RU2166103C2 - Способ преобразования тепловой энергии в механическую работу и устройство для его осуществления - Google Patents

Способ преобразования тепловой энергии в механическую работу и устройство для его осуществления Download PDF

Info

Publication number
RU2166103C2
RU2166103C2 RU99114909/06A RU99114909A RU2166103C2 RU 2166103 C2 RU2166103 C2 RU 2166103C2 RU 99114909/06 A RU99114909/06 A RU 99114909/06A RU 99114909 A RU99114909 A RU 99114909A RU 2166103 C2 RU2166103 C2 RU 2166103C2
Authority
RU
Russia
Prior art keywords
heat
liquid
thermal energy
coolant
working
Prior art date
Application number
RU99114909/06A
Other languages
English (en)
Inventor
В.Ф. Романовский
А.М. Романовска
А.М. Романовская
Original Assignee
Романовский Владимир Федорович
Романовская Антонина Михайловна
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Романовский Владимир Федорович, Романовская Антонина Михайловна filed Critical Романовский Владимир Федорович
Priority to RU99114909/06A priority Critical patent/RU2166103C2/ru
Application granted granted Critical
Publication of RU2166103C2 publication Critical patent/RU2166103C2/ru

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Способ и устройство могут быть использованы при создании практически абсолютно экологически безопасного двигателя с хорошими энергетическими характеристиками. В качестве рабочего тела используют смесь из нескольких компонентов. Одна группа компонентов смеси представляет собой жидкий теплопоглотитель, а другая - жидкий теплоноситель. Нагрев жидкого теплоносителя осуществляют за счет тепловой энергии окружающей среды. В качестве теплопоглотителя используют субстанцию, обладающую свойством переходить из жидкого состояния в сжатый газ в процессе смешивания с теплоносителем. Устройство для реализации данного способа содержит хранилище жидкого теплопоглотителя, дозатор теплопоглотителя, а в качестве источника тепловой энергии использована система переноса тепловой энергии от окружающей среды к теплообменному устройству. Такое выполнение улучшает энергетические характеристики процесса и повышает КПД. 2 с.п. и 6 з.п.ф-лы, 1 ил.

