RU2162264C1 - Импульсный газовый лазер - Google Patents

Импульсный газовый лазер Download PDF

Info

Publication number
RU2162264C1
RU2162264C1 RU99127124/28A RU99127124A RU2162264C1 RU 2162264 C1 RU2162264 C1 RU 2162264C1 RU 99127124/28 A RU99127124/28 A RU 99127124/28A RU 99127124 A RU99127124 A RU 99127124A RU 2162264 C1 RU2162264 C1 RU 2162264C1
Authority
RU
Russia
Prior art keywords
laser
dielectric
tubes
housing
axis
Prior art date
Application number
RU99127124/28A
Other languages
English (en)
Inventor
В.В. Марковец
Э.И. Асиновский
В.И. Платонов
А.Н. Житов
И.П. Супрун
Original Assignee
Марковец Валерий Васильевич
Житов Александр Николаевич
Супрун Игорь Павлович
Платонов Валерий Иванович
Асиновский Эрик Иванович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Марковец Валерий Васильевич, Житов Александр Николаевич, Супрун Игорь Павлович, Платонов Валерий Иванович, Асиновский Эрик Иванович filed Critical Марковец Валерий Васильевич
Priority to RU99127124/28A priority Critical patent/RU2162264C1/ru
Application granted granted Critical
Publication of RU2162264C1 publication Critical patent/RU2162264C1/ru

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

Изобретение может быть использовано при изготовлении импульсных газовых лазеров. Лазер содержит генератор высоковольтных наносекундных импульсов напряжения, электрод, расположенный в диэлектрическом корпусе и соединенный по центральному проводнику коаксиальной линии с генератором, и электромагнитный экран, охватывающий корпус и соединенный с наружным проводником коаксиальной линии. Лазер снабжен по меньшей мере одной парой диэлектрических трубок, установленных одними концами в корпусе с обеих сторон от оси симметрии лазера на расстоянии друг от друга и на расстоянии от торца электрода. Оси диэлектрических трубок попарно совпадают, а на вторых концах диэлектрических трубок, удаленных от оси симметрии лазера, выполнены окна для выода излучения. Устранены переотражения импульса между разрядным промежутком и генератором, повышены КПД лазера и стабильность лазерного излучения от импульса к импульсу, обеспечены улучшение однородности возбуждения газа по длине активной среды лазера, возможность увеличения объема активной среды при сохранении эффективности накачки и устранение электромагнитных помех в окружающем лазер пространстве. 6 з.п. ф-лы, 4 ил.

