RU2161359C1 - Способ охлаждения турбогенератора - Google Patents

Способ охлаждения турбогенератора Download PDF

Info

Publication number
RU2161359C1
RU2161359C1 RU2000103809/09A RU2000103809A RU2161359C1 RU 2161359 C1 RU2161359 C1 RU 2161359C1 RU 2000103809/09 A RU2000103809/09 A RU 2000103809/09A RU 2000103809 A RU2000103809 A RU 2000103809A RU 2161359 C1 RU2161359 C1 RU 2161359C1
Authority
RU
Russia
Prior art keywords
turbogenerator
temperature
cooling
natural gas
heat
Prior art date
Application number
RU2000103809/09A
Other languages
English (en)
Inventor
Н.М. Цирельман
Е.Н. Цирельман
В.Н. Цирельман
Original Assignee
Цирельман Наум Моисеевич
Цирельман Евгений Наумович
Цирельман Виталий Наумович
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Цирельман Наум Моисеевич, Цирельман Евгений Наумович, Цирельман Виталий Наумович filed Critical Цирельман Наум Моисеевич
Priority to RU2000103809/09A priority Critical patent/RU2161359C1/ru
Application granted granted Critical
Publication of RU2161359C1 publication Critical patent/RU2161359C1/ru

Links

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

Изобретение относится к области электротехники и энергомашиностроения и может быть использовано при производстве и эксплуатации турбогенераторов и иных нуждающихся в охлаждении электрических машин. Техническая задача данного изобретения состоит в энерго- и ресурсосбережении при производстве и эксплуатации турбогенератора, а также в повышении надежности их работы. Сущность изобретения состоит в том, что согласно данному способу охлаждение турбогенератора газообразной средой осуществляют отвод тепла от тепловыделяющих элементов турбогенератора. Причем в качестве охлаждающей среды используют природный газ с температурой (-30°С) - (+20°C), который под избыточным давлением напрямую через вентиляционную сеть турбогенератора подают к горелкам топок, и осуществляют при его движении отвод тепла от тепловыделяющих элементов конструкции турбогенератора.

Description

Изобретение относится к области энергомашиностроения и может быть использовано при производстве и эксплуатации турбогенераторов и иных нуждающихся в охлаждении электрических машин.
Известны способы охлаждения турбогенераторов циркулирующим в замкнутом контуре газообразными воздухом, техническим водородом (97% водорода и 3% воздуха) и чистым водородом [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967. С. 19-22, С. 70-81, С. 111-117].
Недостатками всех известных способов охлаждения турбогенераторов являются уменьшение вырабатываемой ими мощности из-за недостаточного охлаждения тепловыделяющих элементов их конструкции (статора, обмоток статора, ротора и др.) и выброс в окружающую среду отводимого от них тепла, количество которого может достигать 5% от вырабатываемой мощности. При использовании способов необходимы теплообменники для охлаждения газообразных воздуха, технического водорода или чистого водорода, вентиляторы для их циркуляции внутри турбогенератора и насосы для перекачивания воды, затраты энергии на их привод, что усложняет и утяжеляет конструкцию турбогенератора, делает его эксплуатацию менее надежной и менее длительной, более сложной и дорогостоящей.
Наиболее близким по технической сущности и достигаемому эффекту к заявляемому является способ охлаждения турбогенератора газообразным чистым водородом [Титов В. В. , Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967. С. 21, 74-82, 111-117].
Он получил самое широкое распространение в современном турбогенераторостроении и состоит в следующем. Внутри турбогенератора с помощью вентилятора организуется циркуляция находящегося под избыточным давлением газообразного чистого водорода. При своем движении газообразный чистый водород омывает тепловыделяющие элементы конструкции турбогенератора и нагревается. В настоящее время все турбогенераторы выполняются с замкнутым циклом охлаждения, так что нагревшийся газообразный чистый водород направляется с помощью уже указанных выше вентиляторов в трубчатые теплообменники, которые почти всегда встраиваются в корпус статора. Газообразный чистый водород омывает снаружи трубки теплообменников, отдает тепло движущейся внутри трубок воде, охлаждается и возвращается в вентиляционную сеть турбогенератора на охлаждение статора, обмоток статора и ротора и др.
Недостатками способа охлаждения турбогенератора газообразным чистым водородом являются уменьшение вырабатываемой им мощности из-за недостаточного охлаждения тепловыделяющих элементов конструкции (статора, обмоток статора, ротора и др. ) и выброс в окружающую среду отводимого от этих элементов тепла. При использовании газообразного чистого водорода необходимы теплообменники для его охлаждения, вентиляторы для циркуляции газообразного чистого водорода внутри турбогенератора и насосы для перекачивания воды, затраты энергии на их привод, что усложняет и утяжеляет конструкцию турбогенераторов, делает их эксплуатацию менее надежной и менее длительной, более сложной и дорогостоящей.
Расчеты интенсивности теплообмена при турбулентном течении в вентиляционной сети турбогенератора основываются на том, что величина коэффициента теплоотдачи α при одинаковых диаметрах охлаждающих каналов и скорости движения охладителя пропорциональна комплексу
Figure 00000001