Description

Предлагаемое изобретение относится к силовым установкам и может быть использовано в различных областях техники, например в транспортных машинах в качестве двигателя, в энергетических установках и пр.
Известно много способов преобразования тепловой энергии в механическую работу и устройств для их осуществления.
В качестве аналога выбрано техническое решение, описанное в авт. свид. СССР N 1564372 по кл. F 01 K 21/00. В нем рассмотрены способ преобразования энергии пара в механическую работу в паросиловой установке путем испарения жидкого рабочего тела в парогенераторе, периодической подачи этого пара в рабочую камеру паровой машины и отвода отработанного пара в конденсатор. При этом подача жидкого рабочего тела в парогенератор осуществляется порциями с частотой рабочих циклов паровой машины, рабочее тело предварительно сжимают и подогревают для обеспечения более энергетически эффективного преобразования его в пар.
Недостатком известного технического решения является отсутствие рекуперации тепловой энергии в процесс повторного испарения сконденсированного рабочего тела и, как следствие, недостаточно высокий КПД процесса и тепловой машины.
В качестве прототипа предлагаемого изобретения по большинству сходных признаков выбрано техническое решение, раскрытое в патенте Российской Федерации N 2075599 по кл. F 01 K 21/00.
Сущность известного способа преобразования тепловой энергии в механическую работу заключается в том, что в качестве рабочего тела используют смесь из двух компонентов. Один компонент смеси представляет собой газообразный теплопоглотитель, а второй - жидкий теплоноситель. Жидкий теплоноситель с помощью автономного источника теплоты нагревают, подают его в рабочую камеру, добиваясь расширения рабочего тела за счет расширения газообразного теплопоглотителя, после чего энергию расширения рабочего тела преобразуют в механическую работу поршня, а отработанное рабочее тело отводят для подготовки повторного цикла. В соответствии с известным способом газообразный теплопоглотитель предварительно сжимают в рабочей камере поршнем и при достижении последним верхней мертвой точки в рабочую камеру впрыскивают жидкий теплоноситель, который до этого, как указано выше, нагревают до температуры, равной или превышающей температуру газообразного теплопоглотителя в конце сжатия. Во время рабочего хода поршня тепловая энергия от теплоносителя передается к теплопоглотителю, что приводит к улучшению энергетических характеристик процесса расширения и преобразования тепловой энергии в механическую работу.
Устройство, реализующее известный способ, содержит автономный источник теплоты, рабочую камеру переменного объема, образованную неподвижными стенками цилиндрического корпуса и обращенной внутрь камеры рабочей поверхностью поршня, при этом камера снабжена впускными и выпускными клапанами; систему циркуляции теплоносителя, включающую теплообменное устройство, выполненное в виде нагревателя-теплообменника, накопитель теплоносителя в виде гидробака, дозатор-распределитель теплоносителя и насос для подачи теплоносителя в пневмогидроаккумулятор. Устройство содержит также систему подачи теплопоглотителя в рабочую камеру посредством магистрали через впускное окно воздушного фильтра. В качестве автономного источника теплоты использована горелка, в которой сжигают поступающее в нее топливо.
Недостатком известного технического решения является следующее.
Предварительное сжатие теплопоглотителя связано с затратами энергии. Для осуществления известного технического решения необходимо сжигание топлива, что связано с дополнительными финансовыми затратами, а также с выделением продуктов сгорания, что отрицательно сказывается на экологическом состоянии окружающей среды.
Задачей предлагаемого изобретения является устранение указанных недостатков.
Техническим результатом от применения заявляемого технического решения является использование тепловой энергии окружающей среды для совершения полезной механической работы без сжигания какого-либо вида топлива, что улучшает экологические характеристики предложенных процесса и устройства.
Технический результат достигается за счет того, что в способе преобразования тепловой энергии в механическую работу, заключающемся в том, что в качестве рабочего тела используют смесь из нескольких компонентов, при этом одна группа компонентов смеси представляет собой теплопоглотитель, а другая - жидкий теплоноситель, который предварительно нагревают, после чего в рабочей камере производят передачу тепловой энергии от теплоносителя к теплопоглотителю путем смешивания теплоносителя с теплопоглотителем с последующим расширением рабочего тела, полученную при этом энергию расширения рабочего тела преобразуют в механическую работу, после чего отработанное рабочее тело отводят для подготовки повторного цикла, нагрев жидкого теплоносителя осуществляют за счет тепловой энергии окружающей среды, а в качестве теплопоглотителя используют субстанцию, обладающую свойством переходить из жидкого состояния в сжатый газ в процессе смешивания с теплоносителем, при этом отработанный теплоноситель отводят для повторного нагрева за счет тепловой энергии окружающей среды.
В процессе смешивания теплоносителя с теплопоглотителем может быть осуществлено диспергирование теплопоглотителя.
В качестве жидкого теплоносителя можно использовать жидкость с пенообразующими свойствами, которая в процессе смешивания с теплопоглотителем образует рабочее тело в виде пены.
Технический результат достигается за счет того, что в устройство для преобразования тепловой энергии в механическую работу, содержащее источник тепловой энергии, рабочую камеру, образованную неподвижными стенками ее корпуса и обращенной внутрь этой камеры рабочей поверхностью поршня и снабженную впускными и выпускными клапанами, систему циркуляции теплоносителя, включающую теплообменное устройство, накопитель теплоносителя, насос для его подачи и трубопроводы, в устройство введены хранилище жидкого теплопоглотителя, тракт подачи его в рабочую камеру, дозатор теплопоглотителя, включенный в этот тракт, между резервуаром и рабочей камерой, а в качестве источника тепловой энергии использована система переноса тепловой энергии от окружающей среды к теплообменному устройству.