Description

Изобретение может быть использовано при изготовлении импульсных газовых лазеров.
Известен импульсный газовый лазер, содержащий высоковольтный генератор, окруженную экраном разрядную трубку с высоковольтным и низковольтным электродами, соединенными с генератором (журнал "Квантовая электроника", 22, N 12, 1995 г. , статья "Накачка коаксиального азотного лазера высокоскоростной волной ионизации").
Основная диссипация энергии в этом лазере идет во фронте волны пробоя и эффективно происходит образование активной среды лазера. Однако имеет место неполное согласование импеданса разрядного промежутка с импедансом генератора во время распространения волны ионизации газа, что снижает КПД лазера.
Известен импульсный газовый лазер, содержащий генератор высоковольтных наносекундных импульсов напряжения, расположенный в диэлектрическом корпусе электрод, соединенный по центральному проводнику коаксиальной линии с генератором, и электромагнитный экран, охватывающий корпус и соединенный с наружным проводником коаксиальной линии (журнал "Теплофизика высоких температур", том 19, 1981 г., N 3, с. 491 - 493).
Известный лазер характеризуется нестабильностью выходных параметров лазера, связанной с переотражением электромагнитного импульса между фронтом волны ионизации и генератором.
Техническим результатом изобретения является устранение переотражения импульса между разрядным промежутком и генератором, повышение КПД лазера и стабильности лазерного излучения от импульса к импульсу, улучшение однородности возбуждения газа по длине активной среды лазера и, как следствие, увеличение стабильности пространственных характеристик излучения, а также возможность увеличения объема активной среды при сохранении эффективности накачки и устранение электромагнитных помех в окружающем лазер пространстве, обычно сопровождающих высоковольтный электрический пробой.
Для достижения этого технического результата импульсный газовый лазер, содержащий генератор высоковольтных наносекундных импульсов напряжения, расположенный в диэлектрическом корпусе электрод, соединенный по центральному проводнику коаксиальной линии с генератором, и электромагнитный экран, охватывающий корпус и соединенный с наружным проводником коаксиальной линии, снабжен по меньшей мере одной парой диэлектрических трубок, установленных одними концами в корпусе с обеих сторон от оси симметрии лазера на расстоянии S друг от друга и на расстоянии H от торца электрода, оси диэлектрических трубок попарно совпадают, а на вторых концах диэлектрических трубок, удаленных от оси симметрии лазера, выполнены окна для вывода излучения, причем выступающие из корпуса части диэлектрических трубок снабжены электромагнитными экранами, соединенными с экраном, охватывающим корпус.
Кроме этого, поперечное сечение внутренней части диэлектрического корпуса имеет форму круга, расстояние H определяется соотношением L >> H ≥ D, где D - внутренний диаметр корпуса, L - длина диэлектрической трубки, расстояние S между упомянутыми одними концами диэлектрических трубок каждой пары определяется соотношением S ≈ 2 r, где r - радиус диэлектрической трубки, причем r < D, при этом на вторых концах диэлектрических трубок, удаленных от оси симметрии лазера, перед окнами установлены электроды, соединенные с электромагнитными экранами трубок, а диэлектрические трубки выполнены различными по длине, но равными в каждой паре, поперечное сечение внутренней части диэлектрического корпуса может иметь форму прямоугольника.
На фиг. 1 изображен импульсный газовый лазер (частичный разрез); на фиг. 2 - вариант выполнения газового лазера с двумя диэлектрическими трубками; на фиг. 3 - вариант выполнения газового лазера с четырьмя диэлектрическими трубками; на фиг. 4 - осциллограмма лазерных импульсов.
Импульсный газовый лазер содержит генератор 1 высоковольтных наносекундных импульсов напряжения, входной электрод 2, расположенный в диэлектрическом корпусе 3 и соединенный по центральному проводнику 4 коаксиальной линии с генератором 1, и электромагнитный экран 5, охватывающий корпус 3 и соединенный с наружным проводником 6 коаксиальной линии. Поперечное сечение внутренней части корпуса 3 может иметь форму круга, квадрата, прямоугольника, эллипса и т. д. Импульсный газовый лазер содержит по меньшей мере одну пару диэлектрических трубок 7, установленных одними концами в корпусе 3 с обеих сторон от оси 8 симметрии лазера на расстоянии S друг от друга и на расстоянии H от торца электрода 2. Выступающие из корпуса 3 части диэлектрических трубок 7 снабжены электромагнитными экранами 9, соединенными с экраном 5, охватывающим корпус 3. Оси диэлектрических трубок 7 попарно совпадают. Диэлектрические трубки 7 могут иметь в поперечном сечении форму круга, квадрата и т.д.
