RU2163940C1 - Сплав на основе алюминия и изделие, выполненное из него - Google Patents

Сплав на основе алюминия и изделие, выполненное из него Download PDF

Info

Publication number
RU2163940C1
RU2163940C1 RU99117392A RU99117392A RU2163940C1 RU 2163940 C1 RU2163940 C1 RU 2163940C1 RU 99117392 A RU99117392 A RU 99117392A RU 99117392 A RU99117392 A RU 99117392A RU 2163940 C1 RU2163940 C1 RU 2163940C1
Authority
RU
Russia
Prior art keywords
alloy
aluminum
ductility
strength
lithium
Prior art date
Application number
RU99117392A
Other languages
English (en)
Inventor
И.Н. Фридляндер
Е.Н. Каблов
Н.И. Колобнев
Л.Б. Хохлатова
С.В. Самохвалов
А.А. Воробьев
С.А. Петраковский
Original Assignee
Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" filed Critical Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов"
Priority to RU99117392A priority Critical patent/RU2163940C1/ru
Application granted granted Critical
Publication of RU2163940C1 publication Critical patent/RU2163940C1/ru

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

Изобретение относится к высокопрочным деформируемым термически упрочняемым свариваемым сплавам на основе алюминия, в частности системы Al - Cu - Li, используемым в качестве конструкционных материалов в изделиях авиакосмической техники, таких как сварные топливные баки для работы при температуре от +20°С до -253°С, различные элементы силового набора и обшивки фюзеляжа и крыла, как сжатой, так и в растянутой зоне самолетных конструкций, работающих при температуре от +175°С до -70°С. Технической задачей предлагаемого изобретения является создание сплава с повышенными характеристиками пластичности и вязкости разрушения, пониженной скоростью роста трещины усталости и повышенной технологической пластичностью при холодной деформации. Изделия из этого сплава будут иметь пониженную массу, повышенные характеристики прочности и надежности при эксплуатации. Сплав содержит следующие компоненты, мас. %: медь 2,5 - 3,5; литий 1,5 - 1,95; цирконий 0,05 - 0,15; скандий 0,01 - 0,15; кальций 0,001 - 0,05; хром 0,01 - 0,3; водород 1,5 · 10-5 - 5,0 · 10-5; по крайней мере один элемент из группы, содержащей магний 0,01 - 0,6; марганец 0,005 - 0,6; титан 0,005 - 0,009; ванадий 0,01 - 0,15; бор 0,0002 - 0,07; церий 0,005 - 0,2; железо 0,01 - 0,5 и по крайней мере один элемент из группы, содержащей цинк 0,01 - 0,8; бериллий 0,0001 - 0,2; олово 0,005 - 0,1, натрий 0,0003 - 0,001; никель 0,005 - 0,15; остальное алюминий. 2 с.п. ф-лы, 2 табл.