В систему циркуляции теплоносителя перед его накопителем может быть введен сепаратор рабочего тела.
Система переноса тепловой энергии от окружающей среды к теплообменному устройству может быть выполнена в виде блока принудительной подачи атмосферного воздуха к теплообменному устройству.
Система переноса тепловой энергии от окружающей среды к теплообменному устройству может быть выполнена в виде блока принудительной подачи воды природных водоемов к теплообменному устройству.
Кроме того, предложенное устройство может дополнительно содержать группу идентичных рабочих камер, поршни которых кинематически связаны между собой, а сами камеры подсоединены к системе циркуляции теплоносителя.
Сущность изобретения поясняется чертежом, на котором представлена структурно-функциональная схема способа преобразования и вариант устройства для его осуществления.
Устройство для преобразования тепловой энергии в механическую работу содержит рабочую камеру 1, образованную неподвижными стенками ее корпуса 2 и обращенной внутрь этой камеры 1 рабочей поверхностью 3 поршня 4. Рабочая камера 1 снабжена впускными клапанами 5 для поступления жидкого теплоносителя и выпускными клапанами 6 для выброса рабочего тела, а также подводом 7 жидкого теплопоглотителя. Через свои впускные клапаны 5 и выпускные клапаны 6 рабочая камера 1 включена в систему циркуляции теплоносителя, образованную последовательно соединенными с помощью трубопроводов 9 накопителем 10 теплоносителя, насосом 11 для подачи теплоносителя и теплообменным устройством 12. В систему циркуляции теплоносителя может быть введен также сепаратор 13 рабочего тела, установленный между выпускными клапанами 6 и накопителем 10 теплоносителя. Тракт подачи в камеру 1 жидкого теплопоглотителя содержит хранилище 14 жидкого теплопоглотителя и дозатор 15 жидкого теплопоглотителя, соединенный с рабочей камерой 1 через подвод 7 жидкого теплопоглотителя. Устройство содержит также систему 16 переноса тепловой энергии от окружающей среды к теплообменному устройству 12. В варианте, представленном на чертеже, система 16 выполнена в виде блока принудительной подачи атмосферного воздуха к теплообменному устройству 12. Стрелкой 17 обозначен выброс отработанного теплопоглотителя, перешедшего в газообразное состояние.
Способ реализуется следующим образом. При движении поршня 4 вниз происходит частичное заполнение рабочей камеры 1 жидким теплоносителем. Заполнение камеры 1 теплоносителем может происходить за счет разряжения, создаваемого в рабочей камере 1 при движении поршня 4 вниз, а также за счет принудительной подачи теплоносителя насосом 11. По окончании частичного заполнения рабочей камеры 1 жидким теплоносителем дозатор 15 жидкого теплопоглотителя вводит в рабочую камеру 1 через подвод 7 порцию жидкого теплопоглотителя, поступающего к дозатору 15 из хранилища 14 жидкого теплопоглотителя, одновременно закрывают клапаны 5. В качестве жидкого теплопоглотителя предполагается использовать жидкий воздух или его компонент - жидкий азот, а в качестве жидкого теплоносителя - воду, автомобильный тосол или машинное масло. Поступающий в рабочую камеру 1 жидкий теплоноситель предварительно проходит через теплообменное устройство 12, где нагревается за счет тепловой энергии окружающей среды до ее температуры. Введенная в рабочую камеру 1 порция жидкого теплопоглотителя (жидкого воздуха или жидкого азота) при контакте с жидким теплоносителем, частично заполнившим рабочую камеру 1, переходит в газообразное состояние за счет поглощаемой тепловой энергии от теплоносителя, давление в рабочей камере 1 повышается до нескольких сотен атмосфер, образовавшаяся смесь, представляющая собой рабочее тело, расширяется, давит на рабочую поверхность 3 поршня 4, перемещая поршень 4 и совершая механическую работу.
В процессе расширения рабочего тела расширяющийся, перешедший в газообразное состояние его компонент поглощает дополнительную тепловую энергию от теплоносителя, находящегося в рабочей камере 1, что обеспечивает высокий КПД процесса. По окончании процесса расширения рабочего тела клапаны 6 открываются, поршень 4 начинает обратное движение, выдавливая отработанное рабочее тело за пределы рабочего объема. При этом жидкий теплоноситель сливается в накопитель 10, а газообразный компонент 17 (воздух или азот) рабочего тела выпускается в атмосферу.
Далее цикл повторяется, начинаясь с подогрева теплоносителя в теплообменном устройстве 12.
В процессе смешивания порции теплопоглотителя с теплоносителем в рабочем объеме 1 для увеличения поверхности теплового контакта между теплоносителем и теплопоглотителем последний может быть диспергирован, например, с помощью форсунки, входящей в состав подвода 7 теплопоглотителя (на чертеже не показано).
Для увеличения площади теплового контакта между порцией теплопоглотителя и жидким теплоносителем последний может быть наделен пенообразующими свойствами, например, путем добавления в теплоноситель поверхностно активных веществ.
Для обеспечения надежного разделения жидкой и газообразной фаз отработанного рабочего тела в систему циркуляции теплоносителя перед его накопителем 10 может быть введен сепаратор 13 рабочего тела.
Система 16 переноса тепловой энергии от окружающей среды к теплообменному устройству 12 может быть выполнена в виде блока принудительной подачи атмосферного воздуха к теплообменному устройству 12.
Эта же система 16 может быть выполнена в виде блока принудительной подачи воды к теплообменному устройству 12 из какого-либо природного водоема.
Рассматриваемое устройство может содержать группу идентичных рабочих камер 1, поршни 4 которых кинематически связаны между собой, при этом все рабочие камеры 1 могут быть подсоединены к системе циркуляции теплоносителя.
Предложенные способ и устройство позволяют создать практически абсолютно экологически безопасный двигатель с хорошими энергетическими характеристиками.