На вторых концах диэлектрических трубок 7, удаленных от оси 8 симметрии лазера, выполнены окна 10 для вывода излучения. Расстояние H должно быть достаточно большим, чтобы сформировать фронт волны пробоя. Для этого при заданном диаметре D корпуса 3 расстояние H должно быть больше D. Чтобы основная часть энергии поглощалась в активной среде лазера, т.е. внутри трубок 7, H < < L. В соответствии с этим расстояние H может быть определено соотношением L >> H ≥ D, где D - внутренний диаметр корпуса 3; L - длина диэлектрической трубки 7. Для более эффективного проникновения волны пробоя внутрь диэлектрических трубок 7 расстояние S между ними должно быть больше внутреннего диаметра трубки 7, но меньше внутреннего диаметра корпуса 3 (это расстояние S ограничено размерами корпуса 3). Расстояние S между упомянутыми одними концами диэлектрических трубок 7 каждой пары, например, может быть S ≈ 2 r, где r - радиус диэлектрической трубки 7, который в несколько раз меньше D. На вторых концах диэлектрических трубок 7, удаленных от оси 8 симметрии лазера, перед окнами 10 установлены электроды 11, соединенные с электромагнитными экранами 9 трубок 7.
От генератора 1 на электрод 2 подают высоковольтный наносекундный импульс напряжения. В результате этого через определенное время возникает и начинает распространяться от электрода 2 внутри корпуса 3 волна пробоя вдоль оси 8 симметрии лазера. По достижении волной пробоя боковых диэлектрических трубок 7 эта волна пробоя разветвляется, и в каждой трубке 7 образуется своя ветвь волны пробоя, фронты которой движутся с высокой скоростью от оси 8 симметрии лазера. Плазма внутри трубок 7 за фронтом волны пробоя является высокопроводящей и совместно с экраном 9 образует волноведущий канал для распространения высоковольтного электромагнитного импульса. Во время распространения волны пробоя ток проводимости в плазме замыкается токами смещения между плазмой и экранами 9 трубок 7. Поскольку импеданс Z3 газа впереди фронта волны пробоя близок к ∞, то часть электромагнитных импульсов отражается от фронта волны пробоя и распространяется в трубку 7, расположенную напротив, вследствие того, что Z2 < < Z1 (Z2 - импеданс между трубками 7, Z1 - импеданс между трубкой 7 и электродом 2). Ввиду симметричного расположения трубок 7 и вследствие переотражения электромагнитных волн возникает стоячая электромагнитная волна между двумя фронтами волны пробоя, которая исчезает после полной диссипации ее энергии в плазме. В результате энергия исходного высоковольтного импульса практически полностью идет на возбуждение и ионизацию газа с высокой эффективностью заселения рабочих уровней лазера за время ~ L/V, где L - длина диэлектрической трубки 7; V - скорость распространения фронта волны пробоя (~109 - 1010 см/с).
Из-за почти полного поглощения энергии высоковольтного импульса стабильность этого процесса будет полностью соответствовать стабильности исходного импульса напряжения.
Вариант выполнения газового лазера с двумя диэлектрическими трубками 7 показан на фиг. 2. В соответствии с этим вариантом выполнения импульсный газовый лазер имеет одну пару равных по длине диэлектрических трубок 7. Вариант выполнения газового лазера с четырьмя диэлектрическими трубками 7 показан на фиг. З. В соответствии с этим вариантом выполнения импульсный газовый лазер имеет две пары равных по длине диэлектрических трубок, первая пара образована трубками 12 и 13, а вторая - трубками 14 и 15.
Импульсный газовый лазер может быть выполнен с различными по длине диэлектрическими трубками 7. Выполнение трубок 7 каждой пары различными по длине позволяет изменять или получать другую форму импульса лазерного излучения при сохранении упомянутых выше технических характеристик лазера.
Импульсный газовый лазер имеет высокие воспроизводимость, ресурс, пиковую мощность, стабильность излучения от импульса к импульсу. Высокая стабильность излучения от импульса к импульсу подтверждается полным совпадением 1500 их осциллограмм (фиг. 4).
Импульсный газовый лазер обеспечивает устранение переотражения импульса между разрядным промежутком и генератором, повышение КПД лазера и стабильности лазерного излучения, а также - улучшение однородности возбуждения газа по длине разрядного промежутка и, как следствие, увеличение стабильности пространственных характеристик излучения, возможность увеличения объема активной среды за счет увеличения числа пар диэлектрических трубок при сохранении эффективности накачки и устранение электромагнитных помех в окружающем лазер пространстве, обычно сопровождающих высоковольтный электрический пробой.
Лазер позволяет использовать сменные лазерные ячейки с различными рабочими газами и с изменяемой в зависимости от задачи топологией. Лазерные ячейки могут выноситься с помощью коаксиального кабеля на значительные расстояния от высоковольтного блока питания.