где λ и ν - коэффициенты теплопроводности и кинематической вязкости охладителя; Pr - число Прандтля для охладителя [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967. С. 847].
Используя формулу (I), получаем, что для газообразных воздуха, технического водорода и чистого водорода величины α соотносятся как 1:1,3:1,44, т. е. применение газообразного чистого водорода дает увеличение коэффициента теплоотдачи α на 44% по сравнению с воздушным охлаждением и на 10,8% - по сравнению с охлаждением техническим водородом [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967, с. 75]. Однако количество тепла q, отводимое с единицы площади поверхности за единицу времени, характеризующее эффективность способа охлаждения, определяется не только коэффициентом теплоотдачи α, но и величиной разности между температурой поверхности тела и температурой охлаждающей среды, т.к. величина q рассчитывается по формуле
q = α(tпов-tохл), (2)
где q - плотность теплового потока; tпов и tохл - температура поверхности и температура охлаждающей среды соответственно [Михеев М.А., Михеева И. М. Основы теплопередачи. - М.: Энергия. - 1973. С. 67].
В газообразном чистом водороде, который применяют для охлаждения турбогенераторов, содержатся пары воды и если температура поверхности трубок теплообменников-охладителей ниже температуры точки росы, то пары воды конденсируются и капельки влаги вносятся циркулирующим газообразным чистым водородом в вентиляционную сеть турбогенератора. Чтобы избежать это опасное явление, во внутрь трубок охладителей газообразного чистого водорода подают теплую воду и тогда температура их наружной поверхности будет выше точки росы влаги в водороде.
Охладители газообразного чистого водорода для турбогенераторов рассчитываются на температуру входящей воды 33oC, причем перегрев ее в газоохладителе составляет 5-7oC [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л. : Энергия, 1967, С. 57]. При способе охлаждения газообразным чистым водородом его температура в вентиляционной сети турбогенератора повышается на 20-25oC [Титов В.В., Хуторецкий Г.М. и др. Турбогенераторы. - Л.: Энергия, 1967, С. 54].
Так как средняя температура воды в теплообменнике-охладителе равна [(33+7)+33] /2= 36,5oC, а минимальная разность температуры воды и газообразного чистого водорода в нем не менее 5oC, то в самом благоприятном режиме температура газообразного чистого водорода на входе в турбогенератор равна 36,5+5= 41,5oC. Отсюда следует, что даже при минимальном подогреве в 20oC на выходе из турбогенератора температура газообразного чистого водорода равна 41,5+20=61,5oC, а средняя его температура составляет
tохл = (41,5 + 61,5) = 51,5oC.
Вследствие этого температура статора, обмоток статора и ротора и др. большая и уменьшается вырабатываемая мощность турбогенератора.
Применение газообразного чистого водорода в системе охлаждения турбогенератора достаточно опасно, т. к. концентрационный предел воспламенения газообразного чистого водорода в воздухе лежит в широком диапазоне от 4% до 74% [Хзмалян Д. М., Каган Я.А. Теория горения и топочные устройства. - М.: Энергия. - 1976. С. 139].
Задача, на решение которой направлено заявляемое изобретение, - энерго- и ресурсосбережение при производстве и эксплуатации турбогенераторов, повышение длительности и надежности их работы.
Поставленная задача решается тем, что в способе охлаждения турбогенератора газообразной средой, по которому осуществляют отвод тепла от тепловыделяющих элементов его конструкции, в отличие от прототипа в качестве охлаждающей среды используют природный газ с температурой (-30oC)- (+20oC), который под избыточным давлением напрямую подают через вентиляционную сеть турбогенератора к горелкам топок.
