной рубашке до уровня, приемлемого по соображениям конструкционной прочности. Однако при этом возникает проблема обеспечения бескавитационной работы подкачивающей насосной ступени, что предполагает существенное ограничение подогрева горючего в охлаждающем тракте камеры. А это ведет, в свою очередь, к ограничению pк величиной ≈15 МПа, что не позволяет реализовать энергетические преимущества кислородно-метанового топлива.
Предлагаемое изобретение решает техническую задачу обеспечения работоспособности кислородно-метанового ЖРД с дожиганием восстановительного газа в камере при высоком уровне pк, позволяющем реализовать высокий удельный импульс тяги, присущий кислородно-метановому топливу. При этом ЖРД должен иметь простую конструкцию, базирующуюся на освоенном уровне техники, с тем чтобы создание двигателя не требовало больших затрат средств и времени и серийный образец надежно функционировал в составе ракетного аппарата при многократном его использовании.
Поставленная техническая задача решается тем, что в способе работы ЖРД с турбонасосной подачей кислородно-метанового топлива, при котором часть расходуемого метанового горючего используют в качестве хладагента для проточного охлаждения камеры, кислородный окислитель подают частично непосредственно в камеру, а частично расходуют на сжигание горючего в восстановительном газогенераторе и полученный газ после срабатывания на турбине дожигают в камере, согласно изобретению, на охлаждение камеры расходуют (20-50)% горючего, сжигая использованный хладагент непосредственно в камере, а горючее, расходуемое на получение рабочего тела турбины, подают в газогенератор при давлении выше начального давления хладагента.
При осуществлении изобретения ожидается технический результат, совпадающий с существом решаемой задачи.
Изобретение поясняется при помощи фиг. 1 и 2:
на фиг. 1 представлена схема ЖРД, функционирующего согласно изобретению;
на фиг. 2 представлена зависимость достижимого давления в камере сгорания от доли горючего, расходуемого на регенеративное проточное охлаждение конструкции камеры.
ЖРД на фиг. 1 содержит создающую тяговое усилие камеру 1 с форсуночной головкой 1а и сверхзвуковым реактивным соплом 1б, предназначенный для подачи жидкого топлива ТНА, который включает соосно установленные и последовательно расположенные насос кислородного окислителя 2 с подкачивающей ступенью 2а, насос метанового горючего 3 с подкачивающей ступенью 3а и газовую турбину 4. Своим питающим коллектором 4а она подключена к газогенератору 5, а выхлопным патрубком 4б - к форсуночной головке камеры. Насос окислителя соединен высоконапорным трубопроводом 6 с рабочим трактом форсуночной головки камеры, а насос горючего - высоконапорным трубопроводом 7 с трактом регенеративного проточного охлаждения камеры, который подключен выходом к рабочему тракту форсуночной головки. В целях питания газогенератора жидкими окислителем и горючим он подключен (своей форсуночной головкой 5а) посредством высоконапорных трубопроводов 8 и 9 к соответствующим подкачивающим насосным ступеням 2а и 3а, создающим дополнительный напор.
Описанный ЖРД работает следующим образом. Сжиженный кислород поступает в насос 2, из которого основная часть жидкости (≈90%) по трубопроводу 6 подается в форсуночную головку 1а камеры 1, а оставшаяся часть окислителя поступает в подкачивающую насосную ступень 2а и затем подается в форсуночную головку 5а газогенератора 5. Сжиженный метан поступает в насос 3, из которого (20-50)% массы горючего по трубопроводу 7 подается в тракт регенеративного охлаждения камеры 1, после которого поступает в форсуночную головку 1а; оставшаяся часть горючего, пройдя подкачивающую насосную ступень 3а, подается по трубопроводу 9 в форсуночную головку 5а газогенератора 5. От сгорания жидких топливных компонентов в нем образуется восстановительный газ, поступающий на лопатки турбины 4, которая приводит во вращение топливные насосы через общий с ними вал (обычно состоящий из двух частей, соединенных рессорой). Отработавший газ поступает по выхлопному патрубку 4б в форсуночную головку 1а камеры 1. В ее рабочем пространстве отработавший газ дожигается с жидким окислителем и нагретым в камерной рубашке горючим; высокотемпературные продукты сгорания расширяются в реактивном сопле 1б, создавая тягу ЖРД.
Для предложенного способа нами рассчитана зависимость достижимого давления в камере сгорания (pк) от доли горючего, расходуемого на регенеративное охлаждение камеры (mохл) - см. фиг. 2. Расчеты выполнены для трех значений гидравлических потерь в карманной рубашке: 2,5 МПа, 8 МПа, 15 МПа; им соответствуют верхняя, средняя и нижняя кривые. Они определяют целесообразный диапазон mохл = (20-50)%. Расширение этого диапазона вправо приводит к нежелательному снижению pк и, следовательно, к падению удельного импульса тяги, а реализация mохл < 20% весьма трудна по условиям охлаждения камеры. Согласно фиг. 2, максимальное значение реализуемого pк = 30 МПа; при этом значении давление на входе в камерную рубашку меньше допустимых 50 МПа. Очевидно далее, что осуществление предложенного способа не требует кардинальных изменений в освоенной технике ЖРД с дожиганием. Итак, ожидаемый технический результат от изобретения подтвержден.