Claims (7)

1. Импульсный газовый лазер, содержащий генератор высоковольтных наносекундных импульсов напряжения, расположенный в диэлектрическом корпусе электрод, соединенный по центральному проводнику коаксиальной линии с генератором, и электромагнитный экран, охватывающий корпус и соединенный с наружным проводником коаксиальной линии, отличающийся тем, что он снабжен по меньшей мере одной парой диэлектрических трубок, установленных одними концами в корпусе с обеих сторон от оси симметрии лазера на расстоянии S друг от друга и на расстоянии H от торца электрода, оси диэлектрических трубок попарно совпадают, а на вторых концах диэлектрических трубок, удаленных от оси симметрии лазера, выполнены окна для вывода излучения, причем выступающие из корпуса части диэлектрических трубок снабжены электромагнитными экранами, соединенными с экраном, охватывающим корпус.
2. Лазер по п.1, отличающийся тем, что поперечное сечение внутренней части диэлектрического корпуса имеет форму круга.
3. Лазер по п.2, отличающийся тем, что расстояние H определяется соотношением L >> H ≥ D, где D - внутренний диаметр диэлектрического корпуса, L - длина диэлектрической трубки.
4. Лазер по п.1, отличающийся тем, что расстояние S между упомянутыми одними концами диэлектрических трубок каждой пары определяется соотношением S ≈ 2r, где r - радиус диэлектрической трубки, причем r < D.
5. Лазер по п.1, отличающийся тем, что на вторых концах диэлектрических трубок, удаленных от оси симметрии лазера, перед окнами установлены электроды, соединенные с электромагнитными экранами трубок.
6. Лазер по п.1, отличающийся тем, что диэлектрические трубки выполнены различными по длине, но равными в каждой паре.
7. Лазер по п.1, отличающийся тем, что поперечное сечение внутренней части диэлектрического корпуса имеет форму прямоугольника.
RU99127124/28A 1999-12-17 1999-12-17 Импульсный газовый лазер RU2162264C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU99127124/28A RU2162264C1 (ru) 1999-12-17 1999-12-17 Импульсный газовый лазер

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99127124/28A RU2162264C1 (ru) 1999-12-17 1999-12-17 Импульсный газовый лазер

Publications (1)

Publication Number Publication Date
RU2162264C1 true RU2162264C1 (ru) 2001-01-20

Family

ID=20228528

Family Applications (1)

Application Number Title Priority Date Filing Date
RU99127124/28A RU2162264C1 (ru) 1999-12-17 1999-12-17 Импульсный газовый лазер

Country Status (1)

Country Link
RU (1) RU2162264C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Теплофизика высоких температур, т.19, 1981, N 3, с.491 - 493. *

Similar Documents

Publication Publication Date Title
US4185213A (en) Gaseous electrode for MHD generator
JPS6335117B2 (ru)
KR20180059579A (ko) 전자 결합 변압기
US6298806B1 (en) Device for exciting a gas by a surface wave plasma
RU2419960C2 (ru) Микроволновый генератор
US5552672A (en) Magnetron construction particularly useful as a relativistic magnetron
RU2162264C1 (ru) Импульсный газовый лазер
US20040262268A1 (en) Plasma burner with microwave stimulation
AU2017246939B2 (en) An adapter shaping electromagnetic field, which heats toroidal plasma discharge at microwave frequency
US4114685A (en) Method and apparatus for increasing heat transfer efficiency
RU2601181C2 (ru) Вч генератор
US5668442A (en) Plasma-assisted tube with helical slow-wave structure
Linkenheil et al. A novel spark-plug for improved ignition in engines with gasoline direct injection (GDI)
US3757246A (en) Energy storer and discharge for a gas laser device
US2788464A (en) Traveling wave electron discharge devices
US3351806A (en) Microwave spark-gap switch having a trigger electrode centered between and aligned with the opposed electrode
US2903623A (en) Electric discharge devices
GB1055580A (en) Improvements in or relating to electron discharge devices
RU2422938C1 (ru) Релятивистский магнетрон с волноводными выводами мощности
US2922131A (en) Folded cylinder gaseous discharge device
He et al. PIC Simulation of The Rectangular Grating with Single Electron Beam for 0.3 THz BWO
RU2155421C1 (ru) Электродное устройство с предварительной ионизацией ультрафиолетовым излучением от коронного разряда
GB2180094A (en) Discharge tube arrangements
KR101802817B1 (ko) 휴대용 마이크로파 플라즈마 발생기
SU1113772A1 (ru) Оптический затвор

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20031218