Claims (8)

1. Способ преобразования тепловой энергии в механическую работу, заключающийся в том, что в качестве рабочего тела используют смесь из нескольких компонентов, при этом одна группа компонентов смеси представляет собой теплопоглотитель, а другая - жидкий теплоноситель, который предварительно нагревают, после чего в рабочей камере производят передачу тепловой энергии от теплоносителя к теплопоглотителю путем смешивания теплоносителя с теплопоглотителем с последующим расширением рабочего тела, полученную при этом энергию расширения рабочего тела преобразуют в механическую работу, после чего отработанное рабочее тело отводят для подготовки повторного цикла, отличающийся тем, что нагрев жидкого теплоносителя осуществляют за счет тепловой энергии окружающей среды, а в качестве теплопоглотителя используют субстанцию, обладающую свойством переходить из жидкого состояния в сжатый газ в процессе смешивания с теплоносителем, при этом отработанный теплоноситель отводят для повторного нагрева за счет тепловой энергии окружающей среды.
2. Способ по п.1, отличающийся тем, что в процессе смешивания теплоносителя с теплопоглотителем производят диспергирование теплопоглотителя.
3. Способ по п.1 или 2, отличающийся тем, что в качестве жидкого теплоносителя используют жидкость с пенообразующими свойствами, которая в процессе смешивания с теплопоглотителем образует рабочее тело в виде пены.
4. Устройство для преобразования тепловой энергии в механическую работу, содержащее источник тепловой энергии, рабочую камеру, образованную неподвижными стенками ее корпуса и обращенной внутрь этой камеры рабочей поверхностью поршня и снабженную впускными и выпускными клапанами, систему циркуляции теплоносителя, включающую теплообменное устройство, накопитель теплоносителя, насос для его подачи и трубопроводы, отличающееся тем, что в устройство введены хранилище жидкого теплопоглотителя, тракт подачи его в рабочую камеру, дозатор теплопоглотителя, включенный в этот тракт между хранилищем жидкого теплопоглотителя и рабочей камерой, а в качестве источника тепловой энергии использована система переноса тепловой энергии от окружающей среды к теплообменному устройству.
5. Устройство по п.4, отличающееся тем, что в систему циркуляции теплоносителя перед его накопителем введен сепаратор рабочего тела.
6. Устройство по п.4 или 5, отличающееся тем, что система переноса тепловой энергии от окружающей среды к теплообменному устройству выполнена в виде блока принудительной подачи атмосферного воздуха к теплообменному устройству.
7. Устройство по п.4 или 5, отличающееся тем, что система переноса тепловой энергии от окружающей среды к теплообменному устройству выполнена в виде блока принудительной подачи воды природных водоемов к теплообменному устройству.
8. Устройство по п. 4, или 5, или 6, или 7, отличающееся тем, что оно дополнительно содержит группу идентичных рабочих камер, поршни которых кинематически связаны между собой, при этом все рабочие камеры подсоединены к системе циркуляции теплоносителя.
RU99114909/06A 1999-07-07 1999-07-07 Способ преобразования тепловой энергии в механическую работу и устройство для его осуществления RU2166103C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99114909/06A RU2166103C2 (ru) 1999-07-07 1999-07-07 Способ преобразования тепловой энергии в механическую работу и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99114909/06A RU2166103C2 (ru) 1999-07-07 1999-07-07 Способ преобразования тепловой энергии в механическую работу и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2166103C2 true RU2166103C2 (ru) 2001-04-27