Claims (1)

  1. Способ работы жидкостного ракетного двигателя с турбонасосной подачей кислородно-метанового топлива, при котором часть расходуемого метанового горючего используют в качестве хладагента для проточного охлаждения камеры, кислородный окислитель подают частично непосредственно в камеру, а частично расходуют на сжигание горючего в восстановительном газогенераторе и полученный газ после срабатывания на турбине дожигают в камере, отличающийся тем, что на охлаждение камеры расходуют 20 - 50% горючего, сжигая использованный хладагент непосредственно в камере, а горючее, расходуемое на получение рабочего тела турбины, подают в газогенератор при давлении выше начального давления хладагента.
RU99125745A 1999-12-09 1999-12-09 Способ работы жидкостного ракетного двигателя с турбонасосной подачей кислородно-метанового топлива RU2166661C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99125745A RU2166661C1 (ru) 1999-12-09 1999-12-09 Способ работы жидкостного ракетного двигателя с турбонасосной подачей кислородно-метанового топлива

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99125745A RU2166661C1 (ru) 1999-12-09 1999-12-09 Способ работы жидкостного ракетного двигателя с турбонасосной подачей кислородно-метанового топлива

Publications (1)

Publication Number Publication Date
RU2166661C1 true RU2166661C1 (ru) 2001-05-10

Family

ID=20227824

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99125745A RU2166661C1 (ru) 1999-12-09 1999-12-09 Способ работы жидкостного ракетного двигателя с турбонасосной подачей кислородно-метанового топлива

Country Status (1)

Country Link
RU (1) RU2166661C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791158C1 (ru) * 2021-12-29 2023-03-03 Акционерное общество "НПО Энергомаш имени академика В.П. Глушко" Способ настройки системы аварийной защиты жидкостного ракетного двигателя

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Acta Astronautica, Published by Elsever Science Ltd, 1977, v. 41, NOS 4-10, p. 209-217. *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2791158C1 (ru) * 2021-12-29 2023-03-03 Акционерное общество "НПО Энергомаш имени академика В.П. Глушко" Способ настройки системы аварийной защиты жидкостного ракетного двигателя
RU2800833C1 (ru) * 2022-10-20 2023-07-28 Акционерное общество "НПО Энергомаш имени академика В.П. Глушко" Способ адаптивной настройки контролируемых параметров системы аварийной защиты жидкостного ракетного двигателя на первое огневое испытание

Similar Documents

Publication Publication Date Title
EP3978738A1 (en) Hydrogen fuel vaporiser
RU2158839C2 (ru) Жидкостный ракетный двигатель с дожиганием турбогаза
US4771600A (en) Tripropellant rocket engine
US8572948B1 (en) Rocket engine propulsion system
EP3741972A1 (en) Turbojet engine for hypersonic vehicle
KR100674118B1 (ko) 로켓 추진용 메탄엔진
CN104919166B (zh) 用于火箭马达涡轮泵的启动器装置
US5267437A (en) Dual mode rocket engine
US4171615A (en) Supercharged topping rocket propellant feed system
CN111963340B (zh) 一种液体火箭发动机气动增压装置多次起动系统
WO1996008646A1 (en) Solid-fuel, liquid oxidizer hybrid rocket turbopump auxiliary engine
RU2385274C1 (ru) Многоступенчатая ракета-носитель, способ ее запуска и трехкомпонентный ракетный двигатель
RU2095607C1 (ru) Жидкостный ракетный двигатель на криогенном топливе
RU2166661C1 (ru) Способ работы жидкостного ракетного двигателя с турбонасосной подачей кислородно-метанового топлива
CN210509427U (zh) 一种可回收液体火箭发动机的多次起动系统
US3128601A (en) Pre-burner rocket control system
US9200596B2 (en) Catalytically enhanced gas generator system for rocket applications
Sekita et al. The LE-5 series development, approach to higher thrust, higher reliability and greater flexibility
JP4347447B2 (ja) ハイブリッドエンジン
RU2116491C1 (ru) Способ работы жидкостного ракетного двигателя и жидкостный ракетный двигатель
RU2386845C2 (ru) Способ работы кислородно-керосиновых жидкостных ракетных двигателей и топливная композиция для них
RU2451199C1 (ru) Двигательная установка жидкостной ракеты
RU2187684C2 (ru) Способ работы жидкостного ракетного двигателя и жидкостной ракетный двигатель
US20240133343A1 (en) Gas turbine engine fuel system
RU2381152C1 (ru) Многоступенчатая ракета-носитель с атомными ракетными двигателями

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20091210