Description

Изобретение относится к области металлургии, а именно к высокопрочным деформируемым термическим упрочняемым свариваемым сплавам пониженной плотности системы Al-Cu-Li, предназначенным для применения в качестве конструкционных материалов в авиакосмической технике. Из этого сплава изготавливаются такие изделия, как: сварные топливные баки для работы при температуре от +20oC до -253oC, различные элементы силового набора и обшивки фюзеляжа и крыла, как в сжатой, так и в растянутой зоне самолетных конструкций, работающих при температуре от +175oC до -70oC.
Известен и применяется в промышленности сплава системы Al-Cu-Li марки 1230 (ВАД23) следующего состава, мас.%:
Медь - 4,8 - 5,8
Литий - 0,9 - 1,4
Марганец - 0,4 - 0,8
Кадмий - 0,1 - 0,25
Алюминий - Остальное
(см. Структура и свойства полуфабрикатов из алюминиевых сплавов. Алюминиевые сплавы. Справочник. 2-е изд., М., "Металлургия", 1984, с. 396).
Однако этот сплав не обладает достаточно низкой плотностью, имеет низкий модуль упругости и в искусственно состаренном состоянии пониженную пластичность и повышенную чувствительность к концентраторам напряжений. Сплав не сваривается, непригоден для работы при криогенных температурах. Изделия из этого сплава имеют ограниченное применение, используются в качестве стабилизаторов летательных аппаратов с малым ресурсом.
Известен также сплав марки 2090 американской фирмы ALCOA. Сплав имеет следующий состав, мас.%:
Медь - 2,4 - 4,0
Литий - 1,4 - 2,7
Магний - 0 - 0,8
Хром - 0 - 0,3
Цирконий - 0 - 0,1
Бериллий - 0 - 0,02
Кремний - 0 - 0,1
Марганец - 0 - 0,1
Алюминий - Остальное
(см. патент Франции N 2.561.260, МКИ C 22 C 21/12).
Этот сплава при достаточно высокой удельной прочности (отношение предела прочности к плотности сплава) имеет низкие характеристики пластичности и трещиностойкости, поэтому применяется для обшивки крыла только в сжатой зоне и не применяется в сварных конструкциях.
Наиболее близким по технической сущности и достигаемому эффекту является свариваемый сплав системы Al-Cu-Li следующего химического состава, мас.%:
Медь - 1,4 - 6,0
Литий - 1,0 - 4,0
Цирконий - 0,02 - 0,3
Титан - 0,01 - 0,15
Бор - 0,0002 - 0,07
Церий - 0,005 - 0,15
Железо - 0,03 - 0,25
по крайней мере один из элементов из группы, содержащей, мас.%:
Неодим - 0,0002 - 0,1
Скандий - 0,1 - 0,35
Ванадий - 0,01 - 0,15
Марганец - 0,05 - 0,6
Магний - 0,6 - 2,0
Алюминий - Остальное
(см. патент РФ 1584414, БИ N 19, 1994 г.).
Сплав обладает хорошей свариваемостью и повышенными прочностными свойствами.
Недостатками этого сплава являются низкие значения пластичности, вязкости разрушения, высокая скорость развития трещины усталости, а также низкая технологическая пластичность при холодной деформации. Поэтому этот сплав непригоден для применения в авиационной технике и может найти ограниченное применение в некоторых сварных изделиях ракетной техники.
Технической задачей предлагаемого изобретения является создание сплава с повышенными характеристиками пластичности и вязкости разрушения, пониженной скоростью роста трещины усталости и повышенной технологической пластичностью при холодной деформации. Изделия из этого сплава будут иметь пониженную массу, повышенные характеристики прочности и надежности при эксплуатации.
Для достижения поставленной задачи предлагается сплав на основе алюминия следующего химического состава, мас.%:
Медь - 2,5 - 3,5
Литий - 1,5 - 1,95
Цирконий - 0,05 - 0,15
Скандий - 0,01 - 0,15
Кальций - 0,001 - 0,05
Хром - 0,01 - 0,3
Водород - 1,5 · 10-5 - 5,0 · 10-5
по крайней мере один элемент из группы, содержащей, мас.%:
Магний - 0,01 - 0,6
Титан - 0,005 - 0,009
Бор - 0,0002 - 0,007
Марганец - 0,005 - 0,6
Ванадий - 0,01 - 0,15
Церий - 0,005 - 0,2
Железо - 0,01 - 0,5
и по крайней мере один элемент из группы, содержащей, мас.%:
Цинк - 0,01 - 0,8
Олово - 0,0005 - 0,1
Никель - 0,005 - 0,15
Бериллий - 0,0001 - 0,2
Натрий - 0,0003 - 0,001
Алюминий - Остальное