Family

ID=20222450

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99114909/06A RU2166103C2 (ru) 1999-07-07 1999-07-07 Способ преобразования тепловой энергии в механическую работу и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2166103C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711527C2 (ru) * 2015-08-13 2020-01-17 Гэс Икспеншн Моторс Лимитед Термодинамический двигатель
WO2022086465A1 (en) * 2020-10-21 2022-04-28 Repg Enerji Sistemleri Sanayi Ve Ticaret Anonim Sirketi A movement generation mechanism
WO2023234910A1 (en) 2022-06-01 2023-12-07 Biletskyi Viktor A method for converting an external thermal energy to a mechanical work and a device for performing the method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2711527C2 (ru) * 2015-08-13 2020-01-17 Гэс Икспеншн Моторс Лимитед Термодинамический двигатель
WO2022086465A1 (en) * 2020-10-21 2022-04-28 Repg Enerji Sistemleri Sanayi Ve Ticaret Anonim Sirketi A movement generation mechanism
WO2023234910A1 (en) 2022-06-01 2023-12-07 Biletskyi Viktor A method for converting an external thermal energy to a mechanical work and a device for performing the method

Similar Documents

Publication Publication Date Title
FI107346B (fi) Lämpömoottori
CN101454542A (zh) 具有工质的内部闪蒸的活塞式蒸汽机
CN103161607A (zh) 一种基于内燃机余热利用的联合发电系统
JO1115B1 (en) Reciprocating thermal engine
CN1138058C (zh) 一种超临界回热加热发动机
CN102434257B (zh) 车、船发动机废热发电装置
CN201810420U (zh) 一种发动机余热能量回收装置
RU2166103C2 (ru) Способ преобразования тепловой энергии в механическую работу и устройство для его осуществления
CN114575951B (zh) 一种带气-液喷射器的有机朗肯双级闪蒸循环系统
CN203655368U (zh) 一种卡诺-朗肯双循环混合高效发电设备
WO2022257444A1 (zh) 二元工质热能动力装置
CN214836833U (zh) 一种朗肯循环式新能源发动机系统
JP2002206819A (ja) スターリングエンジン
CN204026628U (zh) 一种饱和水发生装置
CN1065587C (zh) 一种热机和热泵
RU2075599C1 (ru) Способ преобразования теплоты в механическую работу и силовая установка для его осуществления
CN201155385Y (zh) 引擎的热能回收裝置及其应用的二行程引擎
CN204026627U (zh) 一种饱和水爆炸装置
CN114459165B (zh) 一种近似等温两次膨胀做功的热机系统
CN1322896A (zh) 一种可使热机增效节能的方法——内冷增效法
CN104358593B (zh) 一种等温膨胀的单阀膨胀机系统及方法
RU94013628A (ru) Способ преобразования теплоты в механическую работу и силовая установка для его осуществления
CA2150359C (en) A heat engine and heat pump
RU2164607C1 (ru) Способ преобразования тепловой энергии в механическую (электрическую)
DE1961457A1 (de) Zweistoff-Waermekraftmaschine mit geschlossenen Kreislaeufen

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20020708