Пример конкретной реализации способа.
Конкретная реализация способа такова: под избыточным давлением напрямую через вентиляционную сеть турбогенератора к горелкам топок подают природный газ с температурой (-30oC)-(+20oC) и осуществляют при его движении отвод тепла от тепловыделяющих элементов конструкции турбогенератора (корпус статора, обмотки статора и ротора и др.).
Расчеты по формуле (I) дают для природного газа коэффициент теплоотдачи α на 25,7% меньшим, чем при использовании прототипа. Но этот недостаток природного газа компенсируется тем, что в подаваемом на промышленные предприятия природном газе практически нет паров воды. В любом случае точка росы влаги в пункте сдачи природного газа предприятиями Газпрома РФ ниже его температуры [ГОСТ 5542-87 Газы горючие природные для промышленного и коммунально-бытового назначения. Технические условия. - М.: Изд-во стандартов. - 1987. С. 2, п. 1.2.].
Поэтому температура природного газа перед его подачей в вентиляционную сеть турбогенератора и его средняя температура tохл в этой сети может поддерживаться низкой, намного меньшей, чем в прототипе: при температуре природного газа (-30oC)-(+20oC) и минимальном его подогреве в вентиляционной сети на 20oC средняя температура tохл равна (-20oC)-(+30oC) вместо 51,5oC в прототипе. Вследствие этого применение природного газа существенно увеличивает количество тепла, отводимого им от охлаждаемых элементов конструкции турбогенератора, по сравнению с прототипом: в формуле (2) для подсчета величины q сомножитель α на 25,7% меньше, а сомножитель tпов - tохл на 150-400% больше, чем в прототипе. При этом температура статора, обмоток статора и ротора и др. становится меньше и увеличивается вырабатываемая турбогенератором мощность. Кроме того, тепло, воспринятое от них природным газом, не выбрасывается в окружающую среду, а вносится в топку котельного агрегата и там полезно используется.
Достичь низкой температуры tохл природного газа очень легко, т.к. он поступает на газораспределительные пункты теплоэлектростанций с избыточным давлением 1,2 и 0,6 МПа, а необходимое его избыточное давление перед горелками топок должно быть равным от 5 до 70 кПа [Роддатис К.Ф. Котельные установки. - М.: Энергия, 1977. С. 155]. Снижение давления газа перед турбогенератором приводит и к снижению его температуры.
Применение природного газа для охлаждения турбогенератора существенно снижает опасность возникновения взрыва и развития пожара при аварии по сравнению с прототипом, поскольку природный газ менее склонен поддерживать горение в смеси с воздухом: концентрационный предел воспламенения природного газа в воздухе лежит в узком диапазоне от 5 до 15% [ГОСТ 5542-87 Газы горючие природные для промышленного и коммунально-бытового назначения. Технические условия. - М.: Изд-во стандартов. - 1987. С. 2, п. 1.3.2].
Таким образом, предлагаемое изобретение обеспечивает энерго- и ресурсосбережение при производстве и эксплуатации турбогенераторов, повышение надежности и ресурса их работы, т.к. при использовании способа охлаждения турбогенераторов природным газом и его подаче напрямую через турбогенератор к топливным горелкам увеличивается вырабатываемая мощность и полезно используется выделяющееся при работе турбогенератора тепло, отпадает потребность в теплообменниках-охладителях, в вентиляторах и водяных насосах и в затратах энергии на их привод, а также уменьшаются затраты на эксплуатацию.