В сплаве поддерживается определенное соотношение концентраций меди и лития, необходимое для достижения относительно низкой плотности. При этом сохранение положительного влияния меди на прочностные свойства достигается за счет введения в сплав дополнительных легирующих элементов.
Введение в сплав кальция повышает технологичность при холодной деформации, так как кальций связывает кремний (примесь в алюминии) и снижает поверхностное натяжение, способствуя образованию более округлой формы выделившихся избыточных интерметаллидов.
Хром вместе с цирконием, скандием и водородом, который образует дисперсные гидриды лития, способствуют формированию однородной мелкозернистой структуры в полуфабрикатах и повышению технологической пластичности при холодной прокатке, повышению характеристик вязкости разрушения и улучшению свариваемости всеми видами сварки.
Натрий, бериллий, олово, никель, цинк измельчают частицы кремния, а также связывают свободный кремний, что приводит к повышению технологичности при прокатке.
Магний, титан, бор, ванадий, марганец, железо и церий способствуют упрочнению сплава, облагораживают форму выделившихся избыточных интерметаллидов, способствуя округлости их формы, что, в свою очередь, благотворно сказывается на технологичности сплава. Изделия из предлагаемого сплава, такие как: сварные топливные баки, в том числе для низких температур, различные элементы силового набора и обшивки фюзеляжа и крыла будут иметь пониженную массу, повышенные характеристики прочности и надежности при эксплуатации.
Пример осуществления:
Из слитков, состав которых приведен в табл. 1, после гомогенизации при температуре 530oC в течение 24 часов, были изготовлены листы. Листы изготавливались путем горячей прокатки при температуре 430oC до толщины 4,5 мм и затем после отжига при температуре 400oC путем холодной прокатки до толщины 2,5 мм. Листы подвергали закалке с температуры 530oC с охлаждением в воде, правке растяжением со степенью деформации 1,5% и искусственному двухступенчатому старению по режиму: первая ступень - при температуре 130oC, 8 час и вторая ступень - при температуре 160oC, 14 час.
Состав сплава N 1 соответствует прототипу, остальные сплавы N 2-10 являются предлагаемыми.
Образцы из листов испытывали при статическом растяжении с определением предела прочности, предела текучести, относительного удлинения, определяли характеристики вязкости разрушения и трещиностойкости (Kc y, СРТУ). Технологическая пластичность оценивалась по уровню степени холодной деформации при холодной прокатке, при которой появлялись боковые трещины величиной более 10 мм (εКР) .
Из табл. N 2 видно, что предлагаемый состав нового сплава превосходит известный сплав (прототип) по характеристике вязкости разрушения (Kc y) в 1,4 - 1,6 раз, по пластичности в 1,6 - 2,0 раз по технологической пластичности при холодной деформации в 1,9 - 2,3 раза. Новый сплав имеет меньшую скорость развития трещины усталости (СРТУ) в 1,8 - 3,0 раз при практически одинаковом уровне предела прочности и предела текучести.
Таким образом, предлагаемый сплав обеспечивает достижение поставленной цели - повышение характеристик пластичности и вязкости разрушения, понижение скорости роста трещины усталости и повышение технологической пластичности при холодной деформации, по сравнению с известными сплавами.
Новый сплав с такими повышенными характеристиками и с пониженной плотностью позволяет изготавливать необходимую номенклатуру полуфабрикатов на существующем металлургическом оборудовании. Применение полуфабрикатов из предлагаемого сплава в изделиях, таких как: сварные топливные баки для работы при температуре от +20oCo до -253oC, различные элементы силового набора и обшивки фюзеляжа и крыла, как в сжатой, так и в растянутой зоне самолетных конструкций, работающих при температуре от +175oC до -70oC позволит обеспечить снижение их массы на 15 - 35%, повысить надежность и ресурс эксплуатации.

Claims (1)

1. Сплав на основе алюминия, содержащий медь, литий, цирконий, скандий, по крайней мере один элемент из группы, содержащей магний, титан, бор, марганец, ванадий, железо, церий, отличающийся тем, что он дополнительно содержит кальций, хром, водород и по крайней мере один элемент из группы, содержащей цинк, олово, никель, бериллий, натрий при следующем соотношении компонентов, мас.%:
Медь - 2,5 - 3,5
Литий - 1,5 - 1,95
Цирконий - 0,05 - 0,15
Скандий - 0,01 - 0,15
Кальций - 0,001 - 0,05
Хром - 0,01 - 0,3
Водород - 1,5 · 10-5 - 5,0 · 10-5
по крайней мере один элемент из группы, содержащей:
Магний - 0,01 - 0,6
Титан - 0,005 - 0,009
Бор - 0,0002 - 0,007
Марганец - 0,005 - 0,6
Ванадий - 0,01 - 0,15
Церий - 0,005 - 0,2
Железо - 0,01 - 0,5
и по крайней мере один элемент из группы, содержащей:
Цинк - 0,01 - 0,8
Олово - 0,005 - 0,1
Никель - 0,005 - 0,15
Бериллий - 0,0001 - 0,2
Натрий - 0,0003 - 0,001
Алюминий - Остальное
2. Изделие из сплава на основе алюминия, отличающееся тем, что выполнено из сплава следующего химического состава, мас.%:
Медь - 2,5 - 3,5
Литий - 1,5 - 1,95
Цирконий - 0,05 - 0,15
Скандий - 0,01 - 0,15
Кальций - 0,001 - 0,05
Хром - 0,01 - 0,3
Водород - 1,5 · 10-5 - 5,0 · 10-5
по крайней мере один элемент из группы, содержащей:
Магний - 0,01 - 0,6
Титан - 0,005 - 0,009
Бор - 0,0002 - 0,007
Марганец - 0,005 - 0,6
Ванадий - 0,01 - 0,15
Церий - 0,005 - 0,2
Железо - 0,01 - 0,5
и по крайней мере один элемент из группы, содержащей:
Цинк - 0,01 - 0,8
Олово - 0,005 - 0,1
Никель - 0,005 - 0,15
Бериллий - 0,0001 - 0,2
Натрий - 0,0003 - 0,001
Алюминий - Остальное
RU99117392A 1999-08-09 1999-08-09 Сплав на основе алюминия и изделие, выполненное из него RU2163940C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99117392A RU2163940C1 (ru) 1999-08-09 1999-08-09 Сплав на основе алюминия и изделие, выполненное из него

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99117392A RU2163940C1 (ru) 1999-08-09 1999-08-09 Сплав на основе алюминия и изделие, выполненное из него

Publications (1)

Publication Number Publication Date
RU2163940C1 true RU2163940C1 (ru) 2001-03-10

Family

ID=20223739

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99117392A RU2163940C1 (ru) 1999-08-09 1999-08-09 Сплав на основе алюминия и изделие, выполненное из него

Country Status (1)

Country Link
RU (1) RU2163940C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111529A1 (en) * 2006-03-27 2007-10-04 Otkrytoe Akcionernoe Obschestvo 'kamensk-Uralsky Metallurgichesky Zavod' Aluminium-based alloy
RU2587009C2 (ru) * 2011-02-17 2016-06-10 Алкоа Инк. Алюминий-литиевые сплавы серии 2ххх
CN107858567A (zh) * 2017-11-16 2018-03-30 北京世联信诺科技有限公司 一种免热处理的耐热铸造铝合金及其制备方法
CN110546288A (zh) * 2017-04-10 2019-12-06 伊苏瓦尔肯联铝业 低密度铝-铜-锂合金产品
US10995397B2 (en) 2016-12-16 2021-05-04 Novelis Inc. Aluminum alloys and methods of making the same
US20210277508A1 (en) * 2017-04-11 2021-09-09 The Boeing Company Aluminum alloy with additions of copper, lithium and at least one alkali or rare earth metal, and method of manufacturing the same
US11530473B2 (en) 2016-12-16 2022-12-20 Novelis Inc. High strength and highly formable aluminum alloys resistant to natural age hardening and methods of making the same
RU2797459C1 (ru) * 2022-07-19 2023-06-06 Открытое акционерное общество "Каменск-Уральский металлургический завод" Сплав на основе алюминия и изделие из него