Claims (1)

  1. Способ охлаждения турбогенератора газообразной средой, по которому осуществляют отвод тепла от тепловыделяющих элементов его конструкции, отличающийся тем, что в качестве охлаждающей среды используют природный газ с температурой (-30oC) - (+20oC), который под избыточным давлением напрямую через вентиляционную сеть турбогенератора подают к горелкам топок, и осуществляют при его движении отвод тепла от тепловыделяющих элементов конструкции турбогенератора.
RU2000103809/09A 2000-02-15 2000-02-15 Способ охлаждения турбогенератора RU2161359C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2000103809/09A RU2161359C1 (ru) 2000-02-15 2000-02-15 Способ охлаждения турбогенератора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2000103809/09A RU2161359C1 (ru) 2000-02-15 2000-02-15 Способ охлаждения турбогенератора

Publications (1)

Publication Number Publication Date
RU2161359C1 true RU2161359C1 (ru) 2000-12-27

Family

ID=20230697

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2000103809/09A RU2161359C1 (ru) 2000-02-15 2000-02-15 Способ охлаждения турбогенератора

Country Status (1)

Country Link
RU (1) RU2161359C1 (ru)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ТИТОВ В.В., ХУТОРЕЦКИЙ Г.М. и др. Турбогенераторы - Л.: Энергия, 1967, с.21, 74-82, 111-117. *

Similar Documents

Publication Publication Date Title
US4164660A (en) Plant for the production of electrical energy and heat
CN105102772A (zh) 具有超临界工作流体的热机系统及其处理方法
EP0960270B1 (en) Heating installation based on a stirling system
KR101393315B1 (ko) 냉각라인이 형성되는 잠열 열교환기 커버
KR101399428B1 (ko) Orc 발전시스템의 안전장치
BR0011069A (pt) Aparelho compacto para geração de energia, métodos de geração de energia, e de gerenciamento automatizado de energia, e, sistema de gerenciamento de energia
RU2161359C1 (ru) Способ охлаждения турбогенератора
KR102571799B1 (ko) 작동매체 특성차 발전시스템 및 상기 발전시스템을 사용한 작동매체 특성차 발전방법
KR20120016933A (ko) 소형 열병합발전기에서 엔진 배기유로의 배출구조
DE59203249D1 (de) Kombinierte gas-dampfturbinenanlage zur erzeugung elektrischer energie.
RU2755072C1 (ru) Система для производства тепловой и электрической энергии на основе двигателя внешнего сгорания
RU159686U1 (ru) Тепловая схема тригенерационной мини-тэц
RU2003102313A (ru) Способ эксплуатации атомной паротурбинной установки и установка для его осуществления
JP7472035B2 (ja) ボイラー用のコジェネレーションシステム
RU2528214C2 (ru) Когенерационная газотурбинная энергетическая установка
US20090308051A1 (en) Heat exchanger tube and air-to-air intercooler
KR20120064977A (ko) Ic촉매수소발생과 연소열 이용의 스털링엔진발전시스템
JP5478216B2 (ja) 給湯発電システムおよびその運転制御方法
CN217004439U (zh) 基于陶瓷蓄热器储能的过热蒸汽发生装置
RU2415280C1 (ru) Тепловая электрическая станция
CN219120648U (zh) 燃油暖风机
RU2415279C1 (ru) Способ работы тепловой электрической станции
RU2673948C1 (ru) Энергоустановка
RU2415277C1 (ru) Тепловая электрическая станция
KR101777210B1 (ko) 원예 시설용 난방 장치

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20040216