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111529A1 (en) * 2006-03-27 2007-10-04 Otkrytoe Akcionernoe Obschestvo 'kamensk-Uralsky Metallurgichesky Zavod' Aluminium-based alloy
RU2587009C2 (ru) * 2011-02-17 2016-06-10 Алкоа Инк. Алюминий-литиевые сплавы серии 2ххх
US10995397B2 (en) 2016-12-16 2021-05-04 Novelis Inc. Aluminum alloys and methods of making the same
US11530473B2 (en) 2016-12-16 2022-12-20 Novelis Inc. High strength and highly formable aluminum alloys resistant to natural age hardening and methods of making the same
CN110546288A (zh) * 2017-04-10 2019-12-06 伊苏瓦尔肯联铝业 低密度铝-铜-锂合金产品
US20210277508A1 (en) * 2017-04-11 2021-09-09 The Boeing Company Aluminum alloy with additions of copper, lithium and at least one alkali or rare earth metal, and method of manufacturing the same
US11846010B2 (en) * 2017-04-11 2023-12-19 The Boeing Company Aluminum alloy with additions of copper, lithium and at least one alkali or rare earth metal, and method of manufacturing the same
CN107858567A (zh) * 2017-11-16 2018-03-30 北京世联信诺科技有限公司 一种免热处理的耐热铸造铝合金及其制备方法
CN107858567B (zh) * 2017-11-16 2019-09-13 北京世联信诺科技有限公司 一种免热处理的耐热铸造铝合金及其制备方法
RU2797459C1 (ru) * 2022-07-19 2023-06-06 Открытое акционерное общество "Каменск-Уральский металлургический завод" Сплав на основе алюминия и изделие из него

Similar Documents

Publication Publication Date Title
Chawla et al. Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080 Al/SiC p composite
Odeshi et al. Failure of AA 6061 and 2099 aluminum alloys under dynamic shock loading
Tajally et al. A comparative analysis of tensile and impact-toughness behavior of cold-worked and annealed 7075 aluminum alloy
RU2184166C2 (ru) Высокопрочный сплав на основе алюминия и изделие, выполненное из него
Xu et al. Abnormal fracture of 7085 high strength aluminum alloy thick plate joint via friction stir welding
Razaghian et al. Fracture behaviour of a SiC-particle-reinforced aluminium alloy at high temperature
Czerwinski et al. High-temperature aluminum alloys for automotive powertrains
AU759402B2 (en) Aluminium based alloy and method for subjecting it to heat treatment
Chen et al. Mechanical behavior of high boron content Al-B4C metal matrix composites at elevated temperatures
RU2163940C1 (ru) Сплав на основе алюминия и изделие, выполненное из него
Emmanuel et al. Aluminium alloys as advanced materials: a short communication
Wang et al. The effect of T4 and T6 heat treatments for dynamic impact behavior of casting Mg-Gd-based alloys
Sun et al. Effect of Si on the microstructure and mechanical properties of as drawn Cu–15Cr in situ composites
JP2000319742A (ja) 軸圧壊特性に優れるアルミニウム合金押出材
Umezawa et al. Microstructural refinement of an As-Cast Al-12.6 Wt Pct Si alloy by repeated thermomechanical treatment to produce a heavily deformable material
Kumar et al. High strain rate behavior of stir cast hybrid Al-Si matrix composites using split hopkinson pressure bar
Sun et al. Evolution of Subgrains, dislocations, and Mechanical properties in a 2524Al alloy during high-strain Rate Rolling
RU2560485C1 (ru) Высокопрочный сплав на основе алюминия и изделие, выполненное из него
EP4368735A1 (en) High-strength and high-toughness impact-resistant energy-absorbing al-mg-si alloy
Shankar et al. Quality enhancement of TIG welded Al6061 SiCp composites by age hardening process
Li et al. Effects of heat treatment on microstructure evolution and mechanical properties of Ti–22Al–24Nb-0.5 Mo alloy
CN112853181B (zh) 一种高强度铝镁锂合金及其制备方法
Glavatskikh et al. Microstructure and Phase Composition of Novel Crossover Al-Zn-Mg-Cu-Zr-Y (Er) Alloys with Equal Zn/Mg/Cu Ratio and Cr Addition
Eswara Prasad et al. Mechanical behaviour of aluminium-lithium alloys
US4279647A (en) Construction steel exhibiting high fatigue strength

Legal Events

Date Code Title Description
QB4A License on use of patent

Effective date: 20080701

QB4A License on use of patent

Free format text: LICENCE

Effective date: